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1. Introduction

We all know the fields R and C of real and complex numbers as the completion of
the field Q of rational numbers and its algebraic closure. In particular, we have
a canonical embedding Q ↪→ R ⊂ C, which we can sometimes use to get number
theoretic results by applying analysis over R or C.

Now R is not the only completion of Q. Besides the usual absolute value, there are
more absolute values on Q; to be precise, up to a natural equivalence (and except
for the trivial one), there is one absolute value |·|p for each prime number p. (We
will explain what an absolute value is in due course.) Completing Q with respect
to |·|p leads to the field Qp of p-adic numbers; we can then take its algebraic
closure Q̄p and the completion Cp of that (Q̄p is, in contrast to R̄ = C, not
complete), which has similar properties as C: it is the smallest extension field
of Q that is algebraically closed and complete with respect to the p-adic absolute
value.

There is a general philosophy in Number Theory that ‘all completions are created
equal’ and should have the same rights. In many situations, one gets the best
results by considering them all together. Since Qp and Cp are complete metric
spaces (and the former is, like R or C, locally compact), we can try to do analysis
over them. Many concepts and results of ‘classical’ analysis carry over without
great problems. But we will see that there is one feature of the p-adic topology
that is a stumbling block for an easy transfer of certain parts of analysis (like
for example line integrals) to the p-adic setting: this topology is totally discon-
nected. One goal of this lecture course is to explain a way to resolve this problem,
which is to embed Cp (say) into a larger ‘analytic space’ Can

p that is (in this case,

even uniquely) path-connected. This approach is due to Vladimir Berkovich; the
V.G. Berkovich
c© MFO 2012

analytic spaces constructed in this way are also known as Berkovich Spaces.
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2. p-adic numbers

In this section we will recall (or introduce) the field Qp of p-adic numbers and its
properties. We begin with a rather general definition.

2.1. Definition. Let K be a field. An absolute value on K is a map DEF
absolute
value|·| : K −→ R≥0, x 7−→ |x|

with the following properties.

(1) |x| = 0 ⇐⇒ x = 0.

(2) (Multiplicativity) |xy| = |x| · |y|.
(3) (Triangle Inequality) |x+ y| ≤ |x|+ |y|.

If |·| satisfies the stronger inequality

(3′) (Ultrametric Triangle Inequality) |x+ y| ≤ max{|x|, |y|},

then the absolute value is said to be ultrametric or non-archimedean, otherwise it
is archimedean.

Two absolute values |·|1 and |·|2 on K are said to be equivalent, if there is a
constant c > 0 such that |x|2 = |x|c1 for all x ∈ K. ♦

Properties (1), (2) and (3) imply that d(x, y) = |x − y| defines a metric on K.
((2) is needed for the symmetry: it implies that | − 1| = 1, so that |y − x| =
| − 1| · |x − y| = |x − y|.) The absolute value is then continuous as a real-valued
function on the metric space (K, d).

One can show that two absolute values on K are equivalent if and only if they
induce the same topology on K (Exercise).

2.2. Lemma. Let (K, |·|) be a field with a non-archimedean absolute value. Then LEMMA
valuation ringR = {x ∈ K : |x| ≤ 1} is a subring of K. R is a local ring (i.e., it has exactly one

maximal ideal) and has K as its field of fractions.

Proof. Exercise! q

This ring is the valuation ring of (K, | · |). DEF
valuation ring

Recall the following definition.

2.3. Definition. A metric space (X, d) is said to be complete, if every Cauchy DEF
complete
metric space

sequence in X converges in X: if (xn) is a sequence in X such that

lim
n→∞

sup
m≥1

d(xn, xn+m) = 0 ,

then there exists x ∈ X such that limn→∞ d(xn, x) = 0.

If K is a field with absolute value |·|, then (K, |·|) is said to be complete, if the
metric space (K, d) is, where d is the metric induced by the absolute value. ♦
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2.4. Examples. EXAMPLES
absolute
values

Every field K has the trivial absolute value |·|0 with |x|0 = 1 for all x 6= 0.

The usual absolute value is an (archimedean) absolute value on Q, R and C. The
latter two are complete, Q is not.

|f(x)/g(x)| = edeg(f)−deg(g) defines a non-archimedean absolute value on K(x), the
field of rational functions in one variable over K. (Exercise!)

If |·| is an absolute value and 0 < c ≤ 1, then |·|c is also an absolute value, which
is equivalent to |·|. If |·| is non-archimedean, then this remains true for c > 1.
(Exercise!) ♣

We can now introduce the p-adic absolute values on Q.

2.5. Definition. Let p be a prime number. If a 6= 0 is an integer, we define its DEF
p-adic
absolute
value

p-adic valuation to be

vp(a) = max{n ∈ Z≥0 : pn | a} .
For a = r/s ∈ Q× (with r, s ∈ Z, s 6= 0), we set vp(a) = vp(r)− vp(s). The p-adic
absolute value on Q is given by

|x|p =

{
0 if x = 0,

p−vp(x) otherwise.
♦

So the p-adic absolute value of x ∈ Q is small when (the numerator of) x is divisible
by a high power of p, and it is large when the denominator of x is divisible by a
high power of p. If x ∈ Z, then we clearly have |x|p ≤ 1: contrary to the familiar
situation with the usual absolute value, the integers form a bounded subset of Q
with respect to |·|p! This explains the word ‘non-archimedean’ — the Archimedean
Axiom states that if x, y ∈ R>0, then there is n ∈ Z such that nx > y; this is
equivalent to saying that Z is unbounded.

2.6. Lemma. The p-adic absolute value is a non-archimedean absolute value LEMMA
|·|p is
abs. value

on Q.

Proof. We check the properties in Definition 2.1. Property (1) is clear from the
definition. Property (2) follows from vp(ab) = vp(a)+vp(b), which is a consequence
of unique factorization. Property (3′) follows from vp(a + b) ≥ min{vp(a), vp(b)},
which is a consequence of the elementary fact that pn | a and pn | b together imply
that pn | a+ b. q

Note that Q is not complete with respect to |·|p (Exercise!).

2.7. Example. Let (K, |·|) be a field with absolute value. Then for every x ∈ K EXAMPLE
geometric
series

with |x| < 1, the series
∞∑
n=0

xn

converges to the limit 1/(1− x): we have∣∣∣N−1∑
n=0

xn − 1

1− x

∣∣∣ =
∣∣∣−xN
1− x

∣∣∣ = |1− x|−1 · |x|N ,
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which tends to zero, since |x| < 1 (note that |1− x| ≥ 1− |x| > 0, so the fraction
makes sense).

For example,

1 + p+ p2 + p3 + p4 + . . . =
1

1− p
in (Q, |·|p). ♣

From the viewpoint of analysis, it is desirable to work with a complete field.
Indeed, one possible construction of the field of real numbers is as the smallest
complete field containing (Q, |·|∞), where (from now on) |·|∞ denotes the usual
absolute value. In fact, this construction works quite generally.

2.8. Theorem. Let (K, |·|) be a field with an absolute value. Then there is a THM
completionfield (K ′, |·|′) extending K such that |·|′ restricts to |·| on K, (K ′, |·|′) is complete

and K is dense in K ′.

Proof. Let C(K) be the ring of Cauchy sequences over K (with term-wise addition
and multiplication). The set N(K) of null sequences (i.e., sequences converging
to zero) forms an ideal in the ring C(K). We show that this ideal is actually
maximal. It does not contain the unit (all-ones) sequence, so it is not all of C(K).
If (xn) ∈ C(K)\N(K), then it follows from the definition of ‘Cauchy sequence’ that
there are n0 ∈ Z>0 and c > 0 such that |xn| ≥ c for all n ≥ n0. Then the sequence
(yn) given by yn = 0 for n < n0 and yn = 1/xn for n ≥ n0 is a Cauchy sequence
and (1) = (xn) · (yn) + (zn) with (zn) ∈ N(K), so N(K) + C(K) · (xn) = C(K).

Since N(K) is a maximal ideal in C(K), the quotient ring K ′ := C(K)/N(K) is a
field. There is a natural inclusion K ↪→ C(K) by mapping a ∈ K to the constant
sequence (a), which by composition with the canonical epimorphism C(K)→ K ′

gives an embedding i : K ↪→ K ′. We define |·|′ by

|[(xn)]|′ = lim
n→∞

|xn|

(where [(xn)] denotes the residue class mod N(K) of the sequence (xn) ∈ C(K)).
The properties of absolute values and of Cauchy sequences imply that this is well-
defined (i.e., the limit exists and does not depend on the choice of the represen-
tative sequence). That |·|′ is an absolute value follows easily from the assumption
that |·| is, and it is clear that |·|′ restricts to |·| on K.

It is also easy to see that K is dense in K ′. Let x = [(xn)] ∈ K ′, then |i(xn)−x|′ =
limm→∞ |xn − xn+m| tends to zero as n tends to infinity, so we can approximate x
arbitrarily closely by elements of K.

It remains to show that K ′ is complete. So let (x(ν))ν be a Cauchy sequence in K ′

and represent each x(ν) by a Cauchy sequence (x
(ν)
n )n in K. Since K is dense

in K ′, we can do this in such a way that |i(x(ν)
n ) − x(ν)|′ ≤ 2−n for all ν and n.

(The reason for this requirement is that we need some uniformity of convergence

to make the proof work.) Let yn = x
(n)
n . We claim that (yn) is a Cauchy sequence

(in K) and that y = [(yn)] = limν→∞ x
(ν) (in K ′). To see the first, pick ε > 0.

There is ν0 such that |x(ν) − x(ν+µ)|′ < ε for all ν ≥ ν0 and µ ≥ 0. Then

|yn − yn+m| = |x(n)
n − x

(n+m)
n+m |

≤ |i(x(n)
n )− x(n)|′ + |x(n) − x(n+m)|′ + |x(n+m) − i(x(n+m)

n+m )|′

≤ 2−n + ε+ 2−n−m < 2ε
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when 2−n < ε/2 and n ≥ ν0. To see the second, note that

|x(ν) − y|′ = lim
n→∞

|x(ν)
n − x(n)

n |

≤ lim sup
n→∞

(
|i(x(ν)

n )− x(ν)|′ + |x(ν) − x(n)|′ + |x(n) − i(x(n)
n )|′

)
≤ lim sup

n→∞
(2−n + |x(ν) − x(n)|′ + 2−n) = lim sup

n→∞
|x(ν) − x(n)|′ ,

which tends to zero as ν →∞. q

One can show that (K ′, |·|′) is determined up to unique isomorphism (of extensions
of K with absolute value), but we will not need this in the following.

Since |·|′ extends |·|, we will usually use the same notation for both. We will also
consider K as a subfield of K ′.

2.9. Definition. Let p be a prime number. The completion Qp of Q with respect DEF
field of
p-adic
numbers

to the p-adic absolute value is called the field of p-adic numbers. Its valuation
ring Zp is the ring of p-adic integers. ♦

Since |x|p takes a discrete set of values for x 6= 0, it follows that

Zp = {x ∈ Qp : |x|p ≤ 1} = {x ∈ Qp : |x|p < p}

is closed and open in Qp. This implies that for any two distinct elements x, y ∈ Qp,
there are disjoint open neighborhoods X of x and Y of y such that Qp = X ∪ Y :
Qp is totally disconnected. To see this, let δ = |x − y|p > 0. Then the open
ball X around x of radius δ (which is x + pn+1Zp, if δ = p−n) is also closed,
so its complement Y = Qp \ X is open as well, and y ∈ Y . One consequence
of this is that any continuous map γ : [0, 1] → Qp is constant (otherwise let x
and y be two distinct elements in the image and let X and Y be as above; then
[0, 1] is the disjoint union of the two open non-empty subsets γ−1(X) and γ−1(Y ),
contradicting the fact that intervals are connected).

Next we want to show that Zp is compact. For this we need a fact about approx-
imation of p-adic numbers by rationals.

2.10. Lemma. Let x ∈ Qp \{0} with |x|p = p−n. There is a ∈ {0, 1, 2, . . . , p−1} LEMMA
approximation
of p-adic
numbers

such that |x− apn|p < |x|p.

Proof. Replacing x by p−nx, we can assume that |x|p = 1, in particular, x ∈ Zp.
Since Q is dense in Qp, there is r/s ∈ Q such that |x − r/s|p < 1. By the
ultrametric triangle inequality, |r/s|p ≤ 1, so that we can assume that p - s. Let
a ∈ {0, 1, . . . , p− 1} be such that as ≡ r mod p. Then

|x− a|p =
∣∣(x− r/s) + (r/s− a)

∣∣
p
≤ max{|x− r/s|p, |r/s− a|p} < 1 ,

since |r/s− a|p = |r − as|p/|s|p < 1. q

It follows that that Z is dense in Zp: iterating the statement of the lemma, we
find that for x ∈ Zp and n > 0 there is a ∈ Z (with 0 ≤ a < pn) such that
|x− a|p < p−n.
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2.11. Theorem. The ring Zp is compact with respect to the metric induced by THM
Zp is compactthe p-adic absolute value. In particular, Qp is locally compact.

Proof. We show that any sequence (xn) in Zp has a convergent subsequence. Since
Zp is complete (Zp = {x ∈ Qp : |x|p ≤ 1} is a closed subset of the complete
space Qp), it is enough to show that there is a subsequence that is a Cauchy
sequence. We do this iteratively. Let n1 be the smallest index n such that there are
infinitely many m > n with |xn−xm|p < 1. Such an n must exist by Lemma 2.10,
which implies that there is some a such that |xn − a|p < 1 for infinitely many n.
Now let n2 be the smallest index n > n1 such that |xn − xn1|p < 1 and such
that there are infinitely many m > n with |xn − xm| < p−1. This again exists by
Lemma 2.10, where we restrict to the infinitely many n such that |xn− xn1|p < 1.
We continue in this way: nk+1 is the smallest n > nk such that |xn−xnk |p < p−(k−1)

and such that there are infinitely many m > n with |xn − xm|p < p−k. Then
|xnk+1

− xnk |p < p−(k−1) for all k ≥ 1, which by the ultrametric triangle inequality
implies that (xnk)k is a Cauchy sequence:∣∣xnk+l − xnk∣∣p ≤ max

{∣∣xnk+m − xnk+m−1

∣∣
p

: 1 ≤ m ≤ l
}
< p−(k−1) .

That Qp is locally compact follows, since any x ∈ Qp has the compact neighbor-
hood x+ Zp. q

2.12. Definition. Let (K, |·|) be a complete field with a non-archimedean abso- DEF
residue fieldlute value. By Lemma 2.2 the valuation ring R = {x ∈ K : |x| ≤ 1} is a local ring

with unique maximal ideal M = {x ∈ K : |x| < 1}. The quotient ring k = R/M
is therefore a field, the residue field of K. The canonical map R→ k is called the
reduction map and usually denoted x 7→ x̄. ♦

Before we continue we note an easy but important fact on non-archimedean abso-
lute values.

2.13. Lemma. Let (K, |·|) be a field with a non-archimedean absolute value and LEMMA
all triangles
are isosceles

let x, y ∈ K with |x| > |y|. Then |x+ y| = |x|.
If we have x1, x2, . . . , xn ∈ K such that x1 + x2 + . . . + xn = 0 and n ≥ 2, then
there are at least two indices 1 ≤ j < k ≤ n such that

|xj| = |xk| = max{|x1|, |x2|, . . . , |xn|} .

Proof. We have |x+ y| ≤ max{|x|, |y|} = |x|. Assume that |x+ y| < |x|. Then

|x| = |(x+ y) + (−y)| ≤ max{|x+ y|, | − y|} < |x| ,
a contradiction.

For the second statement observe that if we had just one j such that |xj| is
maximal, then by the second statement we would have

0 = |x1 + x2 + . . .+ xn| =
∣∣∣xj +

∑
k 6=j

xk

∣∣∣ = |xj| ,

which is a contradiction, since xj 6= 0 in this situation. q

If |·| is a non-archimedean absolute value on a field K, then we can extend it to
the polynomial ring K[x].
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2.14. Lemma. Let (K, |·|) be a field with a non-archimedean absolute value. For LEMMA
extension of
abs. value
to K[x]

f = a0 + a1x+ a2x
2 + . . .+ anx

n ∈ K[x] we set

|f | := max{|a0|, |a1|, |a2|, . . . , |an|} .

Then properties (1), (2) and (3 ′) of Definition 2.1 are satisfied for elements
of K[x].

If K is complete with respect to |·|, then for each n ∈ Z≥0, the space K[x]<n of
polynomials of degree < n is a complete metric space for the metric induced by |·|
on K[x].

Proof. Exercise. q

The following is an important tool when working in complete non-archimedean
fields.

2.15. Theorem. Let (K, |·|) be a complete non-archimedean field with valuation THM
Hensel’s
Lemma

ring R and residue field k. Let F ∈ R[x] be a polynomial such that |F | = 1
and suppose that we have a factorization F̄ = f1f2 in k[x] such that f1 is monic
and f1 and f2 are coprime. (The notation F̄ means the polynomial in k[x] whose
coefficients are obtained by reduction from those of F .) Then there are unique
polynomials F1, F2 ∈ R[x] such that F = F1F2, F1 is monic and F̄1 = f1, F̄2 = f2.

Proof. Let n = degF , n1 = deg f1, n2 = n− n1 ≥ deg f2. We write R[x]<n for the
R-module of polynomials of degree < n.

We choose polynomials F
(0)
1 , F

(0)
2 ∈ R[x] such that degF

(0)
1 = n1, degF

(0)
2 = n2,

F̄
(0)
1 = f1, F̄

(0)
2 = f2, F

(0)
1 is monic and the leading coefficient of F

(0)
2 is the same

as that of F ; then F − F (0)
1 F

(0)
2 ∈ R[x]<n and

δ := |F − F (0)
1 F

(0)
2 | < 1 .

