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Diophantine m-Tuples

Definition.

A (rational) Diophantine m-tuple is an m-tuple (ay,...,am)
of distinct nonzero integers (rational numbers)

such that aja;+ 1 is a square for all 1 <i<j<m.

Examples.
(1,3,8,120) is a Diophantine quadruple (found by Fermat):

1.3+41=22 1-8+1=3% 1-120+1=117
3.841=5% 3-120+1=19% 8-120+1 =317

In fact, this is just the case t =2 in the family
(t—T1,t+1,4t,4t(4t* — 1))

of Diophantine quadruples.

(See Andrej Dujella’s homepage for exhaustive information.)



A Diophantine Problem

Consider a given rational Diophantine quadruple (ay, ay, az, as),
for example Fermat's quadruple (1,3,8,120).

Problem.
Find all rational numbers asg
such that (a7, ay, a3, a4, as) is a rational Diophantine quintuple.

Fact.
We can always take (the ‘“regular extensions’)

(a1+ay+az+ag)(ajapazag+1)+2(ajaraz+ajaras+ajazas+ayazag)+2s
(ajazazas—1)°

a5 = Z4 = )

where s = \/(a1a2 + 1) (ajaz+ 1) (ajag + 1) (a3 + 1) (aras + 1)(azag + 1)
(unless z+ €10, ap, ap, as, a4}).
Are there more possibilities in our concrete case?



Extending Fermat’'s Quadruple

For all quadruples in the family shown before, we have z =0,
so there is only one regular extension.

For Fermat’s quadruple (1,3,8,120), this is z, = JJZI8

We will show that this is the only extension.

Any extension z € Q* gives rise to a bunch of rational points on the curve

z+1=uf, 3z+1=13, 8z+1=uj 120z+1=1].

This curve has genus 5, so there are only finitely many solutions.

With x = uy, this gives x* +119 = 120uf, x* + 39 =40u3, x* + 14 = 15u3, hence
y? =5(x% +119)(x% + 39) (x> + 14)

with y = 600ujuus.



Rational Points on a Curve of Genus 2

The curve
C:y? =5(x% +119)(x% + 39) (x* + 14)

has genus 2. We want to find its rational points.

A search turns up points with x-coordinates +1 and i%:

> P<x> := PolynomialRing(Rationals());

> C := HyperellipticCurve(5*(x~2+119)*(x~2+39)*(x~2+14));

> ptsC := Points(C : Bound := 10°5); ptsC;

{@ (-1 : -600 : 1), (-1 : 600 : 1), (1 : -600 : 1), (1 : 600 : 1),
(-10079 : -22426285104600 : 2879), (-10079 : 22426285104600 : 2879),
(10079 : -22426285104600 : 2879), (10079 : 22426285104600 : 2879) @}

_ _ /77480
They correspond to z=0 and z = S988 AT



Standard Chabauty Does not Work

T he differences of the points we found

generate a subgroup of rank 2 in the Mordell-Weil group of C
(which actually does have rank 2 itself),

so the standard version of Chabauty’s method does not apply.

> bas := ReducedBasis([pt - ptsC[1] : pt in ptsC]l); bas;
[ (x2 - 1, 600, 2), (x°2 - 1, 600*x, 2) ]

> J := Jacobian(C);

> RankBound (J) ;

2

(“"Quadratic Chabauty” would apply here, since C is bielliptic.)

So we need to do something else.



wo-Cover Descent

We compute the “fake 2-Selmer set” SeI](ca)Ke(C) of C.

> Sel, mSel := TwoCoverDescent(C);

> