Quadratic Chabauty over number fields and 3-adic Galois representations

Steffen Müller (Rijksuniversiteit Groningen)

joint work with J.S. Balakrishnan, A. Betts, D.R. Hast, A. Jha

Rational Points 2025 Schloss Schney July 29, 2025

Part I

ℓ-adic Galois representations and modular curves

Residual Galois representations

Let E/\mathbb{Q} be an elliptic curve and $N \geq 1$. Define

$$E[N] := \{ P \in E(\bar{\mathbb{Q}}) \colon NP = 0 \} \simeq (\mathbb{Z}/N\mathbb{Z})^2.$$

For $E[N] \subset E(K)$ and K/\mathbb{Q} Galois, $Gal(K/\mathbb{Q})$ acts on E[N] via $(x,y)^{\sigma} := (\sigma(x),\sigma(y))$

→ mod N-Galois representation

$$\bar{\rho}_{E,N}: G_{\mathbb{Q}} := \operatorname{Gal}(\bar{\mathbb{Q}}/\mathbb{Q}) \to \operatorname{Aut}(E[N]) \simeq \operatorname{GL}_2(\mathbb{Z}/N\mathbb{Z}).$$

ℓ-adic Galois representations and modular curves

Let ℓ be prime, $n \geq 1$.

The $\bar{\rho}_{E,\ell^n}$ fit together to give the ℓ -adic Galois representation

$$ar
ho_{\mathsf{E},\ell^\infty}\colon \mathit{G}_\mathbb{Q} o \mathsf{GL}_2(\mathbb{Z}_\ell)\,.$$

Goal (Mazur 1977). Classify all ℓ -adic Galois representations of elliptic curves E/\mathbb{Q} for all primes ℓ .

$$G \leq \operatorname{GL}_2(\mathbb{Z}/\ell^n\mathbb{Z}) \leadsto \operatorname{\mathsf{modular}} \operatorname{\mathsf{curve}} X_G \simeq X(\ell^n)/G \operatorname{\mathsf{such}} \operatorname{\mathsf{that}}$$

$$E/\mathbb{Q}$$
 with $\operatorname{im}(\bar{\rho}_{E,\ell^n}) \subset G \leadsto \operatorname{non-cuspidal} P \in X_G(\mathbb{Q})$.

Goal. Compute $X_G(\mathbb{Q})$ for all $G \leq GL_2(\mathbb{Z}/\ell^n\mathbb{Z})$.

Done for $\ell=2$ (Rouse – Zureick-Brown, 2015) and $\ell\in\{13,17,3\}.$

Non-split Cartan

Usually hardest case: $G = N_{\rm ns}(\ell^n) \le \operatorname{GL}_2(\mathbb{Z}/\ell^n\mathbb{Z})$ normalizer of non-split Cartan subgroup $C_{\rm ns}(\ell^n) \le \operatorname{GL}_2(\mathbb{Z}/\ell^n\mathbb{Z})$. Write

$$X_{\mathrm{ns}}^+(\ell^n) := X_{N_{\mathrm{ns}}(\ell^n)}.$$

Example. Prime level ℓ . Then $\mathbb{F}_{\ell^2}^*$ acts on $\mathbb{F}_{\ell} \times \mathbb{F}_{\ell} \simeq \mathbb{F}_{\ell^2}$

$$\rightsquigarrow \textit{C}_{\mathrm{ns}}(\ell) = \mathsf{im}(\mathbb{F}_{\ell^2}^* \to \mathsf{GL}_2(\mathbb{F}_\ell)) \leq \textit{N}_{\mathrm{ns}}(\ell)\,.$$

 $X_{\mathrm{ns}}^+(\ell)(\mathbb{Q})$ is known only for

- $\ell \in 2, 3, 5, 7, 11$: genus 0,1
- $\ell=13,17$ (Balakrishnan-Dogra-M.-Tuitman-Vonk, '19, '23)

We also computed $X_{S_4}(13)(\mathbb{Q})$. This completed the classification of ℓ -adic Galois representations for $\ell = 13, 17$.

$$X_{\rm ns}^+(27)$$
 and a quotient

Rouse–Sutherland–Zureick-Brown, 2022. Finished computation of $X_G(\mathbb{Q})$ for all $G \leq \operatorname{GL}_2(\mathbb{Z}/3^n\mathbb{Z})$ except for $X_{\mathrm{ns}}^+(27)$.

