Adelic Mordell-Lang and the Brauer-Manin obstruction

Brendan Creutz (joint work with Felipe Voloch)

Rational Points 2025, Schney, Germany

Notation

Throughout the talk:

- ► *A* is an abelian variety over a global field *k*.
- $ightharpoonup X \subset A$ is a closed subvariety.
- ► $X(\mathbb{A}_k)_{\bullet} = \prod_{\nu} X(k_{\nu})_{\bullet}$ are the adelic points. (modified at archimedean places)
- $\triangleright X(\mathbb{A}_k)^{\mathrm{Br}}_{\bullet}$ is the Brauer set of X.
- ▶ $\overline{X(k)}$ is the topological closure of X(k) in $X(\mathbb{A}_k)^{\mathrm{Br}}_{\bullet}$.

We have

$$\overline{X(k)} \subseteq X(\mathbb{A}_k)^{\operatorname{Br}}_{\bullet} \subset X(\mathbb{A}_k)_{\bullet}$$

The Main Result

Theorem [C.-Voloch]

Let $X \subset A$ be a closed subvariety of an abelian variety over a global **function** field. Assume

- $ightharpoonup A_{\overline{k}}$ has no nonzero isotrivial quotient, and
- ightharpoonup $\coprod (A)_{\mathsf{div}} = 0.$

Then

$$\overline{X(k)} = X(\mathbb{A}_k)^{\operatorname{Br}}.$$

In other words, Brauer-Manin is the only obstruction to weak approximation for X.

- ► This generalizes [Poonen-Voloch 2010] which proved this for $X_{\overline{k}}$ 'coset free' with an additional hypothesis on A
- ► The assumption \coprod (A)_{div} = 0 is not needed for X coset free, but is necessary for X = A.

Mordell-Lang

Definition

- ▶ A **coset** in *A* is a subvariety of the form C = a + A' where $a \in A(\overline{k})$ and $A' \subset A$ is an abelian subvariety. We insist that A' and C are defined over k, so that C is a torsor under A'.
- X is coset free if it does not contain any positive dimensional cosets.

Mordell-Lang Conjecture [Faltings, Hrushovski]

There is a finite union of cosets $Y \subset X$ such that

$$X(k) = Y(k)$$
.

(assuming no nonzero isotrivial quotient in the function field case)

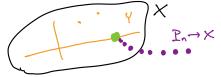
Adelic Mordell-Lang Conjecture

AML Conjecture

There is a finite union of cosets $Y \subset X$ such that

$$X(\mathbb{A}_k)_{ullet}\cap \overline{A(k)}\subset Y(\mathbb{A}_k)_{ullet}$$

- ► Mordell-Lang says there is a special subvariety *Y* which contains all of the the rational points of *X*.
- ▶ Adelic Mordell-Lang says that any sequence of rational points on A approaching X must approach Y.



► For coset free X, this was stated by Stoll over number fields and proved by Poonen-Voloch over function fields.

AML holds over function fields

Theorem [C.-Voloch]

AML holds for closed subvarieties of abelian varieties over a global function fields (with no nonzero isotrivial quotient).

- Proofs of ML over function fields tend to give a stronger result saying rational points v-adically close to X must be v-adically close to a special subvariety.
- Poonen-Voloch used Hrushovski's proof of ML, but needed the coset free hypothesis to control how the special subvariety depends on v.
- There is a different proof of Mordell-Lang by Pink/Rössler/Wisson using algebro-geometric methods. We deduce the theorem from this.

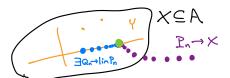
The Mordell-Weil Sieve conjecture

▶ The following has been asked/conjectured in various forms by Scharaschkin, Skorobogatov, Stoll, Poonen, Voloch, ...

MWS Conjecture

For a closed subvariety $X \subset A$ we have

$$X(\mathbb{A}_k)_{\bullet} \cap \overline{A(k)} = \overline{X(k)}$$
.



- Assuming $\coprod(A)_{div} = 0$, **MWS** implies that Brauer-Manin is the only obstruction to weak approximation for X.
- Note: MWS \Rightarrow AML, since $\overline{X(k)} = \overline{Y(k)}$ by ML.
- ▶ To get the 'main result' we prove: **AML** \Rightarrow **MWS**.

AML implies MWS

Conjectures Restated:

AML:
$$X(\mathbb{A}_k)_{\bullet} \cap \overline{A(k)} \subset Y(\mathbb{A}_k)_{\bullet} \cap \overline{A(k)} = \overline{Y(k)} \subseteq \overline{X(k)}$$

 $\text{MWS}: \quad X(\mathbb{A}_k)_{\bullet} \cap \overline{A(k)} = \overline{X(k)}$

Theorem [C.-Voloch]

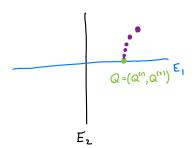
If $Y \subset A$ is a finite union of cosets, then $Y(\mathbb{A}_k)_{\bullet} \cap \overline{A(k)} = \overline{Y(k)}$.

Corollary

AML implies MWS.

For Y of dimension 0 this was proved over number fields by Stoll and over function fields by Poonen-Voloch. This gave AML implies MWS for X_k coset free.

