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Part |

(-adic Galois representations and modular
curves



Residual Galois representations

Let E/Q be an elliptic curve and N > 1. Define

E[N] :={P € E(Q): NP =0} ~ (Z/NZ)>.

For E[N] C E(K) and K/Q Galois, Gal(K/Q) acts on E[N] via

(x,y)7 = (o(x),0(y))
~» mod N-Galois representation

ﬁE,N : GQ = Gal(@/@) — Aut(E[N]) ~ GL2(Z/NZ) .



(-adic Galois representations and modular curves

Let ¢ be prime, n > 1.
The pg ¢n fit together to give the (-adic Galois representation

PE oo G@ — GL2(Z[) .

Goal (Mazur 1977). Classify all ¢-adic Galois representations of
elliptic curves E/Q for all primes ¢.

G < GLx(Z/¢"Z) ~» modular curve Xg ~ X(¢")/G such that
E/Q with im(pg ) C G ~» non-cuspidal P € Xg(Q).

Goal. Compute Xg(Q) for all G < GL»(Z/¢"Z).
Done for £ = 2 (Rouse — Zureick-Brown, 2015) and ¢ € {13,17,3}.



Non-split Cartan
Usually hardest case: G = Nys(¢") < GLo(Z/¢"Z) normalizer of
non-split Cartan subgroup C,s(¢") < GL2(Z/¢"Z). Write
XE(0M) i = Xy, (em-
Example. Prime level . Then F), acts on Fy x Fy ~ F»
s Cus(£) = im(Ff2 — GLo(Fr)) < Nis(¥).

XE(0)(Q) is known only for
® (23,5 7,11: genus 0,1
e (= 13,17 (Balakrishnan-Dogra-M.-Tuitman-Vonk, '19, '23)

We also computed Xs,(13)(Q). This completed the classification
of ¢-adic Galois representations for ¢ = 13,17.



X(27) and a quotient

ns

Rouse—Sutherland—Zureick-Brown, 2022. Finished computation
of Xg(Q) for all G < GLy(Z/3"Z) except for X (27).

. /vns(27):< (20 14) , (2 9) > < GLo(Z,/277) .
7 20 9 25

® https://beta.Imfdb.org/ModularCurve/Q/27.243.12.a.1/
¢ genus= 12 = Mordell-Weil rank :-(

RSZB construct a genus 3 quotient X}, of X;[(27) over Q((3).
So computing X/,(Q((3)) suffices to finish case ¢ = 3 :-)

Existing methods to do so are not applicable or feasible :-(

This talk. Extending quadratic Chabauty to number fields and
applying it to X},/Q((3).


https://beta.lmfdb.org/ModularCurve/Q/27.243.12.a.1/

Results

Xiy: x* 4 (G — 1)x3y + (3G + 2)x3 — 3x% 4 (263 + 2)xy> — 3¢3xy?
+3Caxy — 203x — Gy® +3Gy* + (—Gs + 1)y + (G +1) = 0.
Theorem. (Balakrishnan-Betts-Hast-Jha-M., 2025)

X{(Q(¢s)) = {(0, —¢3—1),(1, ¢ —1),(¢s +1,—¢3 — 1),(0, —¢3),(¢3 +1,0),(2¢3 +2,¢3) , (¢3,1),

(C3;3,C3;2)7(7€3372,C3:2),(%(:3,%1>,(5@%4,71),(1:0:0),(1:(3+1:0)}.

Corollary. We have #X.1(27)(Q) = 8; all points are CM, with
discriminants —4, —7, —16, —19, —28, —43, —67, —163.

Corollary. If E/Q is non-CM, then im pg 3~ is one of 47
subgroups of GL(Z3) of level at most 27 and index at most 72
listed by RSZB.
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Chabauty methods over



Chabauty methods: idea

Quadratic Chabauty is a p-adic analytic method to compute C(Q)
for certain nice! curves C/Q of genus > 2, extending linear
Chabauty.

Idea of Chabauty-type methods over Q
Step 1. Construct a nontrivial locally analytic function
F: C(Qp) — Qp such that F(C(Q)) =0.

Step 2. Compute the (finitely many!) zeros of F and find C(Q)
among them.

Theorem. (Chabauty, 1941, Coleman, 1985)
Let J := Jacc. If rkJ(Q) < g, then there is an effectively
computable F as in Step 1.

Ysmooth, projective, geometrically integral



Linear Chabauty over Q

Fix be C(Q)and t=1p: C—J; x> [x—b].

Commutative diagram

Q) C(Qp)

L

J(Q) J(Qp)

Analytic homorphism:

log: J(Qp) — ToJ(Qp) — H%(Jg,,Q")Y — H%(Cg,, Q") =: T,



Chabauty—Coleman

CQ) ——— (@)

L |

J(@) J(Q@p) Tp

log

If tk J(Q) < g, there is an w¢e € H%(Cg,, Q) \ {0} with
(log D)(wc) =0 forall D e J(Q).

Hence
F: C(Qp) — Qp; X = (|Og L(X))(WC)
satisfies F(C(Q)) = 0.

Coleman:
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Quadratic Chabauty over Q

Kim (2006, 2009): conjectural extension of linear Chabauty to all
C/Q using unipotent arithmetic fundamental groups ~~

C(Q) c..-C C(Qp)n C C(@p)n—l c..-C C(@p)l C C(Qp)-
Conjecture (Kim, 2009). C(Qp), is finite for n > 0.

Quadratic Chabauty (Balakrishnan—-Dogra, 2016): F: C(Qp) — Qp
under certain restrictions, vanishing on C(Q)

Algorithm and Magma-implementation:
Balakrishnan-Dogra-M.-Tuitman-Vonk (2019)

Alternative approaches:
e Edixhoven—Lido: via Poincaré torsors

® Besser—M.—Srinivasan: via p-adic Arakelov theory
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Comparison over QQ

Method Linear Chabauty Quadratic Chabauty

cuts out: C(Qp)1 C(Qp)2
condition: || tkJ(Q) < g rk J(Q) < g — 1+ 1k NS(J)
integrals [iw S5 wr, (fp wi) - (Jpw2), [ym
in F(x): Lo mam = fo (n2(y) [3 m)

differentials:

w regular

wj regular, n; log-differentials

source: Linear relations in Quadratic relations in
log(J(Q) @ Qp) C Tp | log(J(Q) ® Qp) C Ty
extensions Flynn, Bruin; Siksek; Balakrishnan—Dogra; Gajovi¢c—-M
& variants || Stoll Dogra—Le Fourn; Dogra, Berry

Balakrishnan—Besser—M.
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Chabauty over number fields: idea

For simplicity:
* K=0Q(&)
e C/K: nice curve of genus g > 2,
® be C(K) # @ base point, ¢ = ¢p.
® p: good reduction prime for C such that pOx = pp’ is split.

Idea (Wetherell, Siksek). Use both p and p’.
Step 1. Construct > 2 nontrivial locally analytic functions

F: C(K®Qp)~ C(K,) @& C(Ky) — Qp such that F(C(K)) =0.

Step 2. Compute the (hopefully finitely many!) common zeros and
find C(K) among them.
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Linear Chabauty over number fields

C(K) C(K®Qp)
J(K) J(K®Qp) HO(Cy, QY)Y @ HO(Cy, QY)Y =:

log

Explicitly, for (D1, D2) € J(Kp) @ J(Ky) = J(K ® Qp):

Dy D»
log(D1, D) (w1, w?) (/ UJ1,/ w2>

Siksek: If rk J(K) < 2(g — 1), get 2 locally analytic functions
F: C(K®Qp) — Qp that vanish on C(K).

Finiteness of common zero set is often satisfied but hard to predict
(Siksek, Triantafillou, Hast, Dogra). Not an issue in practice.

Tp
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(p-adic) heights

Relations behind quadratic Chabauty come from Qp-valued heights.

More generally:

e [: local field, char(L) = 0.

® x: A} /K* — L continuous nontrivial idéle class character
Get symmetric L-bilinear height pairing

(UKL x (JK)oL)—L.
Idea. Construct local height pairings and use y to globalize.

Example. L =R, y idéle norm ~~ canonical (Néron—Tate) height.

We use L = Q, and choose 2 = ry(K) + 1 independent x, x". E.g.
® Xp = log, and xpr =0
. X;J/ = log,, and x;, =0,

where log,: Q; — Qp and log,(p) = 0.
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Assumptions

Assume rk NS(J) > 1 and choose nonzero Z € ker(NSJ — NS C).

Define hz: C(K) — Q, by
hz(x) = (u(x), Z((x)) + ez)*
where ¢z € J(K) is the Chow—Heegner point wrt. Z.
Also assume that
log: J(K)®@ Qp = J(K®Qp) = Tp

is an isomorphism.
® In particular rk J(K) = 2g = [K : Q]g.
e Can generalise to C, K such that

rkJ(K) < [K:Ql(g — 1) + (kNS(J) = 1)(r2(K) + 1) .

18



Quadratic Chabauty over number fields: Theory

hz: C(K) = Qp,  hz(x) = (), Z(1(x)) + c2)¥

Theorem. (Balakrishnan-Betts-Hast-Jha-M., 2025)
For all ¢ C Ok prime there is a function

hq: C(Kq) = Qp  such that:
(1) For q1 p: hq has finite image. For good q 1 p: hy = 0.