We claim that the k-linear map

k[x]<n1 × k[x]<n2 −→ k[x]<n , (h1, h2) 7−→ h1f2 + h2f1

is an isomorphism: it is injective, since h1f2 + h2f1 = 0 implies that f1 divides
h1f2, which in turn implies that f1 divides h1 (since f1 and f2 are coprime). But
deg h1 < n1 = deg f1, so h1 = 0. Since f1 6= 0, it follows that h2 = 0, too. Finally
we observe that the dimensions of source and target are the same.

If M is the matrix representing this linear map with respect to the k-bases
((1, 0), (x, 0), . . . (xn1−1, 0), (0, 1), (0, x), . . . , (0, xn2−1)) and (1, x, x2, . . . , xn1+n2−1),
then det(M) 6= 0. Let now

Φ: R[x]<n1 ×R[x]<n2 −→ R[x]<n , (H1, H2) 7−→ H1F
(0)
2 +H2F

(0)
1 .

Its matrix M̃ with respect to the ‘power bases’ reduces to M , so | det(M̃)| = 1,
which means that M̃ is in GL(n,R), and Φ is invertible. It also follows that if
(H1, H2) = Φ−1(H), then |H1|, |H2| ≤ |H|.

We now want to find F1 and F2 by adjusting F
(0)
1 and F

(0)
2 . So we would like to

determine H1 ∈ R[x]<n1 and H2 ∈ R[x]<n2 with |H1|, |H2| < 1 such that

F = (F
(0)
1 +H1)(F

(0)
2 +H2) = F

(0)
1 F

(0)
2 +H1F

(0)
2 +H2F

(0)
1 +H1H2 .
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We ignore the nonlinear term H1H2 and choose (H1, H2) such that the linear terms

correct the mistake, i.e., (H1, H2) = Φ−1(F − F (0)
1 F

(0)
2 ). From the above we know

that |H1|, |H2| ≤ δ and therefore∣∣F − (F
(0)
1 +H1)(F

(0)
2 +H2)

∣∣ = |H1H2| ≤ δ2 .

Repeating this with the new approximations F
(1)
j = F

(0)
j +Hj we obtain F

(2)
j such

that |F (1)
j − F

(2)
j | ≤ δ2 and |F − F

(2)
1 F

(2)
2 | ≤ δ4. Iterating this procedure, we

construct sequences (F
(m)
j )m≥0 in R[x]<nj such that

|F (m)
1 − F (m+1)

1 | ≤ δ2m , |F (m)
2 − F (m+1)

2 | ≤ δ2m and |F − F (m)
1 F

(m)
2 | ≤ δ2m

for all m. Since R[x]<nj is complete by Lemma 2.14, the sequences converge to
polynomials F1 and F2 with F = F1F2 and F̄1 = f1, F̄2 = f2. This shows existence.

To show uniqueness, assume that F̃1 and F̃2 are another solution. Then

0 = F − F = F1F2 − F̃1F̃2 = (F1 − F̃1)F2 + (F2 − F̃2)F̃1 .

The map Φ as above, but using F̃1 and F2, is still invertible (this only uses that the
reductions are f1 and f2), which immediately gives F1−F̃1 = 0 and F2−F̃2 = 0. q

We draw some conclusions from this.

2.16. Corollary. Let (K, |·|) be a field that is complete with respect to a non- COR
Hensel’s
Lemma
for roots

archimedean absolute value, let R be its valuation ring and k its residue field and
let f ∈ R[x] be monic. Assume that f̄ ∈ k[x] has a simple root a ∈ k. Then f has
a unique root α ∈ R such that ᾱ = a.

Proof. This is the case f1 = x − a of Theorem 2.15. Note that the assumption
that a is a simple root of f̄ implies that the cofactor f2 = f̄/(x − a) is coprime
to f1. q

2.17. Corollary. Let (K, |·|) be a field that is complete with respect to a non- COR
reducibility
of certain
polynomials

archimedean absolute value and let f = a0 + a1x+ . . .+ anx
n ∈ K[x] with an 6= 0.

Assume that there is 0 < m < n with |am| = |f | and that |a0| < |f | or |an| < |f |.
Then f is reducible.

Proof. After scaling f we can assume that |f | = 1. If |a0| < 1, then let m be
minimal with |am| = 1. Then f̄ = xmf2 with f2(0) 6= 0, so that f1 = xm and f2

are coprime. By Theorem 2.15 there is a factorization f = F1F2 with degF1 = m.
Since 0 < m < n = deg f , this shows that f is reducible.

If |an| < 1, then let m be maximal with |am| = 1. Then f̄ = f1 · ām with f1 monic
and (trivially) coprime to f2 = ām. Again by Theorem 2.15 there is a factorization
f = F1F2 with degF1 = m. Since again 0 < m < n = deg f , this shows that f is
reducible also in this case. q

The following example really belongs right after Definition 2.12.

2.18. Example. The residue field of Qp is Fp. This essentially follows from EXAMPLE
Qp has Fp as
residue field

Lemma 2.10; the details are left as an exercise. ♣

We will now look at field extensions of complete fields with absolute value. First
we introduce the norm and trace of an element in a finite field extension.
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2.19. Definition. Let K ⊂ L be a finite field extension and let α ∈ L. Then DEF
norm and
trace

multiplication by α induces a K-linear map mα : L→ L. We define the norm N(α)
and trace Tr(α) of α to be the determinant and trace of mα, respectively.

If we want to make clear which fields are involved, we write NL/K(α) and TrL/K(α).
♦

Norms and traces have the following properties.

• If α ∈ K, then clearly NL/K(α) = α[L:K] (since mα can be taken to be αI[L:K]).

• If K ⊂ L is separable, then we can also write

N(α) =
∏

σ : L↪→K̄

σ(α) and Tr(α) =
∑

σ : L↪→K̄

σ(α) ,

where σ runs through all embeddings of L into a fixed algebraic closure K̄ of K.
(This is because the σ(α) are the eigenvalues of mα.)

• Norms and traces are transitive: if K ⊂ L ⊂ L′, then for α ∈ L′ we have
NL/K(NL′/L(α)) = NL′/K(α) and TrL/K(TrL′/L(α)) = TrL′/K(α).

• The norm is multiplicative and the trace is additive (even K-linear); this follows
from the corresponding properties of determinants and traces of linear endomor-
phisms.

• If L = K(α), then the characteristic polynomial of mα agrees with the minimal
polynomial of α, so its constant term is ±N(α).

2.20. Lemma. Let (K, |·|) be a field that is complete with respect to a non- LEMMA
integralityarchimedean absolute value and let R be its valuation ring. Let K ⊂ L be a finite

field extension and let α ∈ L have norm N(α) ∈ R. Then α is integral over R,
i.e., α is a root of a monic polynomial with coefficients in R.

Proof. Let L′ = K(α) ⊂ L. Then N(α) = NL′/K(α)[L:L′]. Let f ∈ K[x] be the
minimal polynomial of α. Its constant term a0 is±NL′/K(α) and so the assumption
implies |a0| ≤ 1. If we had |f | > 1, then f would be reducible by Corollary 2.17,
a contradiction. So |f | = 1, meaning that f ∈ R[x], and α is a root of the monic
polynomial f . q

2.21. Corollary. In the situation of Lemma 2.20 we have |N(1 + α)| ≤ 1. COR
bound for
N(1 + α)

Proof. We know that α is a root of a monic polynomial f ∈ R[x]. Then 1 + α is
a root of the monic polynomial f(x− 1) ∈ R[x], and since a power of its constant
term, which is in R, is ±N(1 + α), it follows that |N(1 + α)| ≤ 1. q

2.22. Theorem. Let (K, |·|) be a complete field with a nontrivial non-archimedean THM
extensions
of complete
fields

absolute value and let L be an algebraic extension of K. Then there is a unique
absolute value |·|′ on L that extends |·|. If the extension K ⊂ L is finite, then
(L, |·|′) is complete.
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Proof. Since any algebraic extension of K can be obtained as an increasing union
of finite extensions, it suffices to consider the finite case. So let [L : K] = n. We
first show existence. To this end we define |α|′ = |N(α)|1/n. Then it is clear that
|·|′ satisfies properties (1) and (2) of Definition 2.1. To show property (3′), let
α, β ∈ L and assume that |α|′ ≥ |β|′. Then |N(β/α)| ≤ 1, hence by Corollary 2.21

|α + β|′n = |N(α + β)| = |N(α)| · |N(1 + β/α)| ≤ |N(α)| = (max |α|′, |β|′)n .

It is also clear that |·|′ agrees with |·| on K.

To show uniqueness, let |·|′′ be another absolute value on L extending |·|. Let
α ∈ L with |α|′ ≤ 1, so that |N(α)| ≤ 1. Then the minimal polynomial f of α
is in R[x]. If we had |α|′′ > 1, then by the ultrametric triangle inequality applied
to f(α) = 0 we would obtain a contradiction, since then αn would be the unique
term of maximal absolute value, compare Lemma 2.13. So we must have |α|′′ ≤ 1.
If |α|′ ≥ 1, then |α−1|′ ≤ 1, so |α−1|′′ ≤ 1 and |α|′′ ≥ 1. This implies that
|α|′ < 1 ⇐⇒ |α|′′ < 1, from which it follows that the two absolute values on L
are equivalent (compare Problem (1) on Exercise sheet 1). Since they have the
same restriction to K, they must then be equal.

It remains to show that (L, |·|′) is complete. Let (b1, b2, . . . , bm) be K-linearly
independent elements of L. We claim that there are constants c, C > 0 (depending
on b1, b2, . . . , bm) such that

(2.1) cmax{|a1|, . . . , |am|} ≤ |a1b1 + . . .+ ambm|′ ≤ C max{|a1|, . . . , |am|}

for all a1, a2, . . . , am ∈ K. We prove this by induction on m. The cases m ≤ 1 are
trivial. So let m ≥ 2. The upper bound is easy:

|a1b1 + . . .+ ambm|′ ≤ max{|a1b1|′, . . . , |ambm|′}
≤ max{|b1|′, . . . , |bm|′} ·max{|a1|, . . . , |am|} .

To prove the lower bound, we argue by contradiction. If there is no lower bound,
then there are a1, . . . , am with max{|a1|, . . . , |am|} = 1 and |a1b1 + . . . + ambm|′
arbitrarily small. Pick a sequence (a

(k)
1 , . . . , a

(k)
m ) of such tuples so that

(2.2) |a(k)
1 b1 + . . .+ a(k)

m bm|′ < 2−k .

By passing to a sub-sequence and scaling we can assume that a
(k)
j = 1 for all k

and for some j, say j = 1. Taking differences, we see that∣∣(a(k+1)
2 − a(k)

2 )b2 + . . .+ (a(k+1)
m − a(k)

m )bm
∣∣′ < 2−k for all k.

By induction, there is c > 0 such that |a2b2 + . . .+ambm|′ ≥ cmax{|a2|, . . . , |am|}.
This implies that |a(k+1)

j − a(k)
j | ≤ c−12−k for all 2 ≤ j ≤ m, so (a

(k)
j )k is a Cauchy

sequence and converges to a limit aj. Taking the limit in (2.2) we find that

b1 + a2b2 + . . .+ ambm = 0 ,

which contradicts the linear independence of b1, b2, . . . , bm.

Now let (b1, b2, . . . , bn) be a K-basis of L, and let c > 0 be the associated constant.
If (αm) is a Cauchy sequence in L, write αm = a1mb1 + . . .+ anmbn. Then

|ajm′ − ajm| ≤ c−1|αm′ − αm|′ ,

so each sequence (ajm)m is a Cauchy sequence in K and so converges to some
aj ∈ K. But then αm → a1b1 + · · ·+ anbn converges as well. q
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We remark that (2.1) implies that the topology on L induced by |·|′ is the same as
the topology induced by any K-linear isomorphism L → Kn, where Kn has the
product topology.

Since |·|′ is uniquely determined and extends |·|, one simply writes |·| for the
absolute value on L.

We note that it can be shown that a field that is complete with respect to an
archimedean absolute value must be isomorphic to R or C (with the usual absolute
value) and that a locally compact (and then necessarily complete) non-archimedean
field of characteristic 0 must be isomorphic to a finite extension of Qp for some
prime number p. (In characteristic p, it will be isomorphic to a finite extension of
the field Fp((t)) of formal Laurent series over Fp, which is the field of fractions of
the ring of formal power series Fp[[t]].)

2.23. Corollary. Let Q̄p be the algebraic closure of Qp. Then Q̄p has a unique COR
Q̄p has unique
abs. value

absolute value extending |·|p on Qp. If σ ∈ Aut(Q̄p/Qp) is any automorphism,
then |σ(α)|p = |α|p for all α ∈ Q̄p.

Proof. Q̄p is an algebraic extension of Qp, so Theorem 2.22 applies. The second
statement follows from the uniqueness of the absolute value, since α 7→ |σ(α)|p is
another absolute value on Q̄p extending the p-adic absolute value on Qp. q

Next we want to show that Q̄p is not complete (contrary to the algebraic closure C
of the completion R of Q with respect to the usual absolute value).

2.24. Lemma. Q̄p is not complete with respect to |·|p. LEMMA
Q̄p not
complete

Proof. For n ≥ 1, let ζn ∈ Q̄p be a primitive (p2n − 1)-th root of unity. It follows
from properties of finite fields that ζn is a root of a monic polynomial fn ∈ Zp[x]
of degree 2n that reduces to an irreducible polynomial in Fp[x]; in particular, fn
is irreducible itself. Since ζn is a power of ζn+1, we obtain a tower of fields

Qp = Qp(ζ1) ⊂ Qp(ζ2) ⊂ Qp(ζ3) ⊂ . . . ⊂ Q̄p

such that [Qp(ζn+1) : Qp(ζn)] = 2 for all n ≥ 1. We now consider the series∑∞
n=1 ζnp

n. If Q̄p were complete, then series would converge (since |ζn|p = 1).
So we will show that the series does not converge in Q̄p. The proof will be by
contradiction. So we assume that the series has a limit α ∈ Q̄p. Then m :=
[Qp(α) : Qp] is finite. Let σ ∈ Aut(Q̄p/Qp). By Corollary 2.23, σ is continuous
with respect to the p-adic topology. This implies that

σ(α) =
∞∑
n=2

σ(ζn)pn .

Since [Qp(α) : Qp] = m, there are exactly m values that σ(α) can take (namely,
the roots of the minimal polynomial of α over Qp). Now pick some n such that
2n > m. Note that sn =

∑n
k=1 ζkp

k generates the field Qp(ζn) (this is easily seen
by induction). So, as σ runs through the automorphisms of Q̄p over Qp, σ(sn)
takes exactly 2n distinct values. Since the various possible values of σ(ζn) all
differ mod p (this is because fn has only simple roots in F̄p), we conclude that the
various values of σ(sn) all differ mod pn+1. On the other hand,

σ(α) ≡ σ(sn) mod pn+1 ,
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and there are only m < 2n possibilities for the left hand side. This gives the
desired contradiction. q

2.25. Definition. We define Cp to be the completion of Q̄p. ♦ DEF
Cp

2.26. Lemma. Let (K, |·|) be an algebraically closed field with a non-archimedean LEMMA
completion
stays
alg. closed

absolute value, and let K ′ be its completion. Then K ′ is also algebraically closed.

Proof. Let K ′ ⊂ L be a finite field extension and let α ∈ L; after scaling α by an
element of K, we can assume that |α| ≤ 1 (recall that L has a unique absolute
value extending that of K ′). We must show that α ∈ K ′. Let f ∈ K ′[x] be the
minimal polynomial of α. Since K is dense in K ′, there is a sequence (fn) of monic
polynomials in K[x] such that |fn − f | < 2−n. Since K is algebraically closed,
each fn splits into linear factors. By the ultrametric triangle inequality (and using
|α| ≤ 1), we have∏

α′ : fn(α′)=0

|α− α′| = |fn(α)| = |fn(α)− f(α)| ≤ |fn − f | < 2−n .

There must then be a root αn of fn such that |α− αn| < 2−n/deg(f). This implies
that (αn) converges in L to α. But K ′ is the closure of K, therefore the limit α
must already be in K ′. q

So Cp is the unique (up to isomorphism) minimal extension of Qp that is complete
and algebraically closed. So in this sense, Cp is the p-adic analogue of the field of
complex numbers.

The residue field of Q̄p and of Cp is F̄p. Since this is infinite, it follows that nei-
ther of these two fields is locally compact: the closed ball around zero of radius 1
contains infinitely many elements whose pairwise distance is 1 (a system of rep-
resentatives of the residue classes), and so no sub-sequence of a sequence of such
elements can converge.
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3. Newton Polygons

Let (K, |·|) be a complete field with a nontrivial non-archimedean absolute value.
Consider a polynomial 0 6= f ∈ K[x]. Let α ∈ K̄ be a root of f . We have seen
that there is a unique extension of |·| to K̄, so it makes sense to consider |α|. We
will now describe a method that determines the absolute values of the roots of f
and how often they occur.

In this context it is advantageous to switch to a ‘logarithmic’ version of the absolute
value. We fix a positive real number c and set

v(x) = −c log |x| for x ∈ K× and v(0) = +∞ .

3.1. Definition. The map v : K → R ∪ {+∞} is the (additive) valuation asso- DEF
valuationciated to |·|. ♦

Of course, changing c will scale v by a positive factor, so v is not uniquely deter-
mined.

Corresponding to the properties of absolute values, the valuation satisfies

(1) v(x) <∞ if x ∈ K×;

(2) v(xy) = v(x) + v(y) for all x, y ∈ K;

(3) v(x+ y) ≥ min{v(x), v(y)} for all x, y ∈ K, with equality when v(x) 6= v(y).

The adjective ‘additive’ refers to the second property.

When dealing with p-adic fields like Qp, Q̄p or Cp, we choose c = 1/ log p; then
v = vp on Qp, so v(Q×p ) = Z and (as is easily seen) v(Q̄×p ) = v(C×p ) = Q.

