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Part I

ℓ-adic Galois representations and modular
curves
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Residual Galois representations

Let E/Q be an elliptic curve and N ≥ 1. Define

E [N] := {P ∈ E (Q̄) : NP = 0} ≃ (Z/NZ)2 .

For E [N] ⊂ E (K ) and K/Q Galois, Gal(K/Q) acts on E [N] via

(x , y)σ := (σ(x), σ(y))

⇝ mod N-Galois representation

ρ̄E ,N : GQ := Gal(Q̄/Q) → Aut(E [N]) ≃ GL2(Z/NZ) .
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ℓ-adic Galois representations and modular curves

Let ℓ be prime, n ≥ 1.
The ρ̄E ,ℓn fit together to give the ℓ-adic Galois representation

ρ̄E ,ℓ∞ : GQ → GL2(Zℓ) .

Goal (Mazur 1977). Classify all ℓ-adic Galois representations of
elliptic curves E/Q for all primes ℓ.

G ≤ GL2(Z/ℓnZ)⇝ modular curve XG ≃ X (ℓn)/G such that

E/Q with im(ρ̄E ,ℓn) ⊂ G ⇝ non-cuspidal P ∈ XG (Q) .

Goal. Compute XG (Q) for all G ≤ GL2(Z/ℓnZ).

Done for ℓ = 2 (Rouse – Zureick-Brown, 2015) and ℓ ∈ {13, 17, 3}.
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Non-split Cartan

Usually hardest case: G = Nns(ℓ
n) ≤ GL2(Z/ℓnZ) normalizer of

non-split Cartan subgroup Cns(ℓ
n) ≤ GL2(Z/ℓnZ). Write

X+
ns(ℓ

n) := XNns(ℓn).

Example. Prime level ℓ. Then F∗
ℓ2 acts on Fℓ × Fℓ ≃ Fℓ2

⇝ Cns(ℓ) = im(F∗
ℓ2 → GL2(Fℓ)) ≤ Nns(ℓ) .

X+
ns(ℓ)(Q) is known only for
• ℓ ∈ 2, 3, 5, 7, 11: genus 0,1
• ℓ = 13, 17 (Balakrishnan-Dogra-M.-Tuitman-Vonk, ’19, ’23)

We also computed XS4(13)(Q). This completed the classification
of ℓ-adic Galois representations for ℓ = 13, 17.
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X+
ns(27) and a quotient

Rouse–Sutherland–Zureick-Brown, 2022. Finished computation
of XG (Q) for all G ≤ GL2(Z/3nZ) except for X+

ns(27).

• Nns(27)=
〈20 14

7 20

 ,

2 9

9 25

〉
≤ GL2(Z/27Z) .

• https://beta.lmfdb.org/ModularCurve/Q/27.243.12.a.1/
• genus= 12 =Mordell–Weil rank :-(

RSZB construct a genus 3 quotient X ′
H of X+

ns(27) over Q(ζ3).
So computing X ′

H(Q(ζ3)) suffices to finish case ℓ = 3 :-)
Existing methods to do so are not applicable or feasible :-(

This talk. Extending quadratic Chabauty to number fields and
applying it to X ′

H/Q(ζ3).
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Results

X ′
H : x4 + (ζ3 − 1)x3y + (3ζ3 + 2)x3 − 3x2 + (2ζ3 + 2)xy3 − 3ζ3xy2

+ 3ζ3xy − 2ζ3x − ζ3y
3 + 3ζ3y2 + (−ζ3 + 1)y + (ζ3 + 1) = 0 .

Theorem. (Balakrishnan-Betts-Hast-Jha-M., 2025)

X ′
H (Q(ζ3)) =

{
(0,−ζ3 − 1) , (1,−ζ3 − 1) , (ζ3 + 1,−ζ3 − 1) , (0,−ζ3) , (ζ3 + 1, 0) , (2ζ3 + 2, ζ3) , (ζ3, 1) ,(

ζ3 − 3

2
,
ζ3 + 2

2

)
,

(−ζ3 − 2

3
,
ζ3 + 2

3

)
,

(−ζ3

2
,
−1

2

)
,

( 5ζ3 + 4

7
,−1

)
, (1 : 0 : 0), (1 : ζ3 + 1 : 0)

}
.

Corollary. We have #X+
ns(27)(Q) = 8; all points are CM, with

discriminants −4,−7,−16,−19,−28,−43,−67,−163.

Corollary. If E/Q is non-CM, then im ρ̄E ,3∞ is one of 47
subgroups of GL2(Z3) of level at most 27 and index at most 72
listed by RSZB.
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Part II

Chabauty methods over Q
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Chabauty methods: idea

Quadratic Chabauty is a p-adic analytic method to compute C (Q)
for certain nice1 curves C/Q of genus ≥ 2, extending linear
Chabauty.

Idea of Chabauty-type methods over Q

Step 1. Construct a nontrivial locally analytic function

F : C (Qp) −→ Qp such that F (C (Q)) = 0 .

Step 2. Compute the (finitely many!) zeros of F and find C (Q)
among them.

Theorem. (Chabauty, 1941, Coleman, 1985)
Let J := JacC . If rk J(Q) < g , then there is an effectively
computable F as in Step 1.

1smooth, projective, geometrically integral
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Linear Chabauty over Q

Fix b ∈ C (Q) and ι = ιb : C ↪→ J ; x 7→ [x − b] .

Commutative diagram

C (Q) C (Qp)

J(Q) J(Qp)

ι ι

Analytic homorphism:

log : J(Qp)
∼−→ T0J(Qp)

∼−→ H0(JQp ,Ω
1)∨

∼−→ H0(CQp ,Ω
1)∨ =: Tp
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Chabauty–Coleman

C (Q) C (Qp)

J(Q) J(Qp) Tp

ι ι

log

If rk J(Q) < g , there is an ωC ∈ H0(CQp ,Ω
1) \ {0} with

(logD)(ωC ) = 0 for all D ∈ J(Q) .

Hence
F : C (Qp) → Qp ; x 7→ (log ι(x))(ωC )

satisfies F (C (Q)) = 0.

Coleman:
F (x) =

∫ x

b
ωC
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Quadratic Chabauty over Q
Kim (2006, 2009): conjectural extension of linear Chabauty to all
C/Q using unipotent arithmetic fundamental groups ⇝

C (Q) ⊆ · · · ⊆ C (Qp)n ⊆ C (Qp)n−1 ⊆ · · · ⊆ C (Qp)1 ⊆ C (Qp).

Conjecture (Kim, 2009). C (Qp)n is finite for n ≫ 0.

Quadratic Chabauty (Balakrishnan–Dogra, 2016): F : C (Qp) → Qp

under certain restrictions, vanishing on C (Q)

Algorithm and Magma-implementation:
Balakrishnan-Dogra-M.-Tuitman-Vonk (2019)

Alternative approaches:
• Edixhoven–Lido: via Poincaré torsors
• Besser–M.–Srinivasan: via p-adic Arakelov theory
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Comparison over Q
Method Linear Chabauty Quadratic Chabauty

cuts out: C (Qp)1 C (Qp)2

condition: rk J(Q) < g rk J(Q) < g − 1 + rk NS(J)

integrals
∫ x
b ω

∫ x
b ω1, (

∫ x
b ω1) · (

∫ x
b ω2),

∫ x
b η1

in F (x) :
∫ x
b η2η1 :=

∫ x
b

(
η2(y)

∫ y
b η1

)
differentials: ω regular ωi regular, ηi log-differentials

source: Linear relations in Quadratic relations in

log(J(Q)⊗Qp) ⊆ Tp log(J(Q)⊗Qp) ⊆ Tp

extensions Flynn, Bruin; Siksek; Balakrishnan–Dogra; Gajović–M.

& variants Stoll Dogra–Le Fourn; Dogra, Berry

Balakrishnan–Besser–M.
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Part III

Chabauty methods over number fields
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Chabauty over number fields: idea

For simplicity:
• K = Q(ζ3).
• C/K : nice curve of genus g ≥ 2,
• b ∈ C (K ) ̸= ∅ base point, ι = ιb.
• p: good reduction prime for C such that pOK = pp′ is split.