•
$$N_{\rm ns}(27) = \left\langle \begin{pmatrix} 20 & 14 \\ 7 & 20 \end{pmatrix}, \begin{pmatrix} 2 & 9 \\ 9 & 25 \end{pmatrix} \right\rangle \leq \operatorname{GL}_2(\mathbb{Z}/27\mathbb{Z}).$$

- https://beta.lmfdb.org/ModularCurve/Q/27.243.12.a.1/
- genus = 12 = Mordell-Weil rank :-(

RSZB construct a genus 3 quotient X'_H of $X^+_{ns}(27)$ over $\mathbb{Q}(\zeta_3)$. So computing $X'_H(\mathbb{Q}(\zeta_3))$ suffices to finish case $\ell=3$:-) Existing methods to do so are not applicable or feasible :-(

This talk. Extending quadratic Chabauty to number fields and applying it to $X'_H/\mathbb{Q}(\zeta_3)$.

Results

$$X'_{H}: x^{4} + (\zeta_{3} - 1)x^{3}y + (3\zeta_{3} + 2)x^{3} - 3x^{2} + (2\zeta_{3} + 2)xy^{3} - 3\zeta_{3}xy^{2} + 3\zeta_{3}xy - 2\zeta_{3}x - \zeta_{3}y^{3} + 3\zeta_{3}y^{2} + (-\zeta_{3} + 1)y + (\zeta_{3} + 1) = 0.$$

Theorem. (Balakrishnan-Betts-Hast-Jha-M., 2025)

$$\begin{split} X_{H}'(\mathbb{Q}(\zeta_{\boldsymbol{3}})) &= \bigg\{ \left(0, -\zeta_{\boldsymbol{3}} - 1\right), \left(1, -\zeta_{\boldsymbol{3}} - 1\right), \left(\zeta_{\boldsymbol{3}} + 1, -\zeta_{\boldsymbol{3}} - 1\right), \left(0, -\zeta_{\boldsymbol{3}}\right), \left(\zeta_{\boldsymbol{3}} + 1, 0\right), \left(2\zeta_{\boldsymbol{3}} + 2, \zeta_{\boldsymbol{3}}\right), \left(\zeta_{\boldsymbol{3}}, 1\right), \\ &\left(\frac{\zeta_{\boldsymbol{3}} - 3}{2}, \frac{\zeta_{\boldsymbol{3}} + 2}{2}\right), \left(\frac{-\zeta_{\boldsymbol{3}} - 2}{3}, \frac{\zeta_{\boldsymbol{3}} + 2}{3}\right), \left(\frac{-\zeta_{\boldsymbol{3}}}{2}, \frac{-1}{2}\right), \left(\frac{5\zeta_{\boldsymbol{3}} + 4}{7}, -1\right), (1:0:0), (1:\zeta_{\boldsymbol{3}} + 1:0) \bigg\}. \end{split}$$

Corollary. We have $\#X_{ns}^+(27)(\mathbb{Q}) = 8$; all points are CM, with discriminants -4, -7, -16, -19, -28, -43, -67, -163.

Corollary. If E/\mathbb{Q} is non-CM, then $\operatorname{im} \bar{\rho}_{E,3^{\infty}}$ is one of 47 subgroups of $\operatorname{GL}_2(\mathbb{Z}_3)$ of level at most 27 and index at most 72 listed by RSZB.

Part II

Chabauty methods over $\mathbb Q$

Chabauty methods: idea

Quadratic Chabauty is a p-adic analytic method to compute $C(\mathbb{Q})$ for certain nice¹ curves C/\mathbb{Q} of genus ≥ 2 , extending linear Chabauty.

Idea of Chabauty-type methods over Q

Step 1. Construct a nontrivial locally analytic function

$$F: C(\mathbb{Q}_p) \longrightarrow \mathbb{Q}_p$$
 such that $F(C(\mathbb{Q})) = 0$.

Step 2. Compute the (finitely many!) zeros of F and find $C(\mathbb{Q})$ among them.

Theorem. (Chabauty, 1941, Coleman, 1985) Let $J := \operatorname{Jac}_C$. If $\operatorname{rk} J(\mathbb{Q}) < g$, then there is an effectively computable F as in Step 1.