Now let α ∈ K̄ be a root of f = a0 + a1x+ . . .+ anx
n ∈ K[x] with an 6= 0. Then

a0 + a1α + a2α
2 + . . .+ anα

n = 0 ,

so by Lemma 2.13 there must be (at least) two terms in the sum whose absolute
value is maximal, or equivalently, whose valuation is minimal. These valuations
are

v(a0), v(a1) + v(α), v(a2) + 2v(α), . . . , v(an) + nv(α) .

So we need to have 0 ≤ k < m ≤ n such that

v(ak) + kv(α) = v(am) +mv(α) ≤ v(aj) + jv(α) for all 0 ≤ j ≤ n.

This is equivalent to saying that the line of slope −v(α) through the points
(k, v(ak)) and (m, v(am)) in the plane has no point (j, v(aj)) below it. This
prompts the following definition.

3.2. Definition. Let 0 6= f = a0 + a1x + . . . + anx
n ∈ K[x] with K as above. DEF

Newton
polygon

The Newton polygon of f is the lower convex hull of the set of the points (j, v(aj))
for 0 ≤ j ≤ n such that aj 6= 0, i.e., the union of all line segments joining two
of these points and such that the line through these points does not run strictly
above any of the other points. A maximal such line segment is a segment of the
Newton polygon; it has a slope (which is just its usual slope) and a length, which
is the length of its projection to the x-axis. ♦
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3.3. Example. Consider the polynomial EXAMPLE
Newton
polygon

f = x5 + 3x4 + 4x3 + 6x2 + 8 ∈ Q2[x] .

The points (j, v(aj)) with aj 6= 0 are

(0, 3), (2, 1), (3, 2), (4, 0), (5, 0) .

We find three segments, forming a broken line with vertices (0, 3), (2, 1), (4, 0),
(5, 0). The slopes are −1, −1/2 and 0, and the lengths are 2, 2 and 1.

0 1 2 3 4 5

1

2

3

♣

What we did above amounts to the statement that the valuations of the roots of f
are among the slopes taken negatively of the Newton polygon. We now want to
prove a converse and give a more precise statement. We first introduce a variation
of the absolute value on the polynomial ring.

3.4. Definition. Let (K, |·|) be a field with a nontrivial non-archimedean abso- DEF
|·|r on K[x]lute value and let r > 0. For f = a0 + a1x+ . . .+ anx

n ∈ K[x] we define

|f |r := max{|aj|rj : 0 ≤ j ≤ n} .
When f 6= 0, then we set

`r(f) = max{j : |aj|rj = |f |r} −min{j : |aj|rj = |f |r} ∈ Z≥0 . ♦

We observe that `r(f) is strictly positive if and only if c log r is the slope of a
segment of the Newton polygon of f , and that in this case `r(f) is the length of
the corresponding segment.

One can easily adapt the proof for the case r = 1 to show that |·|r is an abso-
lute value on K[x] (in the sense that it satisfies properties (1), (2) and (3′) of
Definition 2.1). It also restricts to |·| on K.

3.5. Lemma. Let f, g ∈ K[x] be nonzero polynomials and let r > 0. Then we LEMMA
additivity
of `r

have
`r(fg) = `r(f) + `r(g) .

Proof. If f = a0 + a1x+ . . .+ anx
n, write

n−(f) = min{j : |aj|rj = |f |r} and n+(f) = max{j : |aj|rj = |f |r}
and similarly for g and fg. Precisely as in the proof of property (2) for |·|r (i.e.,
basically Gauss’ Lemma) one sees that

n−(fg) = n−(f) + n−(g) and n+(fg) = n+(f) + n+(g) ,
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which implies the claim, since `r(f) = n+(f)− n−(f) and similarly for g and fg.
q

3.6. Theorem. Let 0 6= f ∈ K[x] and let r > 0. Then the number of roots α ∈ K̄ THM
roots and
Newton
polygon

of f (counted with multiplicity) such that |α| = r is exactly `r(f).

In terms of the Newton polygon, this says that f has roots of valuation s if and
only if its Newton polygon has a segment of slope −s, and the number of such
roots (counted with multiplicity) is exactly the length of the segment.

Proof. We can assume that K = K̄. The proof is by induction on the degree of f .
If f is constant, there is nothing to show. If f = x− α, then `r(f) = 0 if |α| 6= r
and `r(f) = 1 if |α| = r.

Now assume f is not constant and let β ∈ K̄ be a root of f . Then f = (x− β)f1

for some 0 6= f1 ∈ K[x]. By the inductive hypothesis, the number of roots α of f1

such that |α| = r is `r(f1). If |β| = r, then the number of such roots of f is
`r(f1) + 1 = `r(f1) + `r(x − β) = `r(f) (using Lemma 3.5). If |β| 6= r, then the
number of such roots of f is `r(f1) = `r(f1) + `r(x− β) = `r(f) again. q

3.7. Lemma. Let f ∈ K[x] be irreducible. Then the Newton polygon of f consists LEMMA
Newton
polygon of
irreducible
polynomial

of a single segment.

Proof. We assume for simplicity that K has characteristic zero. Then K̄ is sepa-
rable over K and the roots of f form one orbit under the Galois group Aut(K̄/K).
Since the absolute value is invariant under the action of this group, we see that all
roots of f have the same absolute value. The claim then follows from Theorem 3.6.

(In characteristic p, let α be a root of f . Then for some n ≥ 0, αp
n

is separable
over K and f = g(xp

n
) for an irreducible polynomial g ∈ K[x]. The previous

argument applies to g, but this then implies the claim also for f .) q

This leads to the following consequence.

3.8. Lemma. Let 0 6= f ∈ K[x] with f(0) 6= 0 and let σ1, . . . , σm be the segments LEMMA
slope
factorization

of the Newton polygon of f . Then there is a factorization

f = f1f2 · · · fm
such that the Newton polygon of fj is a single segment with the same slope and
length as σj.

Proof. We can assume that f is monic. Let f = h1 · · ·hn be the factorization of f
into monic irreducible polynomials over K. By Lemma 3.7, the Newton polygon
of each hj consists of a single segment. Let s1, s2, . . . , sm be the distinct slopes
that occur for these segments; we can number them so that sj is the slope of σj.
We then define fj to be the product of the hi whose slope is sj. The claim follows
from the additivity of the lengths of segments of the same slope, Lemma 3.5. q

We extend |·|r to an absolute value on the field K(x) of rational functions in one
variable over K in the usual way. For a given rational function f , we can then
study how |f |r varies with r.
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3.9. Theorem. Let f ∈ K(x)×. Then the function THM
variation of
|f |r with rϕf : R −→ R , s 7−→ −c log |f |e−s/c

is piecewise affine with integral slopes. If ∂−ϕf (s) − ∂+ϕf (s) = ν, then ν is the
number of zeros α of f with v(α) = s minus the number of poles α of f with
v(α) = s (each counted with multiplicity).

Here

∂+ϕf (s) = lim
ε↘0

ϕf (s+ ε)− ϕf (s)
ε

and ∂−ϕf (s) = lim
ε↘0

ϕf (s)− ϕf (s− ε)
ε

are the right and left derivatives of the piecewise affine function ϕf .

Proof. We can write f = γ
∏n

j=1(x−αj)ej for some γ ∈ K, αj ∈ K̄ and ej ∈ Z, so

ϕf (s) = −c log |γ| − c
n∑
j=1

ej log |x− αj|e−s/c = v(γ) +
n∑
j=1

ejϕx−αj(s) ,

and it suffices to prove the claim for f = x− α. In this case, we have

ϕx−α(s) = −c log max{e−s/c, |α|} = min{s, v(α)}

(recall that v(0) = +∞). This is a piecewise affine function with slopes 1 and 0
(unless α = 0). If α = 0, the slope is constant, so ν = 0 for all s, and there are no
zeros or poles α with v(α) = s. If α 6= 0, then the slope changes from 1 to 0 at
s = v(α), so ν = 1 there and ν = 0 for all other s. q

3.10. Example. For the polynomial EXAMPLE
ϕf for f from
Example 3.3f = x5 + 3x4 + 4x3 + 6x2 + 8 ∈ Q2[x]

from Example 3.3, the graph of ϕf looks as follows.

5

4

2

0

0 1 21/2 3/2

1

2

3

-2

-1
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The green lines are the graphs of s 7→ v(aj) + js (for j = 0, 2, 3, 4, 5); ϕf is the
minimum of these functions. The segments of the graph of ϕf correspond to the
vertices of the Newton polygon of f and the vertices of the graph of ϕf correspond
to the segments of the Newton polygon of f . ♣

We give another characterization of |f |r.

3.11. Lemma. Let (K, |·|) be a complete non-archimedean field, let r > 0 and LEMMA
|·|r as
supremum
norm

0 6= f ∈ K[x]. Then

|f |r = sup{|f(α)| : α ∈ K̄, |α| ≤ r} .

Proof. Let f = a0 + a1x+ . . .+ anx
n. If |α| ≤ r, then

|f(α)| = |a0 + a1α + . . .+ anα
n| ≤ max{|a0|, |a1|r, . . . , |an|rn} = |f |r .

Conversely, for any ε > 0 there is r − ε < ρ ≤ r such that ρ ∈ |K̄×| and c log ρ
is not a slope of the Newton polygon of f (recall that |K̄×| is dense in R>0; there
are only finitely many slopes). Then for any α ∈ K̄ such that |α| = ρ, there is a
unique term ajα

j of maximal absolute value and therefore we have |f(α)| = |f |ρ.
Letting ρ tend to r, we find |f |r ≤ sup{|f(α)| : α ∈ K̄, |α| ≤ r}. q
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4. Multiplicative seminorms and Berkovich spaces

The absolute values |·|r on the polynomial ring K[x] that we have studied in the
last section are examples of ‘multiplicative seminorms’.

4.1. Definition. Let K be a field with absolute value |·| and let A be a K-algebra DEF
multiplicative
seminorm

Banach
algebra

(i.e., A is a ring with a ring homomorphism K → A that gives A a compatible
structure as a K-vector space). A multiplicative seminorm on A is a map

A −→ R≥0 , a 7−→ ‖a‖
such that

(1) ‖·‖ restricts to |·| on K;

(2) ‖a+ b‖ ≤ ‖a‖+ ‖b‖ for all a, b ∈ A;

(3) ‖ab‖ = ‖a‖ · ‖b‖ for all a, b ∈ A.

If in addition a = 0 is the only element with ‖a‖ = 0, then ‖·‖ is a multiplicative
norm (which is the same as an absolute value on A extending |·|). In general, we
call ker ‖·‖ = {a ∈ A : ‖a‖ = 0} the kernel of ‖·‖; it is a prime ideal in A.

A K-algebra A with a fixed multiplicative norm such that A is complete with
respect to this norm is a Banach algebra over K. ♦

A seminorm on A only needs to satisfy ‖ab‖ ≤ ‖a‖ · ‖b‖ with equality for a ∈ K;
similarly for a norm.

If |·| is non-archimedean, then ‖·‖ also satisfies the ultrametric triangle inequality,
since then

‖a+ b‖n = ‖(a+ b)n‖ =
∥∥∥ n∑
j=0

(
n

j

)
ajbn−j

∥∥∥
≤

n∑
j=0

∣∣∣(n
j

)∣∣∣‖a‖j‖b‖n−j ≤ n∑
j=0

‖a‖j‖b‖n−j ≤ (n+ 1)(max{‖a‖, ‖b‖})n

and n
√
n+ 1→ 1 as n→∞.

We introduce the following notation.

4.2. Definition. Let (K, |·|) be a field with absolute value, let a ∈ K and r ≥ 0. DEF
D(a, r)Then

D(a, r) := DK(a, r) := {ξ ∈ K : |ξ − a| ≤ r}
is the closed disk of radius r around a. ♦

4.3. Examples. Let (K, |·|) be a complete non-archimedean field. EXAMPLES
multiplicative
seminorms
on K[x]

(1) For any a ∈ K, the map

f 7−→ ‖f‖a,0 := |f(a)|
is a multiplicative seminorm on K[x].

(2) For any a ∈ K and any r > 0, the map

f 7−→ ‖f‖a,r := |f(x+ a)|r
is a multiplicative (semi)norm on K[x].
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(3) Let (an) be a sequence in K and (rn) a strictly decreasing sequence in R>0

such that D(an+1, rn+1) ⊂ D(an, rn) for all n. Then

f 7−→ ‖f‖ = lim
n→∞

‖f‖an,rn

is a multiplicative seminorm on K[x].

(1) is clear and (2) follows from the properties of |·|r. For (3) note that by
Lemma 3.11,

‖f‖an+1,rn+1 = sup{|f(α)| : α ∈ K̄, |α− an+1| ≤ rn+1}
≤ sup{|f(α)| : α ∈ K̄, |α− an| ≤ rn} = ‖f‖an,rn ,

so that the sequence (‖f‖an,rn) decreases, hence must have a limit. Properties (2)
and (3) from Definition 4.1 then follow by taking the limit in the corresponding
relations for the ‖·‖an,rn . ♣

In fact, this is essentially the full story, at least when K is algebraically closed and
complete.

4.4. Theorem. Let (K, |·|) be a complete and algebraically closed non-archimedean THM
classification
of mult.
seminorms
on K[x]

field and let ‖·‖ be a multiplicative seminorm on K[x]. Then there is a decreasing
nested sequence of disks D(an, rn) such that

‖f‖ = lim
n→∞

‖f‖an,rn

for all f ∈ K[x].

Proof. Let D = {D(a, r) : a ∈ K, r > 0, ‖·‖ ≤ ‖·‖a,r} be the set of all closed
disks such that ‖·‖ is bounded above by the corresponding seminorm. Then for
all a ∈ K we have D(a, ‖x− a‖) ∈ D: if f(x+ a) = a0 + a1x+ . . .+ anx

n, then

‖f‖ = ‖a0 + a1(x− a) + . . .+ an(x− a)n‖
≤ max{|a0|, |a1|‖x− a‖, . . . , |an|‖x− a‖n}
= |f(x+ a)|‖x−a‖ = ‖f‖a,‖x−a‖ .

In particular, D is non-empty. Conversely, we have |x − a|a,r = r, which implies
that if D(a, r) ∈ D, then r ≥ ‖x− a‖. So

D = {D(a, r) : a ∈ K, r ≥ ‖x− a‖} .

We claim that D does not contain two disjoint disks: assume that D1 = D(a1, r1)
and D2 = D(a2, r2) are in D. Then we have ‖x− a1‖ ≤ r1 and ‖x− a2‖ ≤ r2, so
that

|a1 − a2| = ‖(x− a2)− (x− a1)‖ ≤ max{r1, r2} .
If r1 ≤ r2, then this implies that a1 ∈ D2 and then that D1 ⊂ D2; if r2 ≤ r1, then
we see in the same way that D2 ⊂ D1.

Now let ρ = inf{r > 0 : ∃a ∈ K : D(a, r) ∈ D} and choose sequences (an) in K
and (rn) in R>0 such that (rn) is strictly decreasing with rn → ρ and D(an, rn) ∈ D
for all n. Then we have D(an+1, rn+1) ⊂ D(an, rn). This implies

‖f‖ ≤ lim
n→∞

‖f‖an,rn .
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We still have to show the reverse inequality. Since every nonzero f is a product
of a constant and polynomials of the form x − a, it suffices to prove this for the
latter. If |a− an0| > rn0 for some n0, then

‖x− a‖ = ‖(x− an0)− (a− an0)‖ = |a− an0|
= lim

n→∞
max{|a− an|, rn} = lim

n→∞
‖x− a‖an,rn ,

since ‖x−an0‖ ≤ rn0 < |a−an0|. Otherwise, we have |a−an| ≤ rn for all n, which
says that a ∈

⋂
nD(an, rn), so that D(an, rn) = D(a, rn) and we have

lim
n→∞

‖x− a‖an,rn = lim
n→∞

‖x− a‖a,rn = ‖x− a‖a,ρ = ρ .

Since D(a, ‖x − a‖) ∈ D and ρ is the smallest possible radius of a disk in D, we
get ‖x− a‖ ≥ ρ as required. q

Note that if a ∈
⋂
nD(an, rn) in the proof above, then D(a, ρ) ∈ D, since

‖f‖ ≤ lim
n→∞

‖f‖an,rn = lim
n→∞

‖f‖a,rn = ‖f‖a,ρ

for all f ∈ K[x]. Since ρ ≤ r for any radius r of a disk in D and no two disks
in D are disjoint, it follows that D(a, ρ) =

⋂
D. We can therefore distinguish the

following four types of multiplicative seminorms on K[x].

4.5. Definition. Let ‖·‖ be a multiplicative seminorm on K[x], where K is a DEF
types of
mult.
seminorms

complete and algebraically closed non-archimedean field. Let D be as in the proof
of Theorem 4.4.

(1) ‖·‖ is of type 1 if
⋂
D = {a} for some a ∈ K. Then ‖f‖ = |f(a)| and ker ‖·‖

is the kernel of the evaluation map f 7→ f(a).

(2) ‖·‖ is of type 2 if
⋂
D = D(a, r) for some a ∈ K and r > 0 such that r ∈ |K×|.

Then ‖f‖ = |f |a,r.
(3) ‖·‖ is of type 3 if

⋂
D = D(a, r) for some a ∈ K and r > 0 such that r /∈ |K×|.

Then ‖f‖ = |f |a,r.
(4) Finally, ‖·‖ is of type 4 if

⋂
D = ∅.

In the last three cases, ‖·‖ is actually a norm. ♦

We note that if ρ = 0 in the proof of Theorem 4.4, then the completeness of K
implies that D = {a} for some a ∈ K. If

⋂
D 6= ∅ for every decreasing nested

sequence of disks in K, then K is said to be spherically complete. (Then no DEF
spherically
complete

multiplicative seminorms of type 4 exist.) For example, Qp is spherically complete,
but Cp is not (Exercise).

