Address of the author Top Some further fullerenes References

References

 [1]
K. Balasubramanian. Enumeration of isomers of polysubstituted C60 and applications to NMR. Chemical Physics Letters, 182:257-262, 1991.
 [2]
K. Balasubramanian. Nuclear-spin statistics of C60, C60H60 and C60D60. Chemical Physics Letters, 183:292-296, 1991.
 [3]
K. Balasubramanian. Enumeration of chiral and achiral edge and face substitutions of buckminsterfullerene. Chemical Physics Letters, 237:229-238, 1995.
 [4]
C. Benecke, R. Grund, R. Hohberger, A. Kerber, R. Laue, and T. Wieland. Chemical Isomerism, a Challange for Algebraic Combinatorics and for Computer Science. In G. Cohen, M. Giusti, and T. Mora, editors, Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, 11th International Symposium, AAECC-11, Paris, France, July 1995, volume 948 of Lecture Notes in Computer Science, pages 4-20. Springer, 1995.
 [5]
A. Ceulemans and P.W. Fowler. Extension of Euler's theorem to symmetry properties of polyhedra. Nature, 353:52-54, 1991.
 [6]
P.W. Fowler. How unusual is C60? Magic numbers for carbon clusters. Chemical Physics Letters, 131:444 - 450, 1986.
 [7]
P.W. Fowler and D.B. Redmond. Symmetry aspects of bonding in carbon clusters: the leapfrog transformation. Theor. Chim. Acta, 83:367-375, 1992.
 [8]
P.W. Fowler and D.B. Redmond. Symmetry aspects of leapfrog and truncated polyhedra. match, 33:101-119, 1996. ISSN 0340-6253.
 [9]
P.W. Fowler and J.I. Steer. The Leapfrog Principle: A Rule for Electron Counts of Carbon Clusters. Journal of the Chemical Society, Chemical Communications, pages 1403 - 1405, 1987.
 [10]
H. Fripertinger. The Cycle Index of the Symmetry Group of the Fullerene C60. match, 33:121-138, 1996.
 [11]
S. Fujita. Soccerane Derivatives of Given Symmetries. Bulletin of the Chemical Society of Japan, 64:3215-3223, 1991.
 [12]
GAP. Groups, Algorithms and Programming. Copyright by "Lehrstuhl D für Mathematik, RWTH Aachen, Templergraben 64".
 [13]
A. Kerber. Algebraic Combinatorics via Finite Group Actions. B.I. Wissenschaftsverlag, Mannheim, Wien, Zürich, 1991. ISBN 3-411-14521-8.
 [14]
D.J. Klein, T.G. Schmalz, G.E. Hite, and W.A. Seitz. Resonance in C60, Buckminsterfullerene. Journal American Chemical Society, 108:1301 - 1302, 1986.
 [15]
W. Krätschmer, L.D. Lamb, K. Fostiropoulos, and D.R. Huffman. Solid C60: a new form of carbon. Nature, 347:354 - 358, 1990.
 [16]
H.W. Kroto, J.R. Heath, S.C. O'Brien, R.F. Curl, and R.E. Smalley. C60: Buckminsterfullerene. Nature, 318:162 - 163, 1985.
 [17]
G. Pólya. Kombinatorische Anzahlbestimmungen für Gruppen, Graphen und chemische Verbindungen. Acta Mathematica, 68:145 - 254, 1937.
 [18]
SYMMETRICA. A program system devoted to representation theory, invariant theory and combinatorics of finite symmetric groups and related classes of groups. Copyright by "Lehrstuhl II für Mathematik, Universität Bayreuth, 95440 Bayreuth". Distributed via anonymous ftp 132.180.16.20 in dist/SYM.tar.Z.
 [19]
R. Taylor, J.P. Hare, A.K. Abdul-Sada, and H.W. Kroto. Isolation, Separation and Characterisation of the Fullerenes C60 and C70: The Third Form of Carbon. Journal of the Chemical Society, Chemical Communications, pages 1423 - 1425, 1990.

harald.fripertinger@kfunigraz.ac.at

Address of the author Top Some further fullerenes Uni-Graz Mathematik UNIGRAZ online References Valid HTML 4.0 Transitional Valid CSS!