¹smooth, projective, geometrically integral

Linear Chabauty over Q

Fix
$$b \in C(\mathbb{Q})$$
 and $\iota = \iota_b \colon C \hookrightarrow J$; $x \mapsto [x - b]$.

Commutative diagram

$$C(\mathbb{Q}) \longrightarrow C(\mathbb{Q}_p)$$

$$\iota \downarrow \qquad \qquad \iota \downarrow$$

$$J(\mathbb{Q}) \longrightarrow J(\mathbb{Q}_p)$$

Analytic homorphism:

$$\log \colon J(\mathbb{Q}_p) \stackrel{\sim}{\longrightarrow} T_0 J(\mathbb{Q}_p) \stackrel{\sim}{\longrightarrow} \mathrm{H}^0(J_{\mathbb{Q}_p}, \Omega^1)^\vee \stackrel{\sim}{\longrightarrow} \mathrm{H}^0(\mathit{C}_{\mathbb{Q}_p}, \Omega^1)^\vee = \colon \mathit{T}_p$$

Chabauty-Coleman

If
$$\operatorname{rk} J(\mathbb{Q}) < g$$
, there is an $\omega_C \in \operatorname{H}^0(C_{\mathbb{Q}_p}, \Omega^1) \setminus \{0\}$ with $(\log D)(\omega_C) = 0$ for all $D \in J(\mathbb{Q})$.

Hence

$$F: C(\mathbb{Q}_p) \to \mathbb{Q}_p; \quad x \mapsto (\log \iota(x))(\omega_C)$$

satisfies $F(C(\mathbb{Q})) = 0$.

Coleman:

$$F(x) = \int_{b}^{x} \omega_{C}$$

Quadratic Chabauty over Q

Kim (2006, 2009): conjectural extension of linear Chabauty to all C/\mathbb{Q} using unipotent arithmetic fundamental groups \leadsto

$$C(\mathbb{Q})\subseteq\cdots\subseteq C(\mathbb{Q}_p)_n\subseteq C(\mathbb{Q}_p)_{n-1}\subseteq\cdots\subseteq C(\mathbb{Q}_p)_1\subseteq C(\mathbb{Q}_p).$$

Conjecture (Kim, 2009). $C(\mathbb{Q}_p)_n$ is finite for $n \gg 0$.

Quadratic Chabauty (Balakrishnan–Dogra, 2016): $F: C(\mathbb{Q}_p) \to \mathbb{Q}_p$ under certain restrictions, vanishing on $C(\mathbb{Q})$

Algorithm and Magma-implementation: Balakrishnan-Dogra-M.-Tuitman-Vonk (2019)

Alternative approaches:

- Edixhoven–Lido: via Poincaré torsors
- Besser–M.–Srinivasan: via *p*-adic Arakelov theory

Comparison over $\mathbb Q$

Method	Linear Chabauty	Quadratic Chabauty
cuts out:	$C(\mathbb{Q}_p)_1$	$C(\mathbb{Q}_p)_2$
condition:	$\operatorname{rk} J(\mathbb{Q}) < g$	$\operatorname{rk} J(\mathbb{Q}) < g - 1 + \operatorname{rk} \operatorname{NS}(J)$
integrals	$\int_{b}^{x} \omega$	$\int_{b}^{x} \omega_{1}, \left(\int_{b}^{x} \omega_{1}\right) \cdot \left(\int_{b}^{x} \omega_{2}\right), \int_{b}^{x} \eta_{1}$
in $F(x)$:		$\int_b^x \eta_2 \eta_1 := \int_b^x \left(\eta_2(y) \int_b^y \eta_1 \right)$
differentials:	ω regular	ω_i regular, η_i log-differentials
source:	Linear relations in	Quadratic relations in
	$\log(J(\mathbb{Q})\otimes\mathbb{Q}_p)\subseteq T_p$	$\log(J(\mathbb{Q})\otimes\mathbb{Q}_p)\subseteq T_p$
extensions	Flynn, Bruin; Siksek;	Balakrishnan–Dogra; Gajović–M.
& variants	Stoll	Dogra–Le Fourn; Dogra, Berry
		Balakrishnan–Besser–M.
		12

Part III

Chabauty methods over number fields

Chabauty over number fields: idea

For simplicity:

- $K = \mathbb{Q}(\zeta_3)$.
- C/K: nice curve of genus $g \ge 2$,
- $b \in C(K) \neq \emptyset$ base point, $\iota = \iota_b$.
- p: good reduction prime for C such that $p\mathcal{O}_K = \mathfrak{p}\mathfrak{p}'$ is split.