For types 2, 3 and 4, ‖·‖ defines an absolute value on K[x]. We extend it to an
absolute value on the field of fractions K(x), which we can then complete to obtain
H‖·‖, and we obtain a K-algebra homomorphism K[x] → H‖·‖. For example, if
‖·‖ = |·|r is of type 2 or 3 with a = 0, then the corresponding completion of K[x]
is the ring

K〈r−1x〉 :=
{ ∞∑
j=0

ajx
j ∈ K[[X]] : lim

j→∞
|aj|rj = 0

}
of power series converging on D(0, r) (Exercise), so H|·|r is the field of fractions
of K〈r−1x〉.
If ‖·‖ is of type 1, then the evaluation map at a gives us a K-algebra homo-
morphism K[x] → K =: H‖·‖. In each case, we obtain ‖·‖ as the pull-back of
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the absolute value of a complete field H that is a K-Banach algebra via a K-
algebra homomorphism K[x]→ H. Conversely, if we have such a homomorphism
K[x] → H, then pulling back the absolute value of H to K[x] will give us a
multiplicative seminorm on K[x].

4.6. Definition. Let K be a complete and algebraically closed non-archimedean DEF
Berkovich
space

field and let A be a finitely generated K-algebra, so that A is the coordinate ring
of the affine K-variety X = SpecA. Then the Berkovich space associated to A
or X is

BerkA := Xan := {‖·‖ : A→ R multiplicative seminorm on A} ,

the set of multiplicative seminorms on A. The topology on Xan is the weakest
topology that makes the maps Xan → R, ‖·‖ 7→ ‖f‖, continuous for all f ∈ A.
(Concretely, this means that any open set is a union of finite intersections of sets
of the form Uf,a,b = {‖·‖ ∈ Xan : a < ‖f‖ < b}.) ♦

We will usually call elements of Xan points and denote them by ξ or similar. In
this context, the corresponding multiplicative seminorm will be written ‖·‖ξ and
the K-Banach algebra obtained by completion, Hξ.

4.7. Lemma. The topological space Xan as defined in Definition 4.6 is Hausdorff. LEMMA
Xan is
Hausdorff

Proof. Let ξ, ξ′ ∈ Xan be distinct. We must show that there are disjoint open sets
U,U ′ ⊂ Xan with ξ ∈ U and ξ′ ∈ U ′. Since ξ 6= ξ′, there must be f ∈ A such
that ‖f‖ξ 6= ‖f‖ξ′ . Assume without loss of generality that ‖f‖ξ < ‖f‖ξ′ and let
‖f‖ξ < a < ‖f‖ξ′ . Then we can take U = Uf,−∞,a and U ′ = Uf,a,∞. q

Note that we can alternatively define BerkA as the set of all K-algebra homomor-
phisms A→ H into complete K-Banach algebras that are fields, up to an obvious
equivalence. The topology is then that of pointwise convergence. This can be
seen as similar to the definition of SpecA as the set of all K-algebra homomor-
phisms into fields, up to an obvious equivalence. Here the topology is again that of
pointwise convergence, but with the cofinal topology on the target fields (so that
basic open sets are defined by relations f 6= 0). Since a Banach algebra has more
structure than just a K-algebra, there are fewer equivalences and therefore more
points in BerkA than in SpecA. This is made precise by the following statements.

4.8. Lemma. Let K, A and X be as in Definition 4.6. Then there is a canonical LEMMA
X(K) ↪→ Xaninclusion of X(K) into Xan. The inclusion is continuous when X(K) is given the

topology induced by the absolute value on K.

Proof. Let ξ ∈ X(K). Then ξ gives rise to a K-algebra homomorphism A → K,

f 7→ f(ξ). We define ξ̃ ∈ Xan to correspond to the multiplicative seminorm
f 7→ |f(ξ)|. Its kernel is the ideal of A consisting of functions vanishing at ξ and
so determines ξ. This gives us the desired inclusion.

To show that ξ 7→ ξ̃ is continuous, consider a basic open set Uf,a,b in Xan. Its
preimage is {ξ ∈ X(K) : a < |f(ξ)| < b}. Since every f ∈ A is continuous
as a map X(K) → K (with respect to the K-topology) and |·| : K → R is also
continuous, this set is open. q
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It is in fact the case that the image of X(K) in Xan is dense. We will see this
later when X is the affine line.

There is also a natural map in the other direction.

4.9. Lemma. Let K, A and X be as in Definition 4.6. Then there is a canonical LEMMA
BerkA
→ SpecA

continuous map BerkA→ SpecA (where SpecA has the Zariski topology).

Proof. Let ξ ∈ BerkA. Then ‖·‖ξ is the pull-back of the absolute value from some
K-Banach algebra H that is a field under a homomorphism φ : A → H. Since H
is a field, the kernel of φ must be a prime ideal of A and so defines an element
of SpecA (or we just take H as a field, forgetting the absolute value).

It remains to show that the map BerkA→ SpecA obtained in this way is continu-
ous. Let Uf = {ξ ∈ SpecA : f(ξ) 6= 0} be a basic open set in SpecA. Its pull-back
to BerkA is {ξ ∈ BerkA : ‖f‖ξ 6= 0} = Uf,0,∞ and therefore open, too. q

The composition of the two maps X(K)→ Xan → SpecA is the inclusion of X(K)
(the set of maximal ideals of A) into SpecA (the set of prime ideals of A).

The map is actually surjective: let ξ ∈ SpecA; this gives us a K-algebra homo-
morphism A → R into an integral domain finitely generated over K. One can
show that one can always define an absolute value on such an R that extends the
absolute value on K. Pulling back to A, we obtain a multiplicative seminorm; this
is a preimage of ξ.

It is also true that Xan is (even path-)connected when X is connected as an
algebraic variety and that Xan is locally compact. We will see this concretely for
X = A1 in the next section.
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5. The Berkovich affine and projective line

In the following, we will take a closer look at the Berkovich affine line over Cp,

A1,an
Cp = BerkCp[x]. According to the classification of Definition 4.5, we have four

types of points in A1,an
Cp . The type 1 points recover the points in A1(Cp) = Cp as in

Lemma 4.8. The type 2 and 3 points correspond to closed disks D(a, r) with r > 0
in, respectively, not in, the value group pQ of Cp. We will reserve the notation ζa,r
or ζD where D = D(a, r) for these points. We will frequently identify a with ζa,0,
however. Finally, the type 4 points correspond to nested sequences of disks with
empty intersection; these points are somewhat annoying, but don’t usually give
us problems. They are necessary to make the space locally compact. Two nested
sequences of disks (D(an, rn))r and (D(a′n, r

′
n))n with empty intersection define

the same type 4 point if and only if D(an, rn) ∩D(a′n, r
′
n) 6= ∅ for all n.

Now fix ξ ∈ Cp and consider real numbers 0 ≤ r0 < r1. Then there is a map

[r0, r1] −→ A1,an
Cp , r 7−→ ‖·‖ξ,r = ζξ,r .

This map is continuous, since for any f ∈ Cp[x], the map

r 7−→ ‖f‖ξ,r = max{|aj|prj : 0 ≤ j ≤ n}

is continuous, where f(x + ξ) = a0 + a1x + . . . + anx
n. The map is also clearly

injective. Since [r0, r1] is compact, the map is actually a homeomorphism onto its
image. We write [ζξ,r0 , ζξ,r1 ] for this image.

Now consider two points ξ, η ∈ Cp and let δ = |ξ − η|p their distance. Then
D(ξ, δ) = D(η, δ) (“every point in a disk is a center”). Define

ξ ∨ η := ζξ,δ = ζη,δ .

Then

γξ,η : [0, 2δ] −→ A1,an
Cp , r 7−→

{
ζξ,r if 0 ≤ r ≤ δ,

ζη,2δ−r if δ ≤ r ≤ 2δ

is a continuous path in A1,an
Cp joining ξ and η, whose image is [ξ, ξ ∨ η] ∪ [η, ξ ∨ η].

We can extend the definition of ξ ∨ η to arbitrary points in A1,an
Cp . We first observe

that

‖x− η‖ξ,r =

{
‖x− η‖η,r = r if η ∈ D(ξ, r),

|ξ − η| > r if η /∈ D(ξ, r).

This shows that D(ξ, r) is uniquely determined by ‖·‖ξ,r and also shows that
D1 ⊂ D2 holds for two closed disks if and only if ‖·‖D1 ≤ ‖·‖D2 (the ‘only if’ part
follows also from the characterization of ‖·‖ξ,r as the sup norm on D(ξ, r)). This
prompts us to define

ξ ≤ ξ′ ⇐⇒ ∀f ∈ Cp[x] : ‖f‖ξ ≤ ‖f‖ξ′

for arbitrary points ξ, ξ′ ∈ A1,an
Cp . Furthermore, if ξ ≤ ξ′, then we write [ξ, ξ′] for

the set of points ξ′′ such that ξ ≤ ξ′′ ≤ ξ′. If ξ and ξ′ are points of type 1, 2 or 3,
then it is clear by the above that [ξ, ξ′] is homeomorphic to a closed interval in R.
Regarding type 4 points, we have the following.
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5.1. Lemma. Let ξ ∈ A1,an
Cp be a type 4 point, represented by the nested sequence LEMMA

comparison
with
type 4 points

of disks D(an, rn) with empty intersection. If ξ′ ∈ A1,an
Cp with ξ ≤ ξ′, then either

ξ′ = ξ, or else ξ′ is a point of type 2 or 3, corresponding to a disk D(a, r) such
that D(an, rn) ⊂ D(a, r) for all sufficiently large n.

Let r∞ = limn→∞ rn. If ξ′ corresponds to D(a, r), then

γξ,ξ′ : [r∞, r] −→ A1,an
Cp , ρ 7−→

{
ζan,ρ if ρ ≥ rn,

ξ if ρ = r∞

is a continuous map with image [ξ, ξ′].

Proof. Let ξ′ ≥ ξ and assume first that ξ′ is of type 2 or 3, so ξ′ = ζa,r for some
a ∈ Cp and r > 0. We claim that D(a, r) ∩D(an, rn) 6= ∅ for all n. Otherwise, we
would have empty intersection for all sufficiently large n, and then

‖x− a‖ξ′ = r < lim
n→∞

|a− an| = lim
n→∞

‖x− a‖an,rn = ‖x− a‖ξ ,

which contradicts ξ ≤ ξ′. If n is large enough so that rn ≤ r, then we must
therefore have D(an, rn) ⊂ D(a, r).

Now assume that ξ′ is of type 1 or 4. If ξ′ is of type 1, then ‖x− η‖ξ′ is zero when
η = ξ′, whereas ‖x−η‖ξ ≥ r∞ > 0 for all η, so this is not possible. If ξ′ is of type 4,
say represented by the nested sequence of disks D(a′n, r

′
n), then ξ ≤ ξ′ ≤ ζa′n,r′n for

all n. By the argument above, it follows that D(an, rn) ∩ D(a′m, r
′
m) 6= ∅ for all

m,n. But this exactly means that ξ = ξ′.

It remains to show that γξ,ξ′ is well-defined and continuous. For the first, note
that ζan,ρ = ζan+1,ρ when ρ ≥ rn, since D(an, ρ) = D(an+1, ρ). For the second,
consider f ∈ Cp[x]. We have to show that

[r∞, r] 3 ρ 7−→ ‖f‖γξ,ξ′ (ρ)

is continuous. This is clear on (r∞, r], and it follows for the left endpoint by the
definition of ‖·‖ξ, which implies that

‖f‖ξ = lim
ρ↘r∞

‖f‖an(ρ),ρ

(with n(ρ) such that ρ ≥ rn). q

For ξ′ ≤ ξ, we define the path γξ,ξ′ as the reversal of the path γξ′,ξ.

5.2. Theorem. Any two points ξ, ξ′ ∈ A1,an
Cp have a least upper bound ξ∨ ξ′ (with THM

A1,an
Cp is path-

connected
respect to the ordering introduced above). The path γξ,ξ∨ξ′ + γξ∨ξ′,ξ′ connects the
two points.

Proof. This is clear if neither ξ nor ξ′ are of type 4: if ξ = ζa,r and ξ′ = ζa′,r′ ,
then ξ ∨ ξ′ = ζa,ρ = ζa′,ρ, where ρ = max{r, r′, |a − a′|}. If ξ ≤ ξ′ or ξ′ ≤ ξ, then
the statement is also clear (with ξ ∨ ξ′ = ξ or ξ′). Otherwise, we can represent
ξ and ξ′ by nested sequences of disks D(an, rn) and D(a′n, r

′
n), respectively, such

that D(an, rn) ∩D(a′n, r
′
n) = ∅ for n large enough. For all such n, ζan,rn ∨ ζa′n,r′n is

the same and therefore agrees with ξ ∨ ξ′.
The statement on path-connectedness is then clear. q

We define analogues of closed disks in A1,an
Cp .
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5.3. Definition. Let a ∈ Cp and r ≥ 0. We set DEF
closed disk
in A1,an

Cp
D(a, r) = {ξ ∈ A1,an

Cp : ξ ≤ ζa,r} = {ξ ∈ A1,an
Cp : ‖x− a‖ξ ≤ r} .

and call this a closed disk in A1,an
Cp . We also define the corresponding open disk in

A1,an
Cp to be

D(a, r)− = {ξ ∈ A1,an
Cp : ‖x− a‖ξ < r} = Ux−a,−∞,r . ♦

The equality in the definition of D(a, r) can be seen as follows. ‘⊂’ is clear. To
show ‘⊃’, assume that ‖x− a‖ξ ≤ r. Then for any b ∈ Cp, we have

‖x−b‖ξ = ‖(x−a)+(a−b)‖ξ ≤ max{‖x−a‖ξ, |a−b|} ≤ max{r, |a−b|} = ‖x−b‖a,r .
Since every f ∈ Cp[x] is a constant times a product of such terms, it follows that
ξ ≤ ζa,r.

5.4. Lemma. LEMMA
sub-basis of
topology

(1) Let f = (x − α1) · · · (x − αn) ∈ Cp[x] be non-constant and let a ∈ R. Then
there are r1, . . . , rn ≥ 0 such that

{ξ ∈ A1,an
Cp : ‖f‖ξ ≤ a} = D(α1, r1) ∪ . . . ∪ D(αn, rn)

and
{ξ ∈ A1,an

Cp : ‖f‖ξ < a} = D(α1, r1)− ∪ . . . ∪ D(αn, rn)−

(2) The open disks D(a, r)− and the complements of closed disks D(a, r) generate
the topology of A1,an

Cp (i.e., every open set is a union of finite intersections of

such sets).

(3) Two (open or closed) disks in A1,an
Cp are either disjoint or one is contained in

the other.

Proof.

(1) Exercise.

(2) We have Uf,a,b = Uf,−∞,b∩Uf,a,∞. By part (1), we can write Uf,−∞,b as a union
of open disks, and we can write Uf,a,∞, which is the complement of the set of ξ
such that ‖f‖ξ ≤ a, as the complement of a finite union of closed disks, which
is the same as a finite intersection of complements of closed disks. So each
basic open set Uf,a,b is a finite intersection of open disks and complements of
closed disks; this implies the claim.

(3) Assume that D(a, r) and D(a′, r′) are not disjoint, so that there is ξ with
‖x− a‖ξ ≤ r and ‖x− a′‖ξ ≤ r′, w.l.o.g. such that r ≥ r′. Then

|a− a′| ≤ max{‖x− a‖ξ, ‖x− a′‖ξ} ≤ r .

Now let ξ′ ∈ D(a′, r′) be arbitrary. Then

‖x− a‖ξ′ ≤ max{‖x− a′‖ξ′ , |a− a′|} ≤ max{r′, r} = r ,

so ξ′ ∈ D(a, r). Hence D(a′, r′) ⊂ D(a, r). The case when one or both disks
are open is similar. q

Together with (2) (and the fact that A1,an
Cp is a union of open disks), statement (3)

says that the open disks, from which a finite number of (pairwise disjoint) closed
disks is removed, form a basis of the topology: every open set is a union of such
sets.
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5.5. Lemma. Let a ∈ Cp and r ≥ 0. LEMMA
D(a, r) is
compact(1) The set of type 1 points in D(a, r) is D(a, r), and D(a, r) is dense in D(a, r).

(2) D(a, r) is compact.

Proof. The first claim in (1) is clear (and holds in a similar way for open disks). For
the second claim, consider the intersection of a basic open set as above withD(a, r).
The set of type 1 points contained in this intersection is the intersection of D(a, r)
with the open disk in Cp corresponding to the open disk, minus the union of the
closed disks in Cp corresponding to the closed disks that were removed. Any such
set is non-empty (unless the whole disk D(a, r) is removed, but then the basic
open set has empty intersection with D(a, r)).

For (2), we can assume without loss of generality that a = 0. We know that
ξ ∈ D(0, r) ⇐⇒ ‖·‖ξ ≤ |·|r, so the image of D(0, r) in RCp[x] under the map

Φ: A1,an
Cp −→ RCp[x] , ξ 7−→ (‖f‖ξ)f∈Cp[x]

is the intersection of im(Φ) with the product C =
∏

f [0, |f |r]. The definition of the

topology on A1,an
Cp is equivalent to saying that it is the subspace topology induced

by the map Φ above (with the product topology on RCp[x]). The product C of
compact intervals is itself compact by Tychonoff’s Theorem. On the other hand,
the conditions defining a multiplicative seminorm are closed conditions, so the
image of Φ is closed. Now Φ(D(0, r)) is the intersection of a closed set and a
compact set, so it is itself compact. Since Φ is a homeomorphism onto its image,
it follows that D(0, r) is compact as well. q

5.6. Corollary. The space A1,an
Cp is locally compact. COR

A1,an
Cp is locally

compact
Proof. We must show that for every point ξ ∈ A1,an

Cp and every open subset U

of A1,an
Cp containing ξ, there is a compact neighborhood V of ξ contained in U .

