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News Alert

On Wednesday, Peter Bruin, Maarten Derickx and I,
motivated by Daeyeol Jeon’s talk, proved the following.

Theorem.
Up to the action of Gal(Q̄/Q), there is exactly one elliptic curve E
defined over a cyclic cubic extension K of Q
such that E is not defined over Q and E(K) contains a point of order 13.

The curve E is

y2 + (1− r)xy− sy = x3 − sx2 ,

where

r =
6α2 + 50α− 208

32 · 132
and s =

10α2 + 90α− 1936

32 · 133

and α3 − α2 − 82α+ 64 = 0 (disc(K) = (13 · 19)2; K = 3.3.61009.1).



And now for something completely different . . .



Introduction

Consider, for λ ∈ C \ {0, 1}, the Legendre elliptic curve

Eλ : y
2 = x(x− 1)(x− λ) .

For α ∈ C \ {0, 1}, let Pλ(α) ∈ Eλ be a point with x-coordinate α and define

T(α) = {λ ∈ C \ {0, 1} : Pλ(α) ∈ Eλ(C) is torsion} .

Then T(α) is a countably infinite set
consisting of elements algebraic over Q(α).

Now consider α,β ∈ C \ {0, 1} with α 6= β and set T(α,β) = T(α) ∩ T(β).

Question.
What can we say about T(α,β)?



Known Results

There are three cases:

• α and β are algebraic.
• trdegQ

(
Q(α,β)

)
= 1.

• α and β are algebraically independent. Then T(α,β) = ∅.

Masser and Zannier showed that T(2, 3) is finite
and then proved the following more general result.

Theorem (Masser and Zannier).
T(α,β) is always finite; when trdegQ

(
Q(α,β)

)
= 1, this is effective.

Goals of this talk:
(1) Get effectivity for some algebraic α,β.
(2) Get optimal result for transcendence degree 1.
(3) Use this to get more information on the algebraic case.



Structure of T(α)

In C, T(α) is all over the place,
reflecting the fact that Etors is dense in E(C):

This shows T40(2), where Tn(α) = {λ ∈ T(α) : Pλ(α) ∈ Eλ has order ≤ n}.



Aside

DeMarco, Wang and Ye show
that there is actually a limiting distribution µα
and that µα 6= µβ when α 6= β.



Aside

DeMarco, Wang and Ye show
that there is actually a limiting distribution µα
and that µα 6= µβ when α 6= β.

So when T(α,β) is infinite,
we can approximate both µα and µβ with the same sequence of points,
implying µα = µβ and therefore α = β.

This gives an alternative proof of the Masser-Zannier result.



Structure of T(α), p-adically

Fix a prime p.
In contrast to the situation over C, Etors is discrete in E(Cp).
This translates into T(α) being discrete in Cp \ {0, 1}.

Since T(α) moves continuously with α,
we can show that T(α,β) is empty if α and β are p-adically close:

Proposition.
Let α,β ∈ Cp with 0 < |α(α− 1)|p ≤ 1 and 0 < |β− α|p < |α(α− 1)|p |p|

2/(p−1)
p .

Then T(α,β) = ∅.

We also get that T(α,β) = ∅ when |α|p < |p|
2/(p−1)
p and |β− 1|p < |p|

2/(p−1)
p .

There are slightly better results when p = 2.



Application

If α ∈ Z, then there are only finitely many β ∈ Z \ {0, 1} with T(α,β) 6= ∅.

Example.
Consider α = 2 and β ∈ Z \ {0, 1}.
We will see in a moment that T(2, β) = ∅ when β is odd.
From the above, we get that T(2, β) = ∅ when
β− 2 is divisible by 8, 9 or a prime p ≥ 5.
This leaves only β = −10,−4,−2, 4, 6, 8, 14.

It turns out that the sets T(2, β) for these β can all be determined explicitly
with the methods discussed later in this talk.