(2) For x € C(K):
> ha(x) = hz(x).
q

(3) hy and hy are locally analytic.
(4) hz extends to locally analytic hz: C(K ® Qp) — Qp.
(5) F:=hz —h, — hy: C(K® Qp) = Q, is non-constant.

19



Quadratic Chabauty over number fields: algorithm

Fi=hz—hy—hy: C(K®Q,) = Qp
Corollary.

= hy(x) — hy(x = hy(x) forallx € C(K).

all g atp

In particular, if hy =0 for all gt p, then F(C(K)) = 0.

“Algorithm” to compute C(K).

(a) Show hy =0 for all g1 p (if that holds);

(b) expand h, and hy locally into power series on C(K);
(c) expand hz on C(K @ Qp);

(d) do all of this for x' rather than x (~ h, hi, F');
(e) solve for set of common zeros of F,F': C(K ® Qp) — Qp
using multivariate Hensel and hope it’s finite;

(f) find C(K) in this set.

20



Global heights

(c) Expand hz into locally analytic function on C(K ® Qp).

By assumption
log: J(K) ® Qp — HY(G,, QY)Y @ HY(Cy, QY)Y =: T,
and we get
hz(x) = (1(x), Z((x)) + c2)X = [log 1(x), log(Z(1(x)) + c2)]¥
for a locally analytic symmetric bilinear pairing
[ Tpx T, — Qp.

We solve for [-,-]X (and hence hz) in terms of a basis of such
pairings by evaluating in enough points.

21



Local heights away from p

(a) Find hg(C(Ky)) for all q 1 p.

Theorem. (Betts—-Dogra, 2019) For q { p, hq factors through the
irreducible components of the special fiber Cs of a semistable
regular model C of (.

Corollary. If all points in C(Kj;) reduce to the same component of
Cs, then hy = 0.

Example. If C has potentially good reduction at ¢, then h; = 0.

What if hy # 07 Betts, Duque-Rosero, Hashimoto and Spelier
(2024) describe a complete algorithm to compute (all values of) A,
for hyperelliptic C whose idea generalises.

22



Local heights above p

(b) Expand hy on C(Kj,).

Ky = Qp = can compute h, using algorithm of
Balakrishnan-Dogra-M.-Tuitman-Vonk.

Both hy and Coleman integrals can be described in terms of
unipotent overconvergent isocrystals (Nekovar, Besser).

Hence can compute hy(x) using p-adic Hodge theory in terms of:

~ Hodge filtration and Frobenius action of a certain mixed
extension of filtered ¢-modules with graded pieces
Qp, Hir(Ca,)", Deris(Qp(1));

~ reduction in rigid cohomology, differentials and p-adic linear
algebra (Tuitman).
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Application to C = X}, K = Q((3)

Magma-implementation + precision analysis

C = X}, has rk J(K) = 6 = 2g via Kolyvagin-Logachev.
Use p =13 = pp’.

rk NS(J) = 3: RM by Q(¢o)™"

Compute independent Z, Z’ € ker(NS J — NS C) ? using
Eichler-Shimura.

All hy =0 for q 113 (and both x and x’), using a semistable

model of Ckacy) constructed by Ossen.

Get 4 = 2 - 2 locally analytic functions
F: C(K ®Q13) ~ C(Kp) X C(Kp/) — Q13 R

whose common zero set is precisely C(K). Donel!

%actually their action on Hjz(Ck,) — just what our algorithms really need.
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What's next?
Chabauty—Kim.

® Dogra, Berry: Quadratic Chabauty without condition on NS J
using map from Bloch—Kato Selmer group to a certain étale
algebra and 2-adic Coleman integrals ~~ make more explicit
and implement in suitable generality

® Equationless (linear or quadratic) Chabauty

® Beyond quadratic Chabauty?

¢ Higher-dimensional Chabauty? (see Wednesday!)

Open modular curves.
o X1(5%): g =14

® Xy, where H has RSZB-label 49.147.9.1 or 49.147.9.1: g = 0.

® XE(72),. g —69! Recently done by Furio—Lombardo (see
Thursday!)

* XI(112): g =511
® XL(0), £ > 17 prime
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Correctness

We implemented (almost) all our algorithms in Magma, which is
powerful, but partially closed source.

Kevin Buzzard asks3: “Is this science?”

In our defense:

e Careful precision analysis to guarantee correctness of p-adic
approximations

® |n most quadratic Chabauty computations so far: more

equations F = 0 than necessary to cut out finite set ~ sanity
checks

® Independent verification for X;(13) in Sage.

Formalization??

3about the computation for X;;(13)
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