Idea (Wetherell, Siksek). Use both \mathfrak{p} and \mathfrak{p}' .

Step 1. Construct ≥ 2 nontrivial locally analytic functions

$$F\colon \mathit{C}(\mathsf{K}\otimes\mathbb{Q}_p)\simeq \mathit{C}(\mathsf{K}_\mathfrak{p})\oplus \mathit{C}(\mathsf{K}_{\mathfrak{p}'})\longrightarrow \mathbb{Q}_p\quad \text{ such that } \mathit{F}(\mathit{C}(\mathsf{K}))=0\,.$$

Step 2. Compute the (hopefully finitely many!) common zeros and find C(K) among them.

Linear Chabauty over number fields

$$C(K) \longrightarrow C(K \otimes \mathbb{Q}_p)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$J(K) \longrightarrow J(K \otimes \mathbb{Q}_p) \longrightarrow H^0(C_{\mathfrak{p}}, \Omega^1)^{\vee} \oplus H^0(C_{\mathfrak{p}'}, \Omega^1)^{\vee} =: T_p$$

Explicitly, for $(D_1,D_2)\in J(K_{\mathfrak{p}})\oplus J(K_{\mathfrak{p}'})\cong J(K\otimes \mathbb{Q}_p)$:

$$\log(D_1,D_2)(\omega_1,\omega_2) = \left(\int^{D_1} \omega_1, \int^{D_2} \omega_2\right)$$

Siksek: If $\operatorname{rk} J(K) \leq 2(g-1)$, get 2 locally analytic functions $F \colon C(K \otimes \mathbb{Q}_p) \to \mathbb{Q}_p$ that vanish on C(K).

Finiteness of common zero set is often satisfied but hard to predict (Siksek, Triantafillou, Hast, Dogra). Not an issue in practice.

(p-adic) heights

Relations behind quadratic Chabauty come from \mathbb{Q}_p -valued heights.

More generally:

- L: local field, char(L) = 0.
- $\chi \colon \mathbb{A}_{\kappa}^* / K^* \to L$ continuous nontrivial idèle class character

Get symmetric L-bilinear height pairing

$$\langle \cdot, \cdot \rangle^{\chi} \colon (J(K) \otimes L) \times (J(K) \otimes L) \to L$$
.

Idea. Construct local height pairings and use χ to globalize.

Example. $L = \mathbb{R}$, χ idéle norm \rightsquigarrow canonical (Néron-Tate) height.

We use $L = \mathbb{Q}_p$ and choose $2 = r_2(K) + 1$ independent χ, χ' . E.g.

- $\chi_{\mathfrak{p}} = \log_{\mathfrak{p}}$ and $\chi_{\mathfrak{p}'} = 0$
- $\chi'_{\mathfrak{p}'} = \log_p \text{ and } \chi'_{\mathfrak{p}} = 0$,

where $\log_p \colon \mathbb{Q}_p^{\times} \to \mathbb{Q}_p$ and $\log_p(p) = 0$.

Assumptions

Assume $\operatorname{rk}\operatorname{NS}(J) > 1$ and choose nonzero $Z \in \ker(\operatorname{NS} J \to \operatorname{NS} C)$.

Define $h_Z \colon C(K) \to \mathbb{Q}_p$ by

$$h_Z(x) := \langle \iota(x), Z(\iota(x)) + c_Z \rangle^{\chi},$$

where $c_Z \in J(K)$ is the Chow–Heegner point wrt. Z.

Also assume that

$$\log\colon J(K)\otimes\mathbb{Q}_p\to J(K\otimes\mathbb{Q}_p)\to T_p$$

is an isomorphism.