Since U is open, U contains an open set of the form D(a, r)− \
⋃
j D(aj, rj) that

in turn contains ξ. This means that ‖x − a‖ξ < r and ‖x − aj‖ξ > rj. For
r′ < r sufficiently close to r and for r′j > rj sufficiently close to rj, we still have
‖x− a‖ξ < r′ and ‖x− aj‖ξ > r′j. Then

ξ ∈ V := D(a, r′) \
⋃
j

D(aj, r
′
j)
− ⊂ U .

Now V is compact (we intersect the compact set D(a, r′) with a closed set) and
contains the open neighborhood D(a, r′)− \

⋃
j D(aj, r

′
j) of ξ. q

We now look a bit closer at the tree structure of A1,an
Cp .

5.7. Definition. The diameter of a point ξ ∈ A1,an
Cp is DEF

diameter
diam(ξ) := inf{‖x− a‖ξ : a ∈ Cp} . ♦

Then diam(ζa,r) = r, and for a type 4 point ξ represented by a nested sequence of
disks D(an, rn), we have diam(ξ) = limn→∞ rn > 0.

We use this notion to define two metrics.
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5.8. Definition. For ξ, ξ′ ∈ A1,an
Cp , we define the small metric by DEF

small and
big metric

d(ξ, ξ′) = 2 diam(ξ ∨ ξ′)− diam(ξ)− diam(ξ′)

= (diam(ξ ∨ ξ′)− diam(ξ)) + (diam(ξ ∨ ξ′)− diam(ξ′))

and in the case that ξ, ξ′ are both not of type 1, the big metric by

ρ(ξ, ξ′) = c(2 log diam(ξ ∨ ξ′)− log diam(ξ)− log diam(ξ′)) . ♦

So the small metric gives the total change of diameter as we move along the path
joining ξ to ξ′, whereas the big metric does the same for the change in (additive)
valuation (= −c log diam). Both are indeed metrics, d on all of A1,an

Cp and ρ on the

‘hyperbolic part’ of A1,an
Cp , which consists of the points of types 2, 3 and 4. The

former has the advantage that it is also defined on the points of type 1, but the
latter is in some sense more natural. It can be seen as analogous to the hyperbolic
metric on the upper half plane in C (which is given by ds2 = (dx2 + dy2)/y2 when
x and y are the real and imaginary parts), which is invariant under the action
of PSL(2,R) by Möbius transformations. This analogous property will turn out
to be satisfied (with respect to PGL(2,Cp)) by the big metric.

Now we introduce the kind of tree structure that shows up here. (For more
information, consult [BR, Appendix B].)

5.9. Definition. An R-tree is a metric space (T, d) such that for any two points DEF
R-treex, y ∈ T , there is a unique path [x, y] in T joining x to y, which is a geodesic

segment (this means that the map γ : [a, b]→ T giving the path can be chosen so
that d(γ(u), γ(v)) = |u− v| for all u, v ∈ [a, b]).

A point x ∈ T is a branch point if T \{x} has at least three connected components
(in the metric topology). x is an endpoint if T \ {x} is connected. If T \ {x} has
exactly two connected components, then x is said to be ordinary. The R-tree T
is said to be finite, if it is compact and has only finitely many branch points and
endpoints.

The strong topology on the R-tree is the metric topology on T . To define the
weak topology, we define a tangent direction at x ∈ T to be an equivalence class
of paths [x, y] with y 6= x, where two paths are equivalent when they share an
initial segment. The tangent directions at x are in one-to-one correspondence
with the connected components of T \ {x}. For a tangent direction v at x, we set
Bx,v = {y ∈ T : y 6= x, [x, y] ∈ v} (which is the connected component of T \ {x}
corresponding to v). Then the weak topology on T is the topology generated by
the sets Bx,v. ♦

The set Bx,v can be interpreted as the set of points of T that can be ‘seen’ from x
when looking into direction v. This is why the weak topology is also called the
‘observer’s topology’.

Now the following is a fact.

5.10. Theorem. THM
A1,an

Cp as
R-tree(1) The small metric d turns A1,an

Cp into an R-tree. The Berkovich topology on A1,an
Cp

is the weak topology on this R-tree.

(2) The big metric ρ turns A1,an
Cp \ Cp into an R-tree. The subspace topology

on A1,an
Cp \ Cp is again the weak topology on this R-tree.
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Proof. See [BR, Section 1.4], where the analogous statements are shown forD(0, 1).
For A1,an

Cp the argument is the same (except that there is no natural way to pick a

root). q

Compactifying the R-tree by adding a point at infinity (see below) we obtain
the universal dendrite that was first constructed by Ważewski in his thesis in
1923. Recent work by Hrushovski, Loeser and Poonen1 shows that V an can be
embedded in R2d+1 for any quasi-projective d-dimensional Cp-variety V (and P1,an

Cp
can be embedded in R2).

We can classify the points in the R-tree structure.

(1) Points of types 1 and 4 are endpoints.

(2) Points of type 2 are branch points, and the set of tangent directions corre-
sponds (canonically up to an automorphism of P1

F̄p) to P1(F̄p).

(3) Points of type 3 are ordinary.

Let ξ ∈ A1,an
Cp be any point. If ξ′ is another point, then there are three possibilities:

ξ > ξ′, ξ < ξ′, or neither. In the last two cases, the path from ξ to ξ′ starts ‘going
up’ to ξ ∨ ξ′ (= ξ′ in the second case). So the points ξ′ 6= ξ such that ξ 6> ξ′

constitute the set Bξ,up. If ξ is of type 1 or 4, then there are no ξ′ with ξ > ξ′, so
‘up’ is the only direction.

Now consider ξ = ζa,r of type 3. If ξ′ < ξ, then there is some ξ′ ≤ ζa′,r′ < ξ, and
we have D(a′, r′) ⊂ D(a, r), so |a′ − a|p ≤ r. Since r /∈ |C×p |p, we can choose r′

such that |a′ − a|p < r′ < r, but then ζa′,r′ = ζa,r′ , so the path from ξ to ξ′ shares
an initial segment with [ζa,r, ζa,0]. This shows that other than ‘up’, there is exactly
one tangent direction ‘down’.

Finally, when ξ = ζa,r is of type 2, then by a similar argument, for any ξ′ < ξ
there is a′ ∈ D(a, r) such that ξ′ ∈ D(a′, r)−. If two points ξ′, ξ′′ are in the same
open disk, then the paths from ξ to these two points share an initial segment;
otherwise ξ′ ∨ ξ′′ = ξ and they do not. So the directions other than ‘up’ at ξ
are in one-to-one correspondence with open disks of radius r contained in D(a, r).
To show that the set of such disks corresponds to F̄p, we assume that a = 0 and
r = 1 (we can shift and scale to reduce to this case). Two disks D(a′, 1)− and
D(a′′, 1)− contained in D(0, 1) are equal if and only if |a′− a′′|p < 1, which means
that a′, a′′ ∈ R (the valuation ring of Cp) have the same image in the residue class
field F̄p. So we see that the ‘downward’ directions at a type 2 point correspond to
the elements of F̄p; together with the ‘up’ direction, which we can let correspond
to ∞, we get P1(F̄p). (For ζ0,1 the correspondence is canonical. For other points
it is so only up to an automorphism of P1

F̄p , since there is a choice involved in the

shifting and scaling.)

If ξ = ζa,r is a point of type 2 or 3, then the basic open set Bξ,v of the weak topology
is the complement of D(a, r) when v = ‘up’ and is D(a′, r)− with a′ as above when
v is a ‘downward’ direction. For ξ of type 1 or 4, Bξ,v is just A1,an

Cp \ {ξ}. This
shows that the weak topology of the R-tree agrees with the Berkovich topology.

Here is a rough sketch of D(0, 1):

1E. Hrushovski, F. Loeser and B. Poonen, Berkovich spaces embed in Euclidean spaces,
L’Enseignement Math. 60 (2014), no. 3–4, 273–292.
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ζ0,1

ζ0,r

ζ0,|p|1/2

ζ0,|p|ζ1,|p| ζ−1,|p|

ζ0,|p|2

ζ1,0 ζ1+p,0 ζ−1,0 ζ0,0 ζ
p2,0 ζ−p,0 ζ

p,0

ξ

Points of type 1, 2, 3 and 4 are green, red, purple and blue, respectively.

Let T be an R-tree and let S ⊂ T be nonempty and finite. Then one can consider
the convex hull Γ of S; this is the union of the paths joining the points in S.
Then Γ is a finite R-tree and there is a natural deformation retraction τΓ : T → Γ
that sends any point x ∈ T to the point of Γ that is hit first by the unique path
from x to any fixed point in Γ. It can be shown that the weak topology on T is
the weakest topology that makes all the maps τΓ continuous (where we take, say,
the metric topology on Γ). (This is an exercise.)

Now we want to introduce the Berkovich projective line, P1,an
Cp . There are several

ways of constructing it.

(1) We set P1,an
Cp = A1,an

Cp ∪ {∞}, where ∞ is a point of type 1, whose open neigh-

borhoods are the complements of compact subsets of A1,an
Cp together with the

point ∞. (This is the one-point compactification from general topology.)

(2) We observe that the map Cp → Cp, z 7→ z−1 induces a continuous involution φ

on A1,an
Cp \ {0} (that is given on points not of type 4 by ζa,r 7→ ζa−1,r/|a|2 when

|a| > r and ζ0,r 7→ ζ0,1/r for r > 0). One can then ‘glue’ two copies of A1,an
Cp

along A1,an
Cp \ {0} via this map. This identifies a neighborhood of ∞ with a

neighborhood of 0 (and so shows in particular that ∞ is in no way special).
One can also show that the big metric is invariant under φ and also under
affine maps z 7→ az + b (Exercise).

(3) One obtains the same result by gluing two copies of D(0, 1) along the ‘spheres’
D(0, 1) \ D(0, 1)− via φ. Since D(0, 1) is compact, this shows that P1,an

Cp is
compact.

(4) Similar to the Proj construction in algebraic geometry, there is a ‘Berkovich
Proj’ taking a graded finitely generated algebraA over a complete non-archimedean
field as input and having a Berkovich type space as output, whose points corre-
spond to equivalence classes of multiplicative seminorms on A whose kernel doe
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not contain the irrelevant ideal. Applying this to the polynomial ring Cp[x, y]

with the standard grading, this results in P1,an
Cp . We will discuss this in more

detail below. An advantage of this approach is that it makes it easy to see
that a morphism P1

Cp → P1
Cp induces a continuous map P1,an

Cp → P1,an
Cp .

Recall that a graded ring is a ring R coming with a direct sum decomposition
R =

⊕
n≥0Rn as an additive group such that for all f ∈ Rm and g ∈ Rn we have

fg ∈ Rm+n. The elements of Rn are said to be homogeneous of degree n. An
ideal I of R is said to be homogeneous if it is generated by homogenous elements.
If K is a field and the decomposition is a direct sum of K-vector spaces, then R is
a graded K-algebra. In algebraic geometry, ProjR is the set of all homogeneous
prime ideals of R that do not contain the irrelevant ideal

⊕
n≥1Rn, with the Zariski

topology. For example, PnK = ProjK[X0, X1, . . . , Xn] with the usual grading of
the polynomial ring. The ‘Berkovich Proj’ construction does something similar
for Berkovich spaces.

5.11. Definition. Let A be a finitely generated graded K-algebra with A0 = DEF
Berkovich
Proj

K, where K is a complete and algebraically closed non-archimedean field. We
consider the set of multiplicative seminorms on A whose kernel does not contain
the irrelevant ideal. We declare that two seminorms ‖·‖ and ‖·‖′ are equivalent if
there is C > 0 such that ‖F‖′ = Cd‖F‖ for all F ∈ Ad (i.e., F ∈ A homogeneous
of degree d). Then the projective Berkovich space associated to A, PBerkA, is the
set of equivalence classes of these seminorms.

Let a1, . . . , am be homogeneous generators of the irrelevant ideal of A. Then in
each equivalence class, there are normalized seminorms ‖·‖ with the property that
maxj ‖aj‖ = 1, and all equivalent normalized seminorms agree on all homoge-
neous elements. We define the topology on PBerkA to be the weakest one such
that

[
‖·‖
]
7→ ‖F‖ is continuous for every homogeneous F ∈ A, where ‖·‖ is a

normalized representative of the class
[
‖·‖
]
.

If V = ProjA is the projective K-variety defined by A, then we also write V an for
PBerkA. ♦

The notation PBerkA is not standard.

In analogy with the usual construction in algebraic geometry, we can then define
the Berkovich projective line to be DEF

P1,an
CpP1,an

Cp = PBerkCp[X, Y ] ,

where the polynomial ring Cp[X, Y ] has its usual grading.

We find the usual two embeddings of A1,an
Cp into P1,an

Cp by pulling back seminorms

under the two maps Cp[X, Y ] → Cp[x], F (X, Y ) 7→ F (x, 1) and F (X, Y ) 7→
F (1, x). The equivalence class we do not obtain under the first map satisfies
‖Y ‖ = 0; it corresponds to the type 1 point 0 under the second map and represents
the point at infinity.

It is then natural to consider sets of the form P1,an
Cp \D(a, r)− as closed and sets of

the form P1,an
Cp \ D(a, r) as open Berkovich disks (‘around infinity’) in P1,an

Cp . Then

the open Berkovich disks generate the topology of P1,an
Cp , and a basis of the topology

is given by the open disks (including the whole space) minus finitely many closed
disks.
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Since P1,an
Cp without the points of type 1 is the same as A1,an

Cp without the points
of type 1, which is an R-tree with respect to the big metric, it follows by the
results mentioned in (2) above that Aut(P1

Cp) = PGL(2,Cp) acts on this R-tree by
isometries. This action is transitive on the set of type 2 points, and the stabilizer
of the point ζ0,1 is PGL(2, R) (where R is the valuation ring of Cp), with the
tangent directions at ζ0,1 being permuted transitively (by PGL(2, F̄p) = Aut(P1

F̄p)

via the canonical map PGL(2, R)→ PGL(2, F̄p)).

A type 2 point ζ of P1,an
Cp can then be interpreted as corresponding to a reduction

map P1(Cp) → P1(F̄p), up to an automorphism of the target. The map is given
by associating to z ∈ P1(Cp) the tangent direction at ζ in which the type 1 point
corresponding to z can be seen. For ζ = ζ0,1 we get the usual reduction map. Such
a reduction map comes from a ‘model’ of P1 over R of the form P1

R; the reduction
map depends on how we identify the generic fiber of P1

R with P1
Cp . More generally,

we call any finite R-subtree of P1,an
Cp \P

1(Cp) with the big metric that is the convex

hull of finitely many points of type 2 a skeleton of P1,an
Cp . Any skeleton corresponds DEF

Skeletonto a model of P1
Cp over R that is usually more complicated than P1

R in that its

special fiber (i.e., the base change to F̄p) is a configuration of several P1’s arranged
in tree form. (Possibly we return to that later.)

If we modify the definition of the diameter by defining it on P1,an
Cp as

diam′(ξ) =

{
diam(ξ) if ξ ∈ D(0, 1)

diam(φ(ξ)) if ξ ∈ P1,an
Cp \ D(0, 1),

where φ is the involution induced by z 7→ 1/z, and set ξ ∨′ η to be the point
where [ξ, ζ0,1] and [η, ζ0,1] first meet, then we can define a small metric d′ on P1,an

Cp
in the same way as before. Then P1,an

Cp can be identified with the R-tree given by
the small metric. However, the small metric is not invariant under automorphisms
in general (the point ζ0,1 plays a special role in its definition; any automorphism
that moves ζ0,1 will change the metric).

To conclude this section, we give another interpretation of the seminorm associated
to a point in P1,an

Cp that (contrary to the interpretation as the supremum norm on

the associated disk when applied to polynomials) also works for rational functions.
Consider first a point ξ = ζa,r of type 2. If f is a nonzero polynomial with roots
α1, . . . , αm in D(a, r), then for all α in the closed set D(a, r) \

⋃m
j=1 D(αj, r)

− we

have |f(α)|p = ‖f‖ξ. To see this, we can assume that a = 0 and f is monic. Write

f = (x− α1) · · · (x− αm)(x− αm+1) · · · (x− αn) ,

where αm+1, . . . , αn are the roots of f outside of D(0, r). Then

‖f‖ξ =
n∏
j=1

‖x− αj‖ξ =
n∏
j=1

|α− αj|p = |f(α)|p ,

since for j ≤ m, we have ‖x−αj‖ξ = r = |α−αj|p (here we use that α /∈ D(αj, r)
−),

and for j > m, we have ‖x − αj‖ξ = |αj|p = |α − αj|p. So |f |p is constant and
equal to ‖f‖ξ on D(a, r) outside a finite union of open disks contained in D(a, r).
We can apply this separately to the numerator and the denominator of a rational
function f = g/h ∈ Cp(x), which gives the same statement for such an f . So for
a type 2 point ξ = ζa,r, the induced seminorm ‖·‖ξ on Cp(x) is the absolute value
taken by any given function f ∈ Cp(x) on D(a, r) outside finitely many smaller
open disks (the set of disks to be removed depends on f); this is also the same as
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the absolute value taken on P1,an
Cp \D(a, r)− outside a finite union of smaller open

disks (one of which is the ‘exterior’ P1,an
Cp \ D(a, r)). Note that when considering

rational functions f as quotients of two homogeneous polynomials in Cp[X, Y ] of
the same degree, then ‖f‖ξ is independent of the choice of representative of the
equivalence class of seminorms corresponding to ξ (the scaling factor Cd cancels).

For a point ξ = a ∈ Cp of type 1, we have of course ‖f‖ξ = |f(a)|p unless a is a
pole of f (this also makes sense when a =∞, with f(∞) interpreted as the value
at zero of f(1/x)).