Idea (Wetherell, Siksek). Use both p and p′.
Step 1. Construct ≥ 2 nontrivial locally analytic functions

F : C (K ⊗Qp) ≃ C (Kp)⊕ C (Kp′) −→ Qp such that F (C (K )) = 0 .

Step 2. Compute the (hopefully finitely many!) common zeros and
find C (K ) among them.
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Linear Chabauty over number fields

C (K ) C (K ⊗Qp)

J(K ) J(K ⊗Qp) H0(Cp,Ω
1)∨ ⊕ H0(Cp′ ,Ω

1)∨ =: Tp

ι ι

log

Explicitly, for (D1,D2) ∈ J(Kp)⊕ J(Kp′) ∼= J(K ⊗Qp):

log(D1,D2)(ω1, ω2) =

(∫ D1

ω1,

∫ D2

ω2

)

Siksek: If rk J(K ) ≤ 2(g − 1), get 2 locally analytic functions
F : C (K ⊗Qp) → Qp that vanish on C (K ).

Finiteness of common zero set is often satisfied but hard to predict
(Siksek, Triantafillou, Hast, Dogra). Not an issue in practice.
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(p-adic) heights
Relations behind quadratic Chabauty come from Qp-valued heights.

More generally:
• L: local field, char(L) = 0.
• χ : A∗

K/K
∗ → L continuous nontrivial idèle class character

Get symmetric L-bilinear height pairing

⟨·, ·⟩χ : (J(K )⊗ L)× (J(K )⊗ L) → L .

Idea. Construct local height pairings and use χ to globalize.

Example. L = R, χ idéle norm ⇝ canonical (Néron–Tate) height.

We use L = Qp and choose 2 = r2(K ) + 1 independent χ, χ′. E.g.
• χp = logp and χp′ = 0
• χ′

p′ = logp and χ′
p = 0,

where logp : Q×
p → Qp and logp(p) = 0.
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Assumptions
Assume rk NS(J) > 1 and choose nonzero Z ∈ ker(NS J → NSC ).

Define hZ : C (K ) → Qp by

hZ (x) := ⟨ι(x),Z (ι(x)) + cZ ⟩χ ,

where cZ ∈ J(K ) is the Chow–Heegner point wrt. Z .

Also assume that

log : J(K )⊗Qp → J(K ⊗Qp) → Tp

is an isomorphism.
• In particular rk J(K ) = 2g = [K : Q]g .
• Can generalise to C ,K such that

rk J(K ) ≤ [K : Q](g − 1) + (rk NS(J)− 1)(r2(K ) + 1) .
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Quadratic Chabauty over number fields: Theory

hZ : C (K ) → Qp, hZ (x) := ⟨ι(x),Z (ι(x)) + cZ ⟩χ

Theorem. (Balakrishnan-Betts-Hast-Jha-M., 2025)
For all q ⊂ OK prime there is a function

hq : C (Kq) → Qp such that:

(1) For q ∤ p: hq has finite image. For good q ∤ p: hq = 0.
(2) For x ∈ C (K ): ∑

q

hq(x) = hZ (x) .

(3) hp and hp′ are locally analytic.
(4) hZ extends to locally analytic hZ : C (K ⊗Qp) → Qp.
(5) F := hZ − hp − hp′ : C (K ⊗Qp) → Qp is non-constant.
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Quadratic Chabauty over number fields: algorithm

F := hZ − hp − hp′ : C (K ⊗Qp) → Qp

Corollary.

F (x) =
∑
all q

hq(x)− hp(x)− hp′(x) =
∑
q∤p

hq(x) for all x ∈ C (K ) .

In particular, if hq ≡ 0 for all q ∤ p, then F (C (K )) = 0.

“Algorithm” to compute C (K ).
(a) Show hq ≡ 0 for all q ∤ p (if that holds);
(b) expand hp and hp′ locally into power series on C (Kp);
(c) expand hZ on C (K ⊗Qp);
(d) do all of this for χ′ rather than χ (⇝ h′Z , h

′
q,F

′);
(e) solve for set of common zeros of F ,F ′ : C (K ⊗Qp) → Qp

using multivariate Hensel and hope it’s finite;
(f) find C (K ) in this set.
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Global heights

(c) Expand hZ into locally analytic function on C (K ⊗Qp).

