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Motivating question

How complicated are rational points on a curve or an abelian variety?

Dem’janenko—Lang-Silverman conjecture

There exists a constant ¢; > 0 such that for all g-dimensional ppavs
(A, \)/Q and points P € A(Q) such that Z - P is Zariski dense, we have

h(P) > ¢z - h(A, \).

Consequence of Vojta's conjectures (lh 2002)

If C — B is a family of curves of genus g > 2, then there are constants
c1, ¢ such that for all b € B(Q) and P € Cp(Q),

h(P) < c1 - h(b) + c2.
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Given a polynomial f(x) = x?671 4 c;x26 71 ... 4 copx + o511 € Z[X]
with disc(f) # 0, let
o Ht(f) = max|c|Y';
o C?: y% = f(x) affine curve;
o Cs: projective completion of C?, a genus-g hyperelliptic curve with
unique point Py, € C¢(Q) at infinity;
@ Jr: the Jacobian variety of Cy.

Expectation

When ordered by height Ht(f), 50% of J¢ have rank 0, 50% of J¢ have
rank 1, and when g > 2, 100% of Cr have C¢(Q) = {Px}.

When nontrivial points in Js(Q) do exist, how large are they typically?
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If D=[>", P; — mPy] with P; € C2(Q) and m minimal, let
hT(D) =" h(x(P;)), where h(---) denotes the logarithmic Weil height.

Theorem (L.-Thorne, 2024)

Fix € > 0. Then for 100% of f(x) (ordered by height), every nonzero
D € J;(Q) satisfies

h'(D) > (g — €) log Ht(f).

Theorem (L.-Thorne, 2025)

Fix e > 0. Then for 100% of f(x) (ordered by height), every nonzero
D € J¢(Q) satisfies

3g—1

h(D) > ( - 6> log Ht(f).
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Theorem (L.-Thorne)
For 100% of f(x) (ordered by height), every nonzero D € J¢(Q) satisfies

h(D) > (g — ¢) log Ht(f), (D) > (3g2_ L e) log Ht(f).

Remarks:
@ ‘density-1 version' of the Dem'janenko—Lang—Silverman conjecture.
o It implies Jr and Cr typically have no ‘small height points’.
@ In a different paper, we have an analogue of the first version of the
theorem for the family of non-monic curves
y? = fox?61T2 4 fix%6Flz 4 ... 4 f2g+222g+2 € Z[x, z] and points of

odd degree.
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Theorem (L.-Thorne)
For 100% of f(x) (ordered by height), every nonzero D € J¢(Q) satisfies

3g—1

h'(D) > (g — €) log Ht(f), h(D) > < = e> log Ht(f).

Proof strategy:
O Define a different ‘height’ h: J¢(Q) — R, in terms of reduction theory.
@ Show that h(D) > —elog Ht(f) for all nonzero D in a density 1 family.
O Relate i to h' and h.

My focus: Explaining Steps 1 and 2.

Jack’s talk: Relating h and /A7 and much more!

Jef Laga (University of Cambridge) Reduction theory and heights 6 /20



The goal of reduction theory
Given an action of a group I' on a set S, find representatives that are

‘small’ or ‘reduced’. |

Example 1

= SLy(Z), acting on
S = {Positive definite Q(x,y) = ax?> + bxy + cy? € R[x, y]}.

Example:
458x2 + 214xy + 25y2 ~» x* + y?

Reduction algorithm:
© Let 7 = unique root of Q(x,1) with Im(7) > 0.
@ Let v € SLy(Z) such that v - 7 € F, the Minkowski fundamental
domain.
© Then v- Q is ‘reduced’, in the sense that |b| < a<c
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Example 2: lattice reduction

Given a lattice (A, (—, —)), find a ‘small’ Z-basis of A.

Equivalently: given an inner product H on R”, find a v € SL,(Z) such that
~vH~* has small coefficients.

LLL algorithm: efficient algorithm to find ‘LLL-reduced’ representative.
Example: running LLL on

176413988.185 —11560848.1174 3471.84429193
H = | —11560848.1174 757736.524016 —1499.92503970
3471.84429193  —1499.92503970 13237.5156939

gives

0 0 1 132375 1817.04  5630.96
v=(4 61 6|, yHy' = 1817.04 127895 —1067.59
3 —46 —4 5630.96 —1067.50 45450.2
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Example 3 (Cremona-Stoll)

= SLy(Z), acting on

S = {Binary n-ic forms f(x,y) € R[x, y] with disc(f) # 0}.