If ξ = ζa,r is of type 3, then we have to use a ‘limit version’ of the above. Since
r /∈ |C×p |, no two nonzero terms of the form rj|aj|p with aj ∈ Cp can be equal and

so we have ‖f‖ξ = maxj r
j|aj|p when f(x + a) = a0 + a1x + a2x

2 + . . . + anx
n is

a nonzero polynomial. If s ∈ |C×p | is sufficiently close to r, then all terms sj|aj|p
will still be pairwise distinct, hence for α ∈ Cp such that |α− a|p = s we will have
|f(α)|p = maxj s

j|aj|p, which is close to ‖f‖ξ. So for any given ε > 0 there is a
closed annulus A = D(a, r + δ) \D(a, r − δ)− such that

∣∣|f(α)|p − ‖f‖ξ
∣∣ ≤ ε for

all α ∈ A.

The general statement is as follows (see Section 2.4 in [BR]).

5.12. Lemma. Let ξ ∈ P1,an
Cp and denote the corresponding multiplicative semi- LEMMA

characteri-
zation
of ‖·‖ξ

norm on Cp(x) as usual by ‖·‖ξ. Then for every f ∈ Cp(x) (that does not have a
pole at ξ when ξ is of type 1) we have that ‖f‖ξ is the unique ν ∈ R≥0 such that for

every ε > 0 there is a closed neighborhood U of ξ in P1,an
Cp such that

∣∣|f(α)|p−ν
∣∣ ≤ ε

for all α ∈ P1(Cp)∩U . The set U can be taken to be a closed Berkovich disk minus
a finite union of open Berkovich disks.

Proof. Fix f . Since η 7→ ‖f‖η is continuous by definition of the Berkovich topology,
the set U = {η : |‖f‖η − ‖f‖ξ| ≤ ε} is a closed neighborhood of ξ. It contains
an open neighborhood of ξ (for example, the set obtained by replacing ‘≤ ε’ by
‘< ε’), which contains an open neighborhood V that is an open Berkovich disk
minus finitely many closed Berkovich disks. Then U contains the closure of V ,
which is the corresponding closed Berkovich disk minus the corresponding open
Berkovich disks. We can always make U smaller, so we can assume that U has
this form. Then

∣∣|f(α)|p−‖f‖ξ
∣∣ ≤ ε for α ∈ P1(Cp)∩U follows from the definition

of U . Since P1(Cp) ∩ U is dense in U , this property determines ‖f‖ξ to within ε.
Since ε > 0 was arbitrary, ‖f‖ξ is characterized by it. q

In a similar way as for Berkovich spaces associated to affine Cp-varieties, mor-
phisms between projective Cp-varieties induce continuous maps between the as-
sociated Berkovich spaces. For example, any rational function ϕ ∈ Cp(x) can be

considered as a morphism P1
Cp → P1

Cp and therefore induces a map P1,an
Cp → P1,an

Cp .

If ϕ is not constant (otherwise it is quite clear what happens), then it follows
from the discussion above that ϕ(ξ) = η for type 2 points ξ = ζa,r and η = ζa′,r′
if and only if ϕ maps a suitable set D(a, r) \

⋃
j D(aj, r)

− to a set of the form

D(a′, r′) \
⋃
j D(a′j, r

′). This can be helpful when one is trying to figure out what

ϕ is doing on P1,an
Cp .
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6. Analytic spaces and functions

In this section, we follow roughly part of Brian Conrad’s text [AWS, Chapter 1].

Recall that a K-Banach algebra (for a complete field K with absolute value) is
a K-algebra A with a (submultiplicative) norm |·|A that restricts to the absolute
value on K and such that A is complete with respect to this norm. So we have

|a|A 6= 0 for a 6= 0, |a+ b|A ≤ |a|A + |b|A and |ab|A ≤ |a|A · |b|A .
If K is non-archimedean, then |·|A also satisfies the ultrametric triangle inequality.

6.1. Definition. Let A be a K-Banach algebra; we write the norm on A as |·|A. DEF
bounded
multiplicative
seminorm

A multiplicative seminorm ‖·‖ on A is said to be bounded, if ‖f‖ ≤ |f |A for all
f ∈ A. ♦

We note that it is sufficient to require ‖f‖ ≤ C|f |A for some constant C > 0, since
this implies

‖f‖ = (‖fn‖)1/n ≤ (C|fn|A)1/n ≤ C1/n|f |A ;

we obtain ‖f‖ ≤ |f |A by letting n tend to infinity. So the notion of ‘bounded
multiplicative seminorm’ does not change when we replace the norm on A by
an equivalent one (i.e., one that is bounded below and above by some positive
multiple of |·|A).

6.2. Definition. Let A be a K-Banach algebra. The Berkovich space BerkA DEF
Berkovich
space
associated
to A

associated to A is the set of all bounded multiplicative seminorms on A, with the
weakest topology that makes the maps ‖·‖ 7→ ‖f‖ continuous for all f ∈ A. ♦

In a similar way as we did earlier, one shows the following.

6.3. Theorem. Let A be a K-Banach algebra. Then BerkA is a compact Haus- THM
BerkA is
compact and
Hausdorff

dorff space, which is empty if and only if A = {0}.

We note that one can define BerkA for any (commutative) ring A that is complete
with respect to some absolute value (a Banach ring); it does not have to be an
algebra over some complete field. One could take A = Z with the usual absolute
value, for example (completeness follows trivially, since every Cauchy sequence
must be eventually constant), or any ring with the trivial absolute value. It is an
instructive exercise to work out the structure of BerkZ!

From now on, K will be, as usual, a complete and algebraically closed non-
archimedean field, for example, K = Cp. There is an important class of K-Banach
algebras.

6.4. Definition. Let n ∈ Z>0 and r1, . . . , rn > 0. We define DEF
Tate
algebraK〈r−1

1 x1, . . . , r
−1
n xn〉 :=

{∑
i∈Zn≥0

aix
i : ri|ai| → 0 as |i| → ∞

}
⊂ K[[x1, . . . , xn]] .

Here we use multi-index notation: for i = (i1, . . . , in) we set xi = xi11 · · ·xinn and
ri = ri11 · · · rinn ; also |i| = i1 + . . .+ in. Then∣∣∣∑

i

aix
i
∣∣∣ := max

i
ri|ai|
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defines a multiplicative norm on A = K〈r−1
1 x1, . . . , r

−1
n xn〉 turning A into a K-

Banach algebra. We call A a Tate algebra over K when all rj ∈ |K×|, otherwise
A is a generalized Tate algebra over K.

More generally, if A is any K-Banach algebra, then we can define (generalized)
relative Tate algebras A〈r−1

1 x1, . . . , r
−1
n xn〉 in the same way. ♦

Note that by scaling the variables suitably, any Tate algebra in n variables is
isomorphic to the standard Tate algebra

K〈x1, . . . , xn〉 := K〈1−1x1, . . . , 1
−1xn〉 .

This is not true for generalized Tate algebras.

6.5. Example. We have BerkCp〈x〉 ∼= D(0, 1). The map is induced by the EXAMPLE
D(0, 1)inclusion Cp[x] ↪→ Cp〈x〉; the image consists of all seminorms on Cp[x] that are

bounded by the restriction of the norm on the Tate algebra to the polynomial
ring, which is exactly |·|1 = ‖·‖0,1. By definition, this set is D(0, 1). It also follows
easily from the definitions that the map induces a homeomorphism.

More generally, the same argument shows that BerkCp〈r−1x〉 ∼= D(0, r), for every
r > 0. We see that there is some kind of correspondence between type 2 points and
Tate algebras, and type 3 points and generalized Tate algebras. Quite explicitly, we
obtain Cp〈r−1x〉 as the completion of Cp[x] with respect to the norm corresponding
to ζ0,r. ♣

We state the following facts without proof.

6.6. Lemma. The Tate algebras over K are noetherian (every ideal is finitely LEMMA
Properties
of Tate
algebras

generated) unique factorization domains. They are also Jacobson rings (every
prime ideal is the intersection of the maximal ideals it is contained in). Every
ideal is closed.

The norm is intrinsically defined as |f | = maxφ |φ(f)|, where φ runs over all
continuous K-algebra homomorphisms to K.

The Tate algebra T = K〈r−1
1 x1, . . . , r

−1
n xn〉 has the following universal property.

Given any K-Banach algebra A and elements a1, . . . , an ∈ A with |aj|A ≤ rj, there
is a unique continuous K-algebra homomorphism φ : T → A with φ(xj) = aj.

Let A be a Tate algebra and I ⊂ A an ideal. Then by the above, I is closed.
Define a real-valued function on A/I by

|a+ I|A/I = inf{|a+ b|A : b ∈ I} .

6.7. Lemma. |·|A/I is a norm on A/I turning A/I into a Banach algebra such LEMMA
induced
norm

that the canonical homomorphism A→ A/I is continuous.

Proof. We have to show a number of things.

(1) |a+ I|A/I = 0 only for a ∈ I.

If |a + I|A/I = 0, then there is a sequence (bn) in I such that |a + bn|A → 0,
hence −bn → a. Since I is closed, this implies a ∈ I.

(2) |(a+ a′) + I|A/I ≤ max{|a+ I|A/I , |a′ + I|A/I}.
This follows easily from the definition.
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(3) |aa′ + I|A/I ≤ |a+ I|A/I · |a′ + I|A/I .
For b, b′ ∈ I we have |aa′ + I|A/I ≤ |(a + b)(a′ + b′)|A ≤ |a + b|A · |a′ + b′|A;
taking the infimum over all b and b′ yields the claim.

(4) A/I is complete.

Consider a Cauchy sequence (an + I) in A/I, so that |an+1 − an + I|A/I → 0.
Use the definition of |·|A/I to pick recursively a sequence (bn) in I with b0 = 0
such that |(an+1 + bn+1) − (an − bn)|A → 0. Then (an + bn) is a Cauchy
sequence in A; since A is complete, this sequence has a limit a. But then
|an − a+ I|A/I ≤ |(an + bn)− a|A → 0, so (an + I) converges to a+ I in A/I.

(5) A→ A/I is continuous.

This follows from |(a+ I)− (b+ I)|A/I ≤ |a− b|A. q

6.8. Definition. A K-Banach algebra A is a K-affinoid algebra if there is a DEF
affinoid
algebra
and domain

generalized Tate algebra T and a surjective K-algebra homomorphism φ : T → A
such that the norm of A is (equivalent to) the induced norm on T/ ker(φ) ∼= A. If
T can be taken to be a Tate algebra, then A is a strict K-affinoid algebra.

The space BerkA associated to a (strict) affinoid algebra is a (strict) affinoid
domain. ♦

Simple examples of affinoid domains are the closed Berkovich disks D(0, r), where
A is itself a (generalized) Tate algebra.

6.9. Example. Let 0 < r ≤ s. Then we can consider the algebra EXAMPLE
annuli

A = K〈s−1X, rX−1〉 :=
K〈s−1X, rY 〉
〈XY − 1〉

with its induced norm. Using the relation XY = 1, its elements can be written
uniquely as the image of a series of the form

∞∑
m=1

a−mY
m + a0 +

∞∑
n=1

anX
n

with sn|an| → 0 as n → ∞ and rm|am| → 0 as m → −∞. We can interpret this
(via Y = X−1 in A) as the Laurent series

∞∑
n=−∞

anX
n ;

the conditions on the coefficients then are equivalent to saying that this series
converges whenever we plug in some element α such that r ≤ |α| ≤ s. For K = Cp,
we see that via the map Cp[x] → A sending x to X, BerkA gets identified with
A(r, s) := D(0, s) \ D(0, r)−, which is a closed Berkovich annulus. ♣

Most of the structure of affinoid algebras is intrinsic. We state the following
without proof.
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6.10. Theorem. Let A be a K-affinoid algebra. THM
Properties
of affinoid
algebras

(1) Any two K-Banach algebra norms on A are equivalent. In particular, the
topology on A induced by the norm is intrinsic, and the same is true for notions
of boundedness.

(2) Any K-algebra morphism A′ → A from another K-affinoid algebra is contin-
uous (and hence a morphism of K-affinoid algebras).

There are more properties similar to those of algebras of finite type in algebraic
geometry. For example, if A is K-affinoid and A′ is a K-algebra that is a finitely
generated A-module, then A′ is also K-affinoid. Any K-affinoid algebra is a finitely
generated module over some Tate algebra (this corresponds to the Noether nor-
malization theorem).

One can then construct more general Berkovich K-analytic spaces by gluing affi-
noid domains. There are some technical issues here, because the gluing is along
compact ‘sub-affinoid domains’ and not along open sets as one does in algebraic
or differential geometry.

For example, for fixed s > 0 one can glue the closed disks of radius r < s via
the natural inclusions D(0, r) ⊂ D(0, r′) whenever r < r′ < s to obtain the
open disk D(0, s)−. In a similar way, one gets open annuli A(r, s)− (for r < s).
Considering the affine line as ‘the open disk of radius∞’, we obtain A1,an

Cp . We get

the projective line P1,an
Cp by gluing two closed disksD(0, 1) along the annulusA(1, 1)

as discussed in the last section.

We also have the following (see the exercises). As usual, R denotes the valuation
ring of K and k the residue field.

6.11. Theorem. Let A be a K-Banach algebra. Then THM
Reduction
map

A◦ =
{
a ∈ A : {|an|A : n ≥ 0} is bounded

}
is a closed subalgebra of A that contains (the image of) R and depends on the norm
of A only up to equivalence (and so is completely intrinsic when A is affinoid).
The set A◦◦ = {a ∈ A : an → 0} is an ideal of A◦, and the quotient Ã = A◦/A◦◦

is a k-algebra functorially associated to A. If A is strictly K-affinoid, then Ã is a
finitely generated k-algebra. If ‖·‖ ∈ BerkA, then the set {a ∈ A◦ : ‖a‖ < 1} is
a prime ideal of A◦ containing A◦◦; in this way we obtain a canonical reduction
map ρA : BerkA→ Spec Ã. If A is strictly K-affinoid, then ρA is anti-continuous:
preimages of closed sets are open and vice versa.

For example, taking A = Cp〈x〉, we find Ã = F̄p[x], and the reduction map sends

ζ0,1 to the generic point of A1
F̄p = Spec Ã and the points in the open Berkovich

disk D(α, 1)− (for α ∈ D(0, 1)) are mapped to the closed point ᾱ ∈ A1(F̄p). In
particular, we see that the preimage of a closed point is an open Berkovich disk,
and the preimage of the open set A1

F̄p \ S, where S is a finite set of closed points,

is the closed set D(0, 1) \
⋃
s∈S D(αs, 1)−, where αs ∈ D(0, 1) has image s.

6.12. Example. Let 0 < r < s be in |K×| and consider as before the algebra EXAMPLE
annuliA = K〈s−1X, rX−1〉. The induced norm on A is given by∣∣∣∑

n∈Z

anX
n
∣∣∣
A

= max
(
{rn|an| : n ≤ 0} ∪ {sn|an| : n ≥ 0}

)
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(this is because |XY | = s/r > 1, so the ‘smallest’ representative of 1 ∈ A =
K〈X, Y 〉/〈XY − 1〉 is 1). By choosing c, C ∈ K such that |c| = r and |C| = s and
scaling X and Y , we can write A as the quotient

A ∼= K〈X, Y 〉/〈XY − cC−1〉
of the standard two-variable Tate algebra T . From this it is fairly easy to see that

Ã = T̃ /〈XY 〉 = k[X, Y ]/〈XY 〉 ,
where k is the residue field. So Spec Ã is a union of two affine lines (corresponding
to X = 0 and Y = 0) meeting transversally in one point (X = Y = 0). Let
Γ = [ζ0,r, ζ0,s] ⊂ A(r, s). One can check that ρA maps ζ0,r ∈ A(r, s) to the generic
point of the line X = 0, ζ0,s to the generic point of the line Y = 0, points retracting
under τΓ to ζ0,r to the point on X = 0 corresponding to their tangent direction and
similarly for points retracting to ζ0,s, and all points retracting to any other point
of Γ (in the ‘open interval’ between the endpoints) to the point of intersection of
the two lines. ♣

The anti-continuity of the reduction map ρA implies that the gluing together of
strict affinoids along closed sub-affinoids induces a corresponding gluing of the
Spec Ã’s along open sets. For example, gluing two copies of D(0, 1) along A(1, 1)
to obtain P1,an

Cp corresponds to gluing to copies of A1
F̄p along A1\{0} (which is Spec Ã

for the annulus A(1, 1)), resulting in P1
F̄p in the usual way. The reduction maps

also glue, which in the example gives the map identifying the tangent directions
at ζ0,1 ∈ P1,an

Cp with P1(F̄p) and sending ζ0,1 to the generic point of P1
F̄p .

A given space can usually be obtained in many different ways by gluing. This can
result in different ‘special fibers’ (the glued spectra of the algebras Ã) and therefore
different reduction maps. For example, we can obtain P1,an

Cp also by gluing D(0, 1)

(via the inversion map) and D(0, 1/p) to A(1/p, 1) along the sub-annuli A(1, 1)
and A(1/p, 1/p). The special fiber of this object consists of two copies of P1

F̄p
meeting transversally in one point. It is obtained from the special fiber of the
annulus — two A1’s meeting in one point — by gluing an A1 to each of the lines
(along the complement of the intersection point). In a similar way, we can glue
together also more general affinoids (the most general of which is a closed disk
minus a finite union of open ones) to obtain a ‘model’ of P1,an

Cp . The skeleton
associated to such a model is the convex hull of the points mapping to generic
points of the special fiber; in the preceding example, this would be the interval
[ζ0,1/p, ζ0,1]. In general, it will be a finite sub-tree of P1,an

Cp with endpoints of type 2.