We obtain that T(2, β) = ∅ except for β ∈ {−2, 4}

and that T(2,−2) = T(2, 4) = {4}.



Idea for Effectivity

If we can show that T(α) ⊂ Cp is sufficiently localized,
then we get a handle on T(α,β) when α and β are not p-adically close.

Easy Lemma.
For α, λ ∈ Cp \ {0, 1} the following are equivalent:

• λ ∈ T(α).
• λ = α, or ψn(λ, α) = 0 for some n ≥ 3,
where ψn(λ, x) is the nth division polynomial of Eλ.

• α is preperiodic for the Lattès map fλ : x 7−→ (x2 − λ)2

4x(x− 1)(x− λ)
on P1.

(This point of view was used by Mavraki.)



2-adic Localization

We look specifically at p = 2. |·| denotes the 2-adic absolute value.

It is easy to see that T(1/α) = {1/λ : λ ∈ T(α)}, so we can assume that |α| ≤ 1.
Then for all λ ∈ T(α), we have |λ| ≤ 1 as well
(as can be seen from the division polynomials or from the Lattès map).

If |λ| ≤ 1 and x ∈ C2 has |x| > 1, then |fλ(x)| = 4|x|,
and x cannot be preperiodic.

So if λ ∈ T(α), we must have that λ = α (⇐⇒ fλ(α) =∞) or |fλ(α)| ≤ 1.
The latter means |λ− α2|2 ≤ |4α(α− 1)(α− λ)| ≤ |4|, which says that

λ ≡ α2 mod 2 .

Corollary. T(2, 3) = ∅.



A Slightly More Precise Result

Note that we have

λ ∈ T(α) ⇐⇒ fλ(α) ∈ {0, 1, λ,∞} or λ ∈ T(fλ(α)) .

The first condition is

λ ∈ S(α) :=
{
α,α2, α(2− α), α2

2α−1

}
.

We can easily show that for |α| ≤ 1 (similarly for |α| > 1),

T(fλ(α)) ⊂ R(α) := {α2 + 2uα(1− α) : u ∈ C2, |u2 − α| < 1} .

So if R(α) ∩ R(β) = ∅, then we can determine T(α,β):

T(α,β) ⊂ S(α) ∪ S(β) .

This will be the case when α and β are 2-adically sufficiently distinct.



Examples

The result applies to show the following.

• T(2, 3) = ∅.
• T(2, 4) = {4}.
• T(3,−3) = {−3, 9}.
• T(ω,ω2) = {ω,ω2}, where ω is a primitive cube root of unity.

Let µ be the set of all roots of unity.
Then #(T(α) ∩ µ) ≤ 3 for all α, and

#(T(α) ∩ µ) = 3 ⇐⇒ α ∈ µ and ord(α) ∈ {3, 6, 12} .



Further Refinement

We can extend this line of argument.
Assume that |α|, |β| ≤ 1 and that λ ∈ T(α,β).
Then the x-coordinate of any point mPλ(α) + nPλ(β) with m,n ∈ Z
must be either infinite or of absolute value ≤ 1.

This translates into conditions of the form

p(λ) = 0 or |p1(λ)| ≤ |p2(λ)|

for certain polynomials p, p1, p2.

If, for some choice of pairs (m,n),
the conditions of the second type are contradictory,
then we have effectively bounded T(α,β) by a finite set.



More Examples

• T(−3, 9) =
{
9,−275

}
(with (m,n) = (6, 0), (0, 4)).

• T
(
−3
5 ,

9
5

)
=
{
9
25,−

27
5

}
(with (m,n) = (4, 0), (0, 6)).

• T
(
9
25,

9
5

)
=
{
9
25,

189
125

}
(with (m,n) = (2, 0), (0, 3)).

Not successful so far for:

• T
(
−275 ,−

3
5

)
(another representative in Q×Q with #T50 = 2).

• T
(
−35,

9
25

)
(the essentially only rational pair with #T50 = 3).