Every f has a ‘Julia covariant’ Qf € R[x, y]deg=2, and Q,.r = v - Qr.
Reducing f < reducing Q.

Example 4 (Cremona—Fisher-Stoll)

SL3(Z) acting on

{Ternary cubic forms f(x,y, z) € R[x, y, z] with disc(f) # 0}.
Every f has an SL3(IR)-covariant inner product Hy on R3.
Reducing f < reducing Hr.

For example, running this on
f = 40877301x3 — 11504y> + 1223 — 8035425x%y — 64887x°z
+526580xy? — 200y2z 4 5803xz> — 383yz? + 7307xyz
gives a v € SL3(Z) such that
v f =12x3 4+ 12y3 + 17123 + 65x°y + 65x°z
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In all these examples, we have a GL,-representation V, an open subset
V*® C V and a GL,(R)-equivariant map

R: V*(R) — {Inner products on R"}.
Reducing an element v € V*(R) boils down to reducing R(v).

Question }

Can we generalize this to groups other than GL,?

First step
v+ 7" identifies GL,(R)/Op(R) with {Inner products on R"}. ’

Given a reductive group G acting on V/, is there a G(IR)-equivariant map
R: V5(R) — Xg, (‘reduction covariant')
where Xg = G(R)/Kx, such that reduction theory works similarly?

Sometimes, yes

Such R exists for every stable Vinberg representation (G, V') (Thorne), and
there is an analogue of LLL for X for arbitary G/Z (Thorne-Romano).
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Let g > 1 be an integer, W = Z28*! and J the bilinear form with Gram
matrix

1
J=

Let
G =S50, < GL(W)

and
V={TeEnd(W): T" =T, Tr(T) =0}.

Gactson Vviag-T=gTg '

Each T € V has a characteristic polynomial fr = det(x/ — T).
Let V° C V be the subset such that f+ has distinct roots.

We will define a reduction covariant

R: VE(R) — X¢
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G=SO,~"V=A{T €End(W): T*=T,Tx(T) =0}
The map v — 74! identifies X with the set of inner products H on R28+1
compatible with J, in the sense that J = HJH.
Lemma
If T € V5(R), there exists a unique inner product Hy on W satisfying:
@ Ht is compatible with J; and
@ T commutes with its Hr-adjoint.

We may define
R: VE(R) — Xg

by R(T) = Hr. This is our ‘reduction covariant'.
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Example in g = 3 (Thorne):

~14

—195

—272

T = | 10237

1
0
8 0
0

19095 -6
1546 26

390

3.74708

53.7691

750.242

R( T) — 2813.43
—5244.78
—421.526
—47.2448

Applying an LLL-type
G(Z)-equivalent to

1546

53.7691
776.143
10830.1
40612.6
—75708.6
—6080.03
—681.676

0 0 0 0 0
1 0 0 0 0
7 0 -1 0 0
0 14 0 0 0
—48 0 7 1 0
—6 0 0 0 1
19095 —10237 —2728 —195 —14
750.242 2813.43 —5244.78
10830.1 40612.6 —75708.6
151130. 566729. —1.05648 x 10°
566729. 2.12521 x 10°  —3.96175 x 10°
—1.05648 x 10° —3.96175 x 10°  7.38537 x 10°
—84842.6 —318157. 593097.
—9520.71 —35704.6 66564.2

e V(Z)
—421.526 —47.2448
—6080.03 —681.676
—84842.6 —9520.71
—318157. —35704.6

593097. 66564.2
47660.8 5338.34
5338.34 660.273

algorithm to R(T) € Xg shows T is
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00 -1 2 2 =2
10 1 0 0 O
01 1 -2 0 O
00 1 -2 -2 0
00 o0 1 1 1
00 0 O 1 O
00 0 0 0 1
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For every f = x%6*1 4 ,x2%8~1 4 ... € Z[x] with disc(f) # 0,
Bhargava—Gross (2012) constructed a map

Jr(@)/2J,(Q) = G(Q) \ V¥ (Q),
where Vi ={T € V: fr =f}.