There is a converse to this, valid for general smooth projective irreducible curves C
over Cp: There is a bijective correspondence between finite subgraphs of BerkC
with vertices of type 2 and semistable models of C over the valuation ring R of Cp

(up to isomorphism), such that the vertices correspond to the generic points of
the special fiber of the semistable model under the reduction map.2

2M. Baker, S. Payne, J. Rabinoff, On the structure of non-Archimedean analytic curves.
Tropical and non-Archimedean geometry, 93–121, Contemp. Math., 605, Amer. Math. Soc.,
Providence, RI, 2013; arXiv: 1404.0279.
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7. Berkovich spaces of curves

In this section we will take a closer look at Berkovich spaces of (smooth projective
irreducible) curves over Cp. We begin with some lemmas. Let Tr = Cp〈r−1x〉 be
the univariate (generalized) Tate algebra with parameter r > 0.

7.1. Lemma. Let LEMMA
roots of
polynomials
over Tate
algebras

F (x, y) = Fn(x)yn + Fn−1(x)yn−1 + . . .+ F0(x) ∈ Tr[y]

be a polynomial such that there is δ < 1 with |F0|r ≤ δ, |1 + F1|r ≤ δ and
|Fj|r ≤ δ2−j for all j ≥ 2. Then there is h(x) ∈ Tr such that |h(0)|p < 1 and
F (x, h(x)) = 0.

Proof. The equation F (x, y) = 0 is equivalent to the fixed point equation

y = Ψ(y) := F0(x) + (1 + F1(x))y + F2(x)y2 + . . .+ Fn(x)yn .

For |y1|, |y2| ≤ δ we have

|Ψ(y2)−Ψ(y1)|r
= |y2 − y1|r
· |(1 + F1(x)) + F2(x)(y2 + y1) + . . .+ Fn(x)(yn−1

2 + yn−2
2 y1 + . . .+ yn−1

1 )|r
≤ max{|1 + F1|r, |F2|rδ, . . . , |Fn|rδn−1} · |y2 − y1|r
≤ δ · |y2 − y1|r .

Also,

|Ψ(y)|r ≤ max{|F0|r, |1 + F1|rδ, |F2|rδ2, . . .} ≤ δ

when |y|r ≤ δ. So Ψ defines a contracting map on {y ∈ Tr : |y|r ≤ δ}. The Banach
Fixed Point Theorem then gives us a unique solution. q

7.2. Lemma. Let F (x, y) ∈ Tr[y] be monic of degree n such that F (0, y) ∈ Cp[y] LEMMA
étale
covering
of disk

has no multiple roots. Then there is 0 < r′ ≤ r and there are h1, . . . , hn ∈ Tr′ such
that F (x, y) = (y − h1(x)) · · · (y − hn(x)).

Proof. Let η1, . . . , ηn ∈ Cp be the n distinct roots of F (0, y). By assumption,
βj := F ′(0, ηj) 6= 0 (where F ′ denotes the derivative of F as a polynomial in y).

Let F̃j(x, y) := −β−1
j F (x, y + ηj) Note that F̃j has no constant term and that

the coefficient of y is −1. So, writing F̃j(x, y) = f0(x) + f1(x)y + . . . and setting
γ = max{|f0|r, |1 + f1|r, |f2|r, . . .}, we have for every 0 < r′ ≤ r that

|f0|r′ ≤ γr′/r , |1 + f1(x)|r′ ≤ γr′/r and |fm|r′ ≤ γ for m ≥ 2.

Now pick λ ∈ C×p with |λ|p ≤ γ−1 and set

˜̃Fj(x, y) = λ−1F̃j(x, λy) = λ−1f0(x) + f1(x)y + λf2(x)y2 + . . . ;

we have |λ−1f0|r′ ≤ |λ|−1
p γr′/r, |1+f1|r′ ≤ γr′/r and |λm−1fm|r′ ≤ |λ|m−1

p γ ≤ γ2−m

for m ≥ 2. Fix 0 < δ < 1 such that δ ≤ γ−1. With r′ = rmin{1, |λ|pγ−1δ, γ−1δ}
the assumptions of Lemma 7.1 are then satisfied for ˜̃Fj, so (translating back to
the original coordinates) there is hj ∈ Tr′ with hj(0) = ηj and F (x, hj(x)) = 0.
We can take r′ so that it works for all j; we then obtain n distinct roots of F
in Tr′ . q
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I think that one can take any r′ ≤ r here such that F (ξ, y) has no multiple roots
for all ξ ∈ Cp with |ξ|p ≤ r′, at least when p > n, but so far I have found no proof
for this more precise statement. We will see below that it is true when n = 2 and
p > 2.

7.3. Example. The example F (x, y) = y2 − y + x over C2 shows that the EXAMPLE
necessity
of ‘p > n’

condition p > n is necessary in general. The two roots of F are

h1 =
1−
√

1− 4x

2
= x+ x2 + 2x3 + 5x4 + 14x5 + . . . =

∞∑
n=1

1

n

(
2n− 2

n− 1

)
xn

and h2 = 1 − h1. The coefficients are integers, but the coefficient of x2n is odd
for all n, so the coefficients of the series are bounded but do not tend to zero
2-adically. This means that h1, h2 ∈ Tr for all r < 1, but not for r = 1. On
the other hand, the discriminant of F is 1 − 4x, which does not vanish even for
|x|2 < 4. This seems to be some issue related to ‘wild ramification’. ♣

7.4. Theorem. Let C be a smooth projective irreducible curve over Cp and let THM
coverings
of P1

φ : C → P1 be a morphism of degree n. Then the induced map φ∗ : C
an → P1,an

has fibers of size at most n.

Proof. Let ζ ∈ P1,an be some point; we can assume without loss of generality that
ζ 6= ∞. The statement is clear when ζ is a type 1 point, so we consider ζ not
of type 1; in particular, the seminorm on Cp[x] associated to ζ is a norm. The
point ζ also corresponds to a homomorphism Cp[x] → H into a complete field H
with absolute value such that the absolute value pulls back to the seminorm given
by ζ and the image of Cp[x] in H generates a dense subfield. Let K be the
function field of C; we have an inclusion Cp(x) ⊂ K, which is a field extension
of degree n. Then H ⊗Cp(x) K is an algebra over H of degree n, which splits as
a direct product of finite field extensions of H (whose degrees sum to n). There
is a unique extension of the absolute value of H to each of these fields, which by
pulling back to K (and then restricting to the affine coordinate ring A of φ−1(A1))
give rise to the various multiplicative (semi)norms on A extending ‖·‖ζ . So the
fiber φ−1

∗ (ζ) has as many points as there are fields in the splitting of H⊗Cp(x) K;
this number is at most n. q

This basically shows that we can glue together Can from n copies of P1,an. If the
statement above on the choice of r′ is true and p > n, then it follows that φ∗ can
be branched (i.e., have fibers of size < n) only above points in the convex hull of
the type 1 points corresponding to branch points of φ. This might be true even
when this statement is wrong; in any case it would mean that Can deformation
retracts to a finite graph that is glued from n copies of a tree (= the convex hull
of the branch points).

We now consider hyperelliptic curves in more detail. We assume that p > 2. First
we need two elementary lemmas.

7.5. Lemma. Let f(x) ∈ Tr with |f |r < 1. Then there is h(x) ∈ Tr with |h|r < 1 LEMMA
square
roots

such that 1 + f(x) = (1 + h(x))2.

More generally, the same result applies to any complete ring R in place of Tr as
long as |2|R = 1 and 2 ∈ R×.
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Proof. We want a root h of F (x, y) = −1
2
y2 − y + 1

2
f(x) with |h− 1|r < 1. Since

|2|p = 1 and |f |r < 1, we can directly apply Lemma 7.1. The more general
statement follows in the same way. q

7.6. Lemma. Let H be the completion of the field of fractions of Tr. Then x is LEMMA
x not a
square

not a square in H.

Proof. First consider the case that r ∈ |C×p |. Then we can assume r = 1, since

Tr is isomorphic to T1 and the isomorphism only scales x. Assume that x = z2

is a square in H. Since the field of fractions of T1 is dense in H, there must be
a, b ∈ T1 such that |z−a/b| is small, which implies that |a(x)2−xb(x)2| � |b(x)|2.
We can scale a and b so that |b| = 1; then also |a| ≤ 1. Looking at the reductions,
we must have that a(x)2 − xb(x)2 reduces to zero in F̄p[x], but this is impossible,
since the first term has even degree and the second term is nonzero and has odd
degree.

To deal with arbitrary r, we can enlarge Cp to obtain a field K (that is again
complete and algebraically closed) such that r ∈ |K×|. Then the argument above
shows that x is not even a square in a larger field. q

The preceding lemma can be generalized: if f ∈ T ◦1 has reduction in F̄p[x] that is
not a square, then f is not a square in H. Conversely (assuming p is odd as we
do here), one can show using Lemma 7.5 that when the reduction of a polynomial
f ∈ Cp[x] ∩ T ◦1 is a nonzero square, then f is a square in H. See the exercises.

A hyperelliptic curve C of genus g over Cp can be glued together from two affine
pieces, the plane curves

y2 = f2g+2x
2g+2 + f2g+1x

2g+1 + . . .+ f1x+ f0

and

Y 2 = f0X
2g+2 + f1X

2g+1 + . . .+ f2g+1X + f2g+2

with the identifications xX = 1 and Y = Xg+1y; we assume that the polynomial
f(x) =

∑
j fjx

j has no multiple roots and degree at least 2g + 1. If we assume

that f2g+2 6= 0, then C → P1
x is unbranched above infinity, so we can restrict our

attention to the first affine patch. We denote the double cover C → P1 given by
the x-coordinate by π, and we denote by Θ the set of branch points in P1(Cp) (i.e.,

the roots of f), which we also consider as type 1 points of P1,an
Cp .

7.7. Lemma. Let ζ = ζ0,r ∈ A1,an be of type 2 or 3. We have a natural partition LEMMA
branching
of π

of Θ into finitely many nonempty subsets Θv (indexed by the tangent direction v
in which the points in Θv are visible). Then π−1

∗ (ζ0,r) consists of two points if all
subsets Θv have even cardinality, and of one point otherwise.

Proof. If r /∈ |C×p | (then ζ is of type 3), then there are just two tangent directions,

which we denote 0 and∞. Otherwise we select one point a ∈ P1(Cp) representing
each occurring tangent direction different from ‘up’ and write Θa for the corre-
sponding subset (and Θ∞ for the subset of roots ξ such that |ξ|p > r). Then we
can write

f(x) = c
∏
ξ∈Θ∞

(
1− x

ξ

)
·
∏
a

(
(x− a)#Θa

∏
ξ∈Θa

(
1− ξ − a

x− a

))
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with some c ∈ C×p . By Lemma 7.5 (note that |x/ξ|r < 1 when |ξ|p > r) each factor
1− x/ξ in the first product is a square in Tr. Now let H be the completion of the
field of fractions of Tr. Then for ξ ∈ Θa, we have |ξ − a|p < r and |x − a|r = r,
so (ξ − a)/(x − a) ∈ H has absolute value < 1, so 1 − (ξ − a)/(x − a) is also a
square in H using Lemma 7.5 again. Since Cp is algebraically closed, c is of course
also a square. So f(x) is a square in H times

∏
a(x− a)#Θa . By Lemma 7.6 and

the remark following it, it follows that the latter and hence f(x) is a square in H
if and only if all exponents #Θa are even (if ζ is of type 3, then we only need
that x is not a square; if ζ is of type 2, we can assume that r = 1). On the other
hand, the degree 2 algebra over H induced by π is H[y]/〈y2 − f(x)〉. This is a
field if and only if f(x) is not a square in H; otherwise it splits as a product of
two copies of H (by the Chinese Remainder Theorem). Since the number of fields
in the product decomposition of this algebra is the number of points in the fiber
of π∗ above ζ, this completes the proof. q

7.8. Corollary. Let p > 2 and let C : y2 = f(x) be a hyperelliptic curve COR
hyperelliptic
Berkovich
curve

over Cp with hyperelliptic double cover π : C → P1. Then the induced double
cover π∗ : C

an → P1,an is branched exactly above points ζ such that there is at least
one tangent direction at ζ that points to an odd number of roots of f . In particular,
branching only occurs along the convex hull T of the branch points of π (i.e., the
roots of f) considered as points of type 1, and Can can be obtained by gluing two
copies of P1,an along parts of T .

Proof. Let ζ ∈ P1,an. If ζ /∈ T , then there is some Berkovich disk D(a, r) con-
taining ζ such that D(a, r) does not contain branch points of π. The proof of
Lemma 7.7 in the case that Θ = Θ∞ (or also Lemma 7.5 directly) then shows that
f(x+a) is a square in Cp〈r−1x〉, which implies that π∗ is unramified above D(a, r)
and in particular above ζ. So branching can only occur along T ; in particular, no
branching occurs at points of type 4 (which is consistent with the statement, since
there is only one tangent directions in which all 2g+2 branch points can be seen).
For points ζa,r ∈ T not of type 1, the statement on branching is Lemma 7.7 (after
shifting x by a). For the points ζ of type 1, the statement is clear — note that
when ζ is a branch point of π, then one can see the other 2g + 1 branch points in
the unique tangent direction; otherwise one sees all 2g + 2 branch points in this
direction. q

Since P1,an deformation retracts to T , we see that Can will deformation retract to
what is obtained by gluing two copies of the tree T along the set of points that
partition the set of branch points (which are the leaves of T ) into subsets at least
one of which has an odd number of elements. For simplicity, let us say that a
vertex or edge of T is even, if the partition of the leaves it induces results in sets
with even cardinality, and odd otherwise. We will consider leaves as odd vertices.
Then the edge connecting a leaf to its adjacent vertex is always odd, so (as long
as there is at least one non-leaf vertex of T ) at the cost of another deformation
retraction, we can remove these edges from the graph obtained by gluing the trees.
We can continue this process as long as there are terminal odd edges (and at least
one vertex remains). In particular, we see that Can can be contracted to a point
(and so is simply connected) if and only if all edges are odd (equivalently, the
branch locus is all of T ). Otherwise we can find two odd vertices connected by a
chain of even edges and vertices, and the gluing produces a circle, so the resulting
space is not simply connected.



§ 7. Berkovich spaces of curves 43

7.9. Examples. The simplest case is when g = 0 (strictly speaking, a double EXAMPLES
double
covers of P1,an

cover of P1 is a hyperelliptic curve only when g ≥ 2, but we can consider them
also for g = 0 or g = 1). Up to a change of coordinates, we can take f(x) = x;
then the branch locus in P1(Cp) consists of the two points 0 and∞. Their convex
hull T is simply the arc connecting the two (it consists of all points ζ0,r for r ≥ 0
together with ∞). So as a tree, T has two leaves connected by an odd edge. By
the remarks above, Can is simply connected, which is no surprise, since C ∼= P1.
In the sketches below, P1(Cp) is symbolized by the circle and P1,an by the disk it
encloses; odd vertices and edges of T are red and even ones (which do not exist
here) are green.

0

∞

The next case is when g = 1; it is a bit more interesting. We have four branch
points; by a change of coordinates, we can move three of them to 0, 1, ∞. Then
f(x) = x(x − 1)(x − λ) for some λ ∈ Cp \ {0, 1}. There are four automorphisms
of P1 that fix a set of four points, but there are 24 ways of selecting the three
points that are mapped to 0, 1, ∞, so each curve C arises from (in general) six
different choices of λ. If λ is one of them, then the others are

1− λ , 1

λ
, 1− 1

λ
,

1

1− λ
and

λ

λ− 1
.

In particular, we can assume that |λ|p ≤ 1. There are now two cases.

If |λ|p = |1 − λ|p = 1, then the four branch points lie in four different tangent
directions at ζ0,1, since the reduction λ̄ ∈ P1(F̄p) is distinct from (the reductions of)
0, 1, ∞. So the tree T has one inner vertex of degree 4 and four edges connecting
it to the four leaves. In particular, all vertices and edges are odd, and Can is
simply connected. In this case C is an elliptic curve with good reduction.

In the second case, we can assume (perhaps after replacing λ by 1 − λ) that
|λ|p < 1. Then at ζ0,1, we see one branch point each when looking to ∞ or 1,
but we see two (namely 0 and λ) when looking to 0. We get a similar partition
at ζ0,|λ|p , which is now {0}, {λ}, {1,∞}. So T has the two (odd) inner vertices ζ0,1

and ζ0,|λ|p , each of degree 3, there is one (even) edge connecting them, and each of
the two vertices has two more (odd) edges connecting them to two of the branch
points (1 and∞, resp., 0 and λ). Gluing two copies of T along the odd edges and
vertices then gives a graph that looks like T with the central edge doubled. This
double edge forms a circle to which everything else can be retracted. Its length in
the big metric is twice the length of the edge, so it is 2vp(λ), which is the same as
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−vp(j(C)), where j(C) is the j-invariant of the elliptic curve C, given by

j(C) = 28 (λ2 − λ+ 1)3

λ2(1− λ)2
.

In any case, Can is not simply connected; its fundamental group is that of the circle,
so ∼= Z. Taking the universal covering space ‘unwraps’ the circle and replaces
it by a line; the universal covering C̃an of Can is Gan

m = P1,an \ {0,∞}. (Gm

denotes the multiplicative group; its affine coordinate ring is Cp[x, x
−1] and its

Cp-points are Gm(Cp) = C×p .) Tate has shown (using different language) that the
covering map Gan

m → Can is actually a group homomorphism and that the group of
deck transformations is generated by ‘multiplication by q’, where q ∈ C×p satisfies
|q|p < 1. Pulling back the coordinate functions to Gm gives an explicit analytic
uniformization C(Cp) ∼= C×p /qZ that is similar in spirit to the uniformization

over the complex numbers: C(C) ∼= C/(Z + Zτ) ∼= C×/qZ, where the second
isomorphism is induced by z 7→ e2πiz and q = e2πiτ , with τ ∈ C in the upper
half-plane (so |q| < 1).