Question.
Can we always determine T(α,β) in this way?



Transcendence Degree 1

Assume that trdegQ
(
Q(α,β)

)
= 1

and let F ∈ Z[a, b] be irreducible such that F(α,β) = 0.
Assume that λ ∈ T(α,β). Then(

λ = α or ∃n ≥ 3 : ψn(λ, α) = 0
)

and
(
λ = β or ∃n ≥ 3 : ψn(λ, β) = 0

)
.

Eliminating λ, we see that F divides
ψn(a, b) or ψn(b, a) or Rn(a, b) := Rest(ψn(t, a), ψn(t, b))/(a− b)degtψn(t,x),
for some n ≥ 3.

Proposition 1.
For all n ≥ 3, the polynomial ψn(a, b)ψn(b, a)Rn(a, b) is squarefree in Q[a, b].

Sketch of proof. Write the possible b near a = 0 as Puiseux series in a
(using Tate parameterization) and check that they are distinct.



Result

Let, for n ≥ 3, Cn be the curve in P1a × P1b given by

ψn(a, b)ψn(b, a)Rn(a, b) = 0

and let C =
⋃
nCn be the filtered union (by divisibility) of the Cn.

By Proposition 1, C is reduced.
This implies that each component of C corresponds
to a family of triples (α,β, λ) with λ ∈ T(α,β), where λ is unique.
This gives

Proposition 2.
Let α,β ∈ C \ {0, 1} with α 6= β. Then
#T(α,β) ≤ the number of branches of C passing through (α,β).



Consequences

• If (α,β) /∈ C, then T(α,β) = ∅.
This applies when α and β are algebraically independent.

• If (α,β) is a smooth point on C, then #T(α,β) ≤ 1.
This applies when trdegQ

(
Q(α,β)

)
= 1 and T(α,β) 6= ∅.

• If #T(α,β) ≥ 2, then (α,β) is a singular point on a component of C
or an intersection point of two or more components of C.

If F = 0 describes a component of C, we can bound n in terms of deg F.
This gives effectivity in the trdeg = 1 case.
Note that we have to know F: we can’t say whether T(e, π) is empty or not!

(Masser and Zannier show #T(α,β) ≤ 6(12deg F)32 when trdeg = 1.)



Computations

We have computed all F ∈ Q[a, b] giving irreducible components of C
satisfying degab F := dega F+ degb F ≤ 192.

Based on this,
we computed all singularities on components with (degab F)

2 ≤ 384
and all intersections of components with (degab F1)(degab F2) ≤ 384.
We then computed T50(α,β) = T50(α) ∩ T50(β) for these points (α,β),
leading to > 2 · 106 pairs with #T50(α,β) ≥ 2.

558 of these have #T50(α,β) ≥ 3 (with all torsion orders ≤ 18),
15 of these have #T50(α,β) ≥ 4,
and 3 of these have #T50(α,β) = 5; a representative is (i,−i) with

T100(i,−i) = {−1, 3± 2
√
2, 13 ±

2
3

√
−2} .



Conjectures

Conjecture 1.
T(i,−i) = {−1, 3± 2

√
2, 13 ±

2
3

√
−2}.

Conjecture 2 (Uniform boundedness).
#T(α,β) is uniformly bounded (perhaps by 5).

Conjecture 3 (Finiteness).
There are only finitely many (α,β) with #T(α,β) ≥ 3.

Conjecture 4 (Bounded height).
The height of (α,β) such that #T(α,β) ≥ 2 is uniformly bounded.

Conjecture 5 (Bounded degree).
There is a uniform bound for

[
Q(α,β, λ) : Q(α,β)

]
when λ ∈ T(α,β).

The bound might even be 2.

Conjecture 5 would imply effectivity of T(α,β).



Heights

This shows the (symmetrized) heights h of pairs (α,β) with #T(α,β) ≥ 2,
ordered according to the degree d of Q(α,β).
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Thank You!