- ▶ Let $P_n \in A(k)$ with $P_n \to Q \in Y(\mathbb{A}_k)$, $Q = (Q^{(1)}, Q^{(2)})$.
- ▶ We want to show $Q \in \overline{Y(k)} = \overline{E_1(k)} \cup \overline{E_2(k)}$

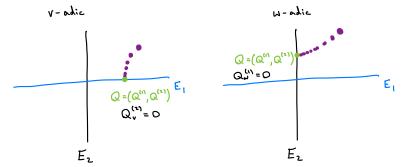


- ▶ Let $P_n \in A(k)$ with $P_n \to Q \in Y(\mathbb{A}_k)$, $Q = (Q^{(1)}, Q^{(2)})$.
- ▶ We want to show $Q \in \overline{Y(k)} = \overline{E_1(k)} \cup \overline{E_2(k)}$



▶ $Q \in Y(\mathbb{A}_k)$ means $\forall v \exists i$ such that $Q_v^{(i)} = 0$.

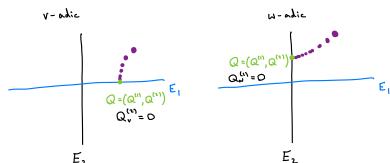
- ▶ Let $P_n \in A(k)$ with $P_n \to Q \in Y(\mathbb{A}_k)$, $Q = (Q^{(1)}, Q^{(2)})$.
- ▶ We want to show $Q \in \overline{Y(k)} = \overline{E_1(k)} \cup \overline{E_2(k)}$



- $ightharpoonup Q \in Y(\mathbb{A}_k)$ means $\forall v \exists i$ such that $Q_v^{(i)} = 0$.
- ▶ $Q \in \overline{E_1(k)} \cup \overline{E_2(k)}$ requires $\exists i \forall v$ we have $Q_v^{(i)} = 0$.

▶ Let
$$P_n \in A(k)$$
 with $P_n \to Q \in Y(\mathbb{A}_k)$, $Q = (Q^{(1)}, Q^{(2)})$.

We want to show $Q \in \overline{Y(k)} = \overline{E_1(k)} \cup \overline{E_2(k)}$



- $ightharpoonup Q \in Y(\mathbb{A}_k)$ means $\forall v \exists i$ such that $Q_v^{(i)} = 0$.
- ▶ $Q \in \overline{E_1(k)} \cup \overline{E_2(k)}$ requires $\exists i \forall v$ we have $Q_v^{(i)} = 0$.
- ► How would you construct a counterexample?
 - Choose $Q^{(1)} \in \overline{E_1(k)}$ that is 0 at lots of primes, but not all.
 - Do same for Q⁽²⁾, hoping 'lots' for both covers all primes.
 Then (Q⁽¹⁾, Q⁽²⁾) ∈ Y(A_k), but not in E₁(k) ∪ E₂(k).

Key Lemma

Lemma

Suppose $Q_1, \ldots, Q_r \in \overline{A(k)} \subset A(\mathbb{A}_k) = \prod A(k_v)$ are nonzero. Then there exists $m \geq 1$ and nonarchimedean v such that none of the Q_i has trivial image in the pro-m completion $A(k_v)^{(m)}$.

- The proofs of Stoll and Poonen-Voloch (coset free case) used this in the case r = 1.
- ▶ To generalize to r > 1 we use
 - ▶ A result of Serre about the image of Galois in $Aut(T_{\ell}(A))$
 - ldeas of Stoll (for $\ell \neq p$)
 - ldeas of Poonen-Voloch and Rössler (for $\ell = p$)
 - Combine these (for r > 1 can no longer take m = p)
 - Chebotarev density theorem

Summary

Conjectures Restated:

 $\mathsf{AML}: \ X(\mathbb{A}_k)_{\bullet} \cap \overline{A(k)} \subset Y(\mathbb{A}_k)_{\bullet}$

 $\text{MWS}: \quad X(\mathbb{A}_k)_{\bullet} \cap \overline{A(k)} = \overline{X(k)}$

Theorems (restated)

- ► Thm 1: AML holds over function fields (nonisotrivial case).
- ► Thm 2: AML ⇒ MWS (over all global fields)

Corollary

If $X \subset A$ is a closed subvariety over a global function field such that A has no positive dimensional isotrivial quotient, then

- **MWS** holds for $X \subset A$;
- ▶ If $III(A)_{div} = 0$, then Brauer-Manin is the only obstruction to weak approximation for X.

Adelic Mordell-Lang (Selmer version)

$$\overline{A(k)} \subset \widehat{\mathsf{Sel}}(A) = \varprojlim_{n} \mathsf{Sel}^{n}(A)$$

AML-Sel Conjecture

There exists a finite union of cosets $Y \subset X$ such that

$$X(\mathbb{A}_k)_{ullet}\cap \widehat{\mathsf{Sel}}(A)\subset Y(\mathbb{A}_k)_{ullet}$$

Theorem

If **AML-Sel** holds for $X \subset A$, then the following are equivalent:

- 1. $\overline{X(k)} \neq X(\mathbb{A}_k)^{\operatorname{Br}}_{\bullet}$;
- 2. X contains a coset C = a + A' which represents a nontrivial divisible element in $\coprod (A')$.

The nonisotrivial hypothesis

- ▶ Let *D* be a curve of genus \geq 2 over \mathbb{F}_q .
- ▶ Let $k = \mathbb{F}_q(D)$.
- ▶ Let $X = D_k$.
- ▶ Then $A = Jac(X) = Jac(D)_k$ is isotrivial and $X \subset A$.
- ightharpoonup X is coset free, but X(k) is infinite since

$$X(k) = \mathsf{Mor}(\mathsf{Spec}(\mathbb{F}_q(D)), D_{\mathbb{F}_q(D)}) = \mathsf{Mor}(D, D) \supset \{F^i : i \geq 0\}$$

So ML and AML (as stated above) do not hold.

Question

Does **MWS** hold for $X \subset A$?