By assumption

log : J(K )⊗Qp
≃−→ H0(Cp,Ω

1)∨ ⊕ H0(Cp′ ,Ω
1)∨ =: Tp ,

and we get

hZ (x) = ⟨ι(x),Z (ι(x)) + cZ ⟩χ = [log ι(x), log(Z (ι(x)) + cZ )]
χ

for a locally analytic symmetric bilinear pairing

[·, ·]χ : Tp × Tp → Qp .

We solve for [·, ·]χ (and hence hZ ) in terms of a basis of such
pairings by evaluating in enough points.
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Local heights away from p

(a) Find hq(C (Kq)) for all q ∤ p.

Theorem. (Betts–Dogra, 2019) For q ∤ p, hq factors through the
irreducible components of the special fiber Cs of a semistable
regular model C of Cq.

Corollary. If all points in C (Kq) reduce to the same component of
Cs , then hq ≡ 0.

Example. If C has potentially good reduction at q, then hq ≡ 0.

What if hq ̸≡ 0? Betts, Duque-Rosero, Hashimoto and Spelier
(2024) describe a complete algorithm to compute (all values of) hq
for hyperelliptic C whose idea generalises.
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Local heights above p

(b) Expand hp on C (Kp).

Kp
∼= Qp ⇒ can compute hp using algorithm of

Balakrishnan-Dogra-M.-Tuitman-Vonk.

Both hp and Coleman integrals can be described in terms of
unipotent overconvergent isocrystals (Nekovář, Besser).

Hence can compute hp(x) using p-adic Hodge theory in terms of:
⇝ Hodge filtration and Frobenius action of a certain mixed

extension of filtered ϕ-modules with graded pieces
Qp,H1

dR(CQp)
∨,Dcris(Qp(1));

⇝ reduction in rigid cohomology, differentials and p-adic linear
algebra (Tuitman).
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Application to C = X ′
H , K = Q(ζ3)

• Magma-implementation + precision analysis
• C = X ′

H has rk J(K ) = 6 = 2g via Kolyvagin–Logachev.
• Use p = 13 = pp′.
• rk NS(J) = 3: RM by Q(ζ9)

+

• Compute independent Z ,Z ′ ∈ ker(NS J → NSC ) 2 using
Eichler–Shimura.

• All hq = 0 for q ∤ 13 (and both χ and χ′), using a semistable
model of CK(1−ζ3)

constructed by Ossen.
• Get 4 = 2 · 2 locally analytic functions

F : C (K ⊗Q13) ≃ C (Kp)× C (Kp′) → Q13 ,

whose common zero set is precisely C (K ). Done!

2actually their action on H1
dR(CKp) – just what our algorithms really need.
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What’s next?
Chabauty–Kim.

• Dogra, Berry: Quadratic Chabauty without condition on NS J
using map from Bloch–Kato Selmer group to a certain étale
algebra and 2-adic Coleman integrals ⇝ make more explicit
and implement in suitable generality

• Equationless (linear or quadratic) Chabauty
• Beyond quadratic Chabauty?
• Higher-dimensional Chabauty? (see Wednesday!)

Open modular curves.
• X+

ns(5
2): g = 14

• XH , where H has RSZB-label 49.147.9.1 or 49.147.9.1: g = 9.
• X+

ns(7
2), g = 69! Recently done by Furio–Lombardo (see

Thursday!)
• X+

ns(112): g = 511
• X+

ns(ℓ), ℓ > 17 prime
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Correctness

We implemented (almost) all our algorithms in Magma, which is
powerful, but partially closed source.
Kevin Buzzard asks3: “Is this science?”

In our defense:
• Careful precision analysis to guarantee correctness of p-adic

approximations
• In most quadratic Chabauty computations so far: more

equations F = 0 than necessary to cut out finite set ⇝ sanity
checks

• Independent verification for X+
ns(13) in Sage.

Formalization??

3about the computation for X+
ns(13)
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