ζ0,1

0

∞

1

λ

ζ0,1

ζ0,|λ|

0

∞

1

λ

Left: |λ|p = |1− λ|p = 1, right: |λ|p < 1. ♣
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8. Integration

In this final section we want to consider integration on Berkovich spaces. The
goal is to have a ‘reasonable’ way of associating to a closed 1-form ω (meaning
that dω = 0) on an analytic space X and a path γ : [0, 1] → X whose endpoints
are ‘type 1 points’ (i.e., they correspond to seminorms whose kernel is a maximal
ideal, so functions can be evaluated at such points to give a value in Cp) an integral∫

γ

ω ∈ Cp .

By ‘reasonable’, we mean that this integral has the properties we expect from such
a notion, for example:

(1) Linearity in the 1-form.

∫
γ

(α1ω1 + α2ω2) = α1

∫
γ

ω1 + α2

∫
γ

ω2

for α1, α2 ∈ Cp and ω1, ω2 closed 1-forms on X.

(2) Additivity on paths.

∫
γ1+γ2

ω =

∫
γ1

ω +

∫
γ2

ω

when γ1(1) = γ2(0) and γ1 + γ2 is the path obtained by traversing first γ1 and
then γ2.

(3) Fundamental theorem of calculus.

∫
γ

df = f(γ(1))− f(γ(0))

when f is a function on X.

(4) Change of variables.

∫
γ

φ∗ω =

∫
φ◦γ

ω

when φ : Y → X is a morphism, γ is a path in Y and ω is a closed 1-form
on X.

(5) Homotopy invariance.

∫
γ1

ω =

∫
γ2

ω

when γ1 and γ2 are homotopic with fixed endpoints. (This includes invariance
under orientation-preserving re-parameterization of the path.)

We note that Property (3) uniquely determines the integral when X = D(0, 1)−

is an open disk, since then any 1-form on X has the form ω = f(t) dt where
f(t) =

∑∞
n=0 ant

n converges on D(0, 1)−, and

f(t) dt = d
∞∑
n=1

an−1

n
tn ,

where the series on the right converges, too (since for 0 ≤ r < 1 we have that
rn/|n|p ≤ nrn → 0). So every 1-form is exact and Property (3) applies. The same
is true for open Berkovich ‘poly-disks’ (which are the analytic spaces associated
to a product of open disks in Cp), when we deal with higher-dimensional spaces.

As a more interesting example, let us consider the logarithm, which should be
defined on X = Gan

m = P1,an \ {0,∞} by the integral

log x =

x∫
1

dt

t
.
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Recall that Gan
m is simply connected, so by Property (5) the integral depends only

on the endpoints and not on the path (which is basically unique here anyway). If
|x− 1|p < 1, then we can apply Property (3) using Property (4) for the inclusion
D(1, 1)− ⊂ Gan

m ; this leads to the usual expression

log(1 + z) = z − z2

2
+
z3

3
∓ . . . =

∞∑
n=1

(−1)n−1 z
n

n
for |z|p < 1.

We can do the same within any open disk not containing zero; using Property (2)
this gives us

log
(
a(1 + z)

)
= log a+ log(1 + z) for a ∈ C×p , |z|p < 1.

The question then is, how to fix the values of log a when |a− 1|p ≥ 1?

If we use another important property of the logarithm, namely its functional equa-
tion

log(xy) = log x+ log y ,

then this determines log on the subgroup R× = {a ∈ C×p : |a|p = 1}: If a ∈ R×,
then there is a root of unity ζ ∈ R× such that |a−ζ|p < 1. The functional equation
forces us to set log ζ = 0, so

log a = log ζ + log(ζ−1a) = log(1 + z)

with |z|p = |ζ−1a − 1|p < 1. Note that the functional equation follows from the
properties an integral should have:

log(xy) =

xy∫
1

dt

t

(2)
=

x∫
1

dt

t
+

xy∫
x

dt

t

(4)
=

x∫
1

dt

t
+

y∫
1

dt

t
= log x+ log y ,

where we use that dt/t is invariant under the scaling map t 7→ xt.

This does not tell us, however, how to define log p, say. In fact, it turns out that
we can give log p an arbitrary value λ, but then log is indeed uniquely determined
as

log(upv) = log u+ vλ for |u|p = 1, v ∈ Q.

We can take λ = 0, or (at the other extreme) treat λ as an indeterminate and
consider our integrals to have values in Cp[λ]. We write logλ for the ‘branch of the

logarithm’ with logλ p = λ.

As it turns out, fixing λ already fixes the integral. The following was proved by
Berkovich [Ber, Thm. 9.1.1].

8.1. Theorem. If we fix λ, then there is a unique integral satisfying properties THM
Existence
and
uniqueness
of integral

(1) to (5) and

(6)

p∫
1

dt

t
= λ.

(In fact, Berkovich does more: he defines sheaves of functions on X that allow for
iterated integration.)
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8.2. Example. Consider the open Berkovich annulus A = A(r, R)−. In a similar EXAMPLE
Integral
on an
annulus

way as for an open disk, the analytic functions on A can be written as Laurent
series

f(t) = . . .+ a−3t
−3 + a−2t

−2 + a−1t
−1 + a0 + a1t+ a2t

2 + . . . =
∞∑

n=−∞

ant
n

that converge for all τ ∈ Cp such that r < |τ |p < R. Then f(t) dt = dg(t)+a−1dt/t
where

g(t) =
∑
n6=0

an−1

n
tn

is again an analytic function on A. Recall that A is simply connected, so integrals
depend only on the endpoints. If τ1, τ2 ∈ Cp satisfy r < |τj|p < R, then we obtain

τ2∫
τ1

f(t) dt =

τ2∫
τ1

(
dg(t) + a−1

dt

t

)
(1)
=

τ2∫
τ1

dg(t) + a−1

τ2∫
τ1

dt

t

(3,4,6)
= g(τ2)− g(τ1) + a−1 logλ

τ2

τ1

.

Here we use the change of variables formula for the map A→ Gan
m that multiplies

by τ−1
1 and (6). So if we want the integral to be well-defined (i.e., independent of

the choice of λ), we need a−1 = 0, so that f(t) dt = dg(t) is exact. ♣

8.3. Example. Consider an elliptic curve E over Cp (say, p > 2, but this is EXAMPLE
Integral
on Tate
ell. curve

not really necessary) such that vp(j(E)) < 0. Then (as Tate has shown) there is
q ∈ C×p such that |q|p < 1 and E(Cp) ' C×p /qZ; the latter extends to a covering

map π : Gan
m → Gan

m /q
Z ' Ean that exhibits Gan

m as the universal covering of Ean

(recall that Gan
m is simply connected). Let 0 6= ω ∈ Ω1(E) be a regular (and

therefore invariant) differential on E and let γ : [0, 1] → Ean be the closed path
that is the image under π of the (unique) path from 1 to q in Gan

m . Then π∗ω is
an invariant differential on Gm, so π∗ω = α dt/t for some α ∈ C×p . Then∫

γ

ω
(4)
=

q∫
1

α
dt

t

(1)
= α

q∫
1

dt

t

(6)
= α logλ q .

There is a unique λ ∈ Cp such that logλ q = 0; if we choose this value, then
integrals over ω on E will not depend on the path. But this will not work for
two Tate curves simultaneously when their q parameters are not multiplicatively
dependent. So we cannot avoid the path-dependence of the integral. In particular,
there will not be a function f (in the sense of Berkovich’s integration theory) on
all of Ean such that df = ω. This is somewhat analogous with the situation over C,
where there is no holomorphic function f on C× such that df = dz/z. ♣

There is a different kind of integral that one can define on elliptic curves, and more
generally, abelian varieties over Cp. We will do this here for regular (= invariant)
1-forms, but the theory can be extended to arbitrary algebraic 1-forms on analytic
spaces associated to algebraic varieties, see [Col].

This is similar to the standard logarithm, which is related to the group structure
on the multiplicative group Gm. Let ω be an invariant 1-form on an abelian
variety A over Cp (for example, an elliptic curve). There is an open (and closed)
neighborhood U of the origin 0 ∈ A(Cp) that is a subgroup and analytically
isomorphic to an open polydisk D. Every closed 1-form is exact on an open
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polydisk, so we obtain a function logω : U → Cp that satisfies logω x =
∫ x

0
ω

for x ∈ U . By the same argument as before, logω is a homomorphism on U .
Contrary to Gm, A is projective, which implies that A(Cp)/U is a torsion group
(every element has finite order), so in this case there is a unique extension of logω
to all of A(Cp) as a group homomorphism logω : A(Cp) → Cp: if x ∈ A(Cp) is
arbitrary, then there is some n ∈ Z≥1 such that nx ∈ U ; we must then have
logω x = (logω(nx))/n (and this does not depend on the choice of n with nx ∈ U).
We define, for ω as above and x, y ∈ A(Cp),

Ab

y∫
x

ω = logω y − logω x .

Then this integral satisfies Properties (1), (2) and (4) for abelian varieties and in-
variant differentials, where in (4) we only consider morphisms as varieties (which
are morphisms as abelian varieties composed with a translation). This integral
depends only on the endpoints and does not involve a choice of path, so Prop-
erty (5) is trivially satisfied. We can extend it to (the Berkovich spaces associated
to) arbitrary smooth projective varieties and closed regular 1-forms as follows. Let
V be such a variety and let A be its Albanese variety; write [y − x] for the image
of (y, x) under the Albanese map V × V → A. Fixing x0 ∈ V , set α : V → A,
x 7→ [x − x0]. Then if ω is a closed regular 1-form on V , there is an invariant
1-form ωA on A such that α∗ωA = ω (this does not depend on the choice of x0); in
fact, α∗ gives a canonical isomorphism of the space of invariant 1-forms on A with
the space of closed regular 1-forms on V . We then define the ‘abelian integral’ as

Ab

y∫
x

ω =
Ab

[y−x]∫
0

ωA = logωA [y − x] .

It satisfies (1), (2), and (4) for morphisms of varieties. If one extends it to arbitrary
algebraic closed 1-forms as in [Col], then it also satisfies (3) (for a suitable class of
functions) and (6). Also this more general integral depends only on the endpoints,
not on a path between them. This makes it clear that it differs from Berkovich’s
integral, which in general does depend on the chosen path.

(This does not contradict the uniqueness statement in Theorem 8.1, because
the abelian integral is restricted to algebraic objects and morphisms, whereas
Berkovich’s theorem talks about integration for analytic 1-forms, spaces and maps.)

The abelian integral has some useful applications, which derive from the following
easy result. The rank of an abelian group G is defined as rkG = dimQG⊗Z Q, or DEF

rankequivalently, the maximal number of elements of G that are linearly independent
over Z (rkG :=∞ if this number is unbounded).

8.4. Theorem. Let A be an abelian variety over Cp and let Γ ⊂ A(Cp) be a THM
1-forms
killing Γ

subgroup of rank rk Γ = r < g = dimA. Then there are at least g − r linearly
independent (over Cp) invariant 1-forms ω such that logω γ = 0 for all γ ∈ Γ.

Proof. Write Ω1(A) for the Cp-vector space of invariant 1-forms on A. This space
has dimension g = dimA. The map

Ω1(A)× A(Cp) −→ Cp, (ω, x) 7−→ logω x
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is Cp-linear in ω and Z-linear in x. Let γ1, . . . , γr ∈ Γ be Z-linearly independent;
then for each γ ∈ Γ there are integers m > 0 and m1, . . . ,mr such that

(8.1) mγ = m1γ1 + . . .+mrγr .

Now let V ⊂ Ω1(A) be the subspace given by

V = {ω ∈ Ω1(A) : logω γj = 0 for j = 1, . . . , r} .

Since we are imposing r linear conditions, we have dimCp V ≥ g − r. The rela-
tion (8.1) then implies that logω γ = 0 for all γ ∈ Γ. So any Cp-basis of V does
what is required. q

8.5. Corollary. Let C be a curve of genus g > 0 defined over a number field K, COR
killing
rational
points on
a curve

with Jacobian variety J . Let P0 ∈ C(K); denote by i the associated embedding
C → J sending P0 to the origin. Let Kv be the completion of K at some p-
adic place v. If rk J(K) = r < g, then there are at least g − r > 0 Kv-linearly
independent 1-forms ω on C over Kv such that

Ab

P∫
P0

ω = 0 for all P ∈ C(K).

Proof. We apply Theorem 8.4 and its proof to Γ = J(K) ⊂ J(Kv) ⊂ J(Cv). If we
restrict to 1-forms defined over Kv, the proof goes through as before, working with
vector spaces over Kv instead of over Cp. This gives us ω1, . . . , ωg−r ∈ Ω1(J/Kv)
such that logωj x = 0 for all j and all x ∈ J(K). Pulling back 1-forms induces an

isomorphism between Ω1(J/Kv) and Ω1(C/Kv), and we have for any j and any
P ∈ C(K)

Ab
P∫

P0

i∗ωj =
Ab

i(P )∫
0

ωj = logωj i(P ) = 0 ,

so i∗ω1, . . . , i
∗ωg−r do what we want. q

We would like to obtain a uniform bound for the number of points in C(K). The
following result allows us to reduce to disks and annuli.

8.6. Lemma. Let C and Kv be as above. Then there is a finite collection of LEMMA
partition
of C(/Kv)

analytic maps φm : D(0, 1)− → Can and ψn : A(ρn, 1)− → Can with ρn ∈ |Kv|×
(where Can is defined with respect to Kv ⊂ Cp) defined over Kv such that

C(Kv) =
⋃
m

φm
(
D(0, 1)− ∩Kv

)
∪
⋃
n

ψn
(
A(ρn, 1)− ∩Kv

)
,

and the number of the φm and the ψn each are bounded in terms of g and Kv only.

Proof. See [Sto, Prop. 5.3]. The numer of annuli is ≤ 3g − 3, and the number of
disks is in O(qg), where q is the size of the residue field of Kv. q
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Write Dm = φm(D(0, 1)− ∩Kv) and An = ψn(A(ρn, 1)− ∩Kv). It then suffices to
bound #

(
C(K) ∩Dm

)
and

(
C(K) ∩ An

)
for each m and n. Let V ⊂ Ω1(C/Kv)

be the space of regular 1-forms that kill C(K) as in Corollary 8.5. Then

C(K) ∩Dm ⊂
{
P ∈ Dm :

Ab

P∫
P0

ω = 0
}

for every ω ∈ V , and similarly for An. For a disk Dm we have for τ ∈ Kv with
|τ |p < 1

Ab

φm(τ)∫
P0

ω =
Ab

φm(0)∫
P0

ω +
Ab

φm(τ)∫
φm(0)

ω =
Ab

φm(0)∫
P0

ω +

τ∫
0

φ∗mω =: h(τ)

(on a disk there is no difference between the two integrals; this comes from the
definition of logω on U by formal integration of power series on the polydisk D).
Let π be a uniformizer of Kv (i.e., |π|p < 1 and generates the value group of Kv).
Then the number of zeros of h in Kv ∩D(0, 1)− ⊂ D(0, |π|p) is bounded in terms
of the number of zeros of φ∗mω in D(0, 1)− and |π|p (see Exercises). The number of
zeros of φ∗mω in D(0, 1)− is the same as the number of zeros of ω in φm(D(0, 1)−),
which is at most the total number of zeros of ω, which in turn is 2g−2. This gives
us a bound for #(C(K) ∩ Dm) that only depends on g and Kv (via |π|p). Since
the total number of disks Dm is bounded in terms of g and Kv, we get a bound
on the total number of K-points of C contained in some Dm that only depends
on g and Kv.

For annuli, the situation is more complicated. There is the following theorem that
compares the two integrals on an annulus.

8.7. Theorem. Fix a Kv-defined analytic map ψ : A(ρ, 1)− → Jan. There is a THM
comparison
of integrals
on annuli

linear form α : Ω1(J/Kv)→ Kv such that for any x, y ∈ A(ρ, 1)− we have

y∫
x

ψ∗ω −
Ab

ψ(y)∫
ψ(x)

ω = α(ω)
(
vp(y)− vp(x)

)
for all ω ∈ Ω1(J/Kv).

Proof. See [Sto, Prop. 7.3] or [KRZB, Prop. 3.29]. q

If r ≤ g − 3, then for each annulus An there will be at least one 0 6= ω ∈ V such
that ψ∗nω is exact and α(ω) = 0 (note that α depends on the annulus), since this
imposes two linear conditions. If ψ∗nω = dh is exact, then we can again bound the
number of zeros of h in Kv ∩ A(ρn, 1)− ⊂ A(ρn/|π|p, |π|p) in terms of g and Kv,
under some additional assumption (the ‘relevant’ range of exponents in the Laurent
series representation of h includes 0), which can be shown to always hold (this is
done in [Sto, Cor. 6.7] for hyperelliptic curves and in [KRZB, Lemma 4.15] in
general). This finally leads to the following result.
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8.8. Theorem. Fix d ≥ 1 and g ≥ 3. There is some B = B(d, g) depending only THM
uniform
bound on
rational
points

on d and g such that for any number field K with [K : Q] ≤ d and any curve C of
genus g over K, with Jacobian J such that rk J(K) ≤ g−3, we have #C(K) ≤ B.

Proof. We can assume that C(K) 6= ∅; let P0 ∈ C(K) and use it as the base-point
for an embedding i : C → J as in Corollary 8.5. Fix some prime p; there are then
only finitely many possibilities (up to isomorphism) for the completion Kv at a
p-adic place v. Let B(d, g) be the maximum of the bounds for C(K) obtained by
the reasoning above for g and each Kv. The claim follows. q

For K = Q, one can write down explicit bounds. For hyperelliptic curves (which
allow for quite explicit computations) a possible bound is

#C(Q) ≤ 33(g − 1) +

{
1 if r = 0 (and g ≥ 3),

8rg − 1 if 1 ≤ r ≤ g − 3,

where r = rk J(Q), see [Sto, Thm. 9.1] (this works with Q3). In the general case,
one obtains a bound of the shape O(g2), see [KRZB, Thm. 5.1]. For arbitrary d,
one still has a bound of the shape Od(g

2), but the implied constant depends
exponentially on d.
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