- In particular $\operatorname{rk} J(K) = 2g = [K : \mathbb{Q}]g$.
- Can generalise to C, K such that

$$\operatorname{rk} J(K) \leq [K : \mathbb{Q}](g-1) + (\operatorname{rk} \operatorname{NS}(J) - 1)(r_2(K) + 1).$$

Quadratic Chabauty over number fields: Theory

$$h_Z : C(K) \to \mathbb{Q}_p, \quad h_Z(x) := \langle \iota(x), Z(\iota(x)) + c_Z \rangle^{\chi}$$

Theorem. (Balakrishnan-Betts-Hast-Jha-M., 2025) For all $\mathfrak{q} \subset \mathcal{O}_K$ prime there is a function

$$h_{\mathfrak{q}} \colon C(K_{\mathfrak{q}}) \to \mathbb{Q}_p$$
 such that:

- (1) For $\mathfrak{q} \nmid p$: $h_{\mathfrak{q}}$ has finite image. For good $\mathfrak{q} \nmid p$: $h_{\mathfrak{q}} = 0$.
- (2) For $x \in C(K)$:

$$\sum_{\mathfrak{q}} h_{\mathfrak{q}}(x) = h_{\mathcal{Z}}(x).$$

- (3) $h_{\mathfrak{p}}$ and $h_{\mathfrak{p}'}$ are locally analytic.
- (4) h_Z extends to locally analytic h_Z : $C(K \otimes \mathbb{Q}_p) \to \mathbb{Q}_p$.
- (5) $F := h_Z h_{\mathfrak{p}} h_{\mathfrak{p}'} \colon C(K \otimes \mathbb{Q}_p) \to \mathbb{Q}_p$ is non-constant.

Quadratic Chabauty over number fields: algorithm

$$F:=h_Z-h_{\mathfrak{p}}-h_{\mathfrak{p}'}\colon C(K\otimes \mathbb{Q}_p)\to \mathbb{Q}_p$$

Corollary.

$$F(x) = \sum_{\mathsf{all}\; \mathfrak{q}} h_{\mathfrak{q}}(x) - h_{\mathfrak{p}}(x) - h_{\mathfrak{p}'}(x) = \sum_{\mathfrak{q}\nmid p} h_{\mathfrak{q}}(x) \; \text{ for all } x \in C(K) \, .$$

In particular, if $h_{\mathfrak{q}} \equiv 0$ for all $\mathfrak{q} \nmid p$, then F(C(K)) = 0.

"Algorithm" to compute C(K).

- (a) Show $h_{\mathfrak{q}} \equiv 0$ for all $\mathfrak{q} \nmid p$ (if that holds);
- (b) expand $h_{\mathfrak{p}}$ and $h_{\mathfrak{p}'}$ locally into power series on $C(K_{\mathfrak{p}})$;
- (c) expand h_Z on $C(K \otimes \mathbb{Q}_p)$;
- (d) do all of this for χ' rather than χ ($\rightsquigarrow h'_Z, h'_q, F'$);
- (e) solve for set of common zeros of $F, F' \colon C(K \otimes \mathbb{Q}_p) \to \mathbb{Q}_p$ using multivariate Hensel and hope it's finite;
- (f) find C(K) in this set.

Global heights

(c) Expand h_Z into locally analytic function on $C(K \otimes \mathbb{Q}_p)$.

By assumption

$$\log\colon J(K)\otimes \mathbb{Q}_p \stackrel{\simeq}{\longrightarrow} H^0(C_\mathfrak{p},\Omega^1)^\vee \oplus H^0(C_{\mathfrak{p}'},\Omega^1)^\vee = \colon T_p\,,$$

and we get

$$h_Z(x) = \langle \iota(x), Z(\iota(x)) + c_Z \rangle^{\chi} = [\log \iota(x), \log(Z(\iota(x)) + c_Z)]^{\chi}$$

for a locally analytic symmetric bilinear pairing

$$[\cdot,\cdot]^{\chi}\colon T_p\times T_p\to \mathbb{Q}_p$$
.

We solve for $[\cdot, \cdot]^{\chi}$ (and hence h_Z) in terms of a basis of such pairings by evaluating in enough points.

Local heights away from *p*

(a) Find $h_q(C(K_{\mathfrak{q}}))$ for all $\mathfrak{q} \nmid p$.