Building on their work, we lift this map to a map

ne: Jr(Q) = G(Z) \ V¢ (Z).

Rough idea

Let D = [E — mPy] € J¢(Q) and W: (y =0) C C?.

Let Wp = HO(OW, Oc,(E)|w). We construct:
@ An split symmetric form (—, —)p on Wp;
@ A self-adjoint linear operator Tp: Wp — Wp with char poly f;
@ An integral structure on Wp.

A choice of isomorphism (Wp, (-, —)p) ~ (W, (—,—),) maps Tp to an
element of V¢(Z), well defined up to G(Z)-conjugation.

v
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Conclusion
Every D € J¢(Q) determines a rank 2g + 1 lattice Ap (with extra data). J

Tantalizing question: what is the relation between D and Ap?

Proposition
Let D = [, Pi — mPs] with P; = (x;, yi).
Let U(x) = [[(x — xi) € Q[x] and N be the denominator of U(x).

Assume y; # 0 for all i.
Then there exists a primitive vector vp € Ap such that

2g+1
!U(
(vp,vp) =N Z ‘f/
where wy, ..., wyg+1 € C are the roots of f(x).

v
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Proposition

There exists a primitive vector vp € Ap such that

2g+1

|U(wi)|
=N
(10:0) =N 2 o))
where U(x) = [1(x — x(P;)) € Q[x] if D =[>""; Pi — mP],
Wi, ... ,wag+1 € C are the roots of f(x), and N is the denominator of
U(x).
Definition

R(D) = %Iog(vD, —

It remains to prove that for 100% of f, every nonzero D satisfies
h(D) > —elog Ht(f).

If /~7(D) is very negative, then vp is a very short vector of Ap, and Ap is
very ‘skew’. Can this happen often?
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Suppose g = 1. Then G ~ PGL,, and X¢ ~ upper half plane.
Plotting the elements PGL2(Z) - R(v) € G(Z) \ X¢ for many small v looks
like this:

This suggests equidistribution!
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Using geometry-of-numbers techniques, we show

Theorem
For every g > 1 and as Ht(f1) — +o00, the map

R: G(Z)\ V(Z)™ — G(Z)\X¢

equidistributes with respect to the natural probability measure on
G(Z)\Xe.

(Here v € V(Z) is irreducible if it is not G(Q)-conjugate to 7¢(0).)

In the moduli space G(Z)\ X, most lattices do not have very short vectors!

Punchline J

More precisely, the subset Us C G(Z)\Xg of lattices A such that there is a
v € A with 0 # (v,v) <0 has p(Us) — 0as § — 0.
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Theorem
R: G(Z)\ V(Z)™ — G(Z)\X¢

equidistributes with respect to the natural probability measure on
G(Z)\Xq.

Proof that h(D) > —elog Ht(f) for 100% of f, assuming D & 2J¢(Q):

o Suppose h(D) < —elog Ht(f) for some D € J¢(Q) for a positive
proportion ¢ of f;

@ Then, for every 6 > 0, a fixed positive proportion ¢ of f have the
property that there exists an element T € G(Z)\V¢(Z)" such that
N = G(Z)-R(T) has a vector v with 0 # (v, v) < 6.

@ Therefore a fixed positive proportion ¢’ of irreducible G(Z)-orbits in
V(Z) have reduction covariant with a vector v of norm < 4.

e Taking § so that u(Us) < ¢/, together with the equidistribution
theorem, gives a contradiction.

An additional argument handles 2-divisible points.
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Summary:

@ For a certain representation V' of G = SO2,1, we define a reduction
covariant R: V*(R) — Xg.

@ For every f, we define a map n: Jr(Q) — G(Z) \ V(Z).

© For every D € J¢(Q), we get a rank 2g + 1 lattice
Ap = R(n(D)) € G(Z) \ X¢.

@ We find a vector vp € Ap such that log ||vp]|| can be related to height
functions like hT(D)

@ If a positive proportion of f have a D € J¢(Q) of small height, then
many Ap have a small vector.

@ This contradicts the equidistribution of R and the fact that most
lattices in X¢g do not have a very small vector.
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