Theorem. (Betts–Dogra, 2019) For $\mathfrak{q} \nmid p$, $h_{\mathfrak{q}}$ factors through the irreducible components of the special fiber \mathcal{C}_s of a semistable regular model \mathcal{C} of $\mathcal{C}_{\mathfrak{q}}$.

Corollary. If all points in $C(K_{\mathfrak{q}})$ reduce to the same component of C_s , then $h_{\mathfrak{q}} \equiv 0$.

Example. If C has potentially good reduction at q, then $h_q \equiv 0$.

What if $h_{\rm q}\not\equiv 0$? Betts, Duque-Rosero, Hashimoto and Spelier (2024) describe a complete algorithm to compute (all values of) $h_{\rm q}$ for hyperelliptic C whose idea generalises.

Local heights above *p*

(b) Expand $h_{\mathfrak{p}}$ on $C(K_{\mathfrak{p}})$.

 $K_{\mathfrak{p}} \cong \mathbb{Q}_p \Rightarrow$ can compute $h_{\mathfrak{p}}$ using algorithm of Balakrishnan-Dogra-M.-Tuitman-Vonk.

Both h_p and Coleman integrals can be described in terms of unipotent overconvergent isocrystals (Nekovář, Besser).

Hence can compute $h_p(x)$ using p-adic Hodge theory in terms of:

- Hodge filtration and Frobenius action of a certain mixed extension of filtered ϕ -modules with graded pieces \mathbb{Q}_p , $\mathrm{H}^1_{\mathrm{dR}}(\mathcal{C}_{\mathbb{Q}_p})^\vee$, $D_{\mathrm{cris}}(\mathbb{Q}_p(1))$;
- \rightarrow reduction in rigid cohomology, differentials and p-adic linear algebra (Tuitman).

Application to
$$C = X'_H$$
, $K = \mathbb{Q}(\zeta_3)$

- Magma-implementation + precision analysis
- $C = X'_H$ has $\operatorname{rk} J(K) = 6 = 2g$ via Kolyvagin–Logachev.
- Use p = 13 = pp'.
- $\operatorname{rk} \operatorname{NS}(J) = 3$: RM by $\mathbb{Q}(\zeta_9)^+$
- Compute independent $Z, Z' \in \ker(\operatorname{NS} J \to \operatorname{NS} C)^2$ using Eichler–Shimura.
- All $h_{\mathfrak{q}} = 0$ for $\mathfrak{q} \nmid 13$ (and both χ and χ'), using a semistable model of $C_{K_{(1-\zeta_2)}}$ constructed by Ossen.
- Get $4 = 2 \cdot 2$ locally analytic functions

$$F: C(K \otimes \mathbb{Q}_{13}) \simeq C(K_{\mathfrak{p}}) \times C(K_{\mathfrak{p}'}) \to \mathbb{Q}_{13}$$
,

whose common zero set is precisely C(K). Done!

 $^{^2}actually$ their action on $\mathrm{H}^1_{\mathrm{dR}}(\mathcal{C}_{K_\mathfrak{p}})$ – just what our algorithms really need.

What's next?

Chabauty-Kim.

- Dogra, Berry: Quadratic Chabauty without condition on NS J using map from Bloch–Kato Selmer group to a certain étale algebra and 2-adic Coleman integrals → make more explicit and implement in suitable generality
- Equationless (linear or quadratic) Chabauty
- Beyond quadratic Chabauty?
- Higher-dimensional Chabauty? (see Wednesday!)

Open modular curves.

- $X_{\rm ns}^+(5^2)$: g=14
- X_H , where H has RSZB-label 49.147.9.1 or 49.147.9.1: g = 9.
- $X_{\rm ns}^+(7^2)$, g=69! Recently done by Furio–Lombardo (see Thursday!)
- $X_{\rm ns}^+(11^2)$: g = 511
- $X_{\rm ns}^+(\ell)$, $\ell > 17$ prime

Correctness

We implemented (almost) all our algorithms in Magma, which is powerful, but partially closed source.

Kevin Buzzard asks³: "Is this science?"

In our defense:

- Careful precision analysis to guarantee correctness of p-adic approximations
- In most quadratic Chabauty computations so far: more equations F = 0 than necessary to cut out finite set → sanity checks
- Independent verification for $X_{ns}^+(13)$ in Sage.

Formalization??

 $^{^3}$ about the computation for $X_{
m ns}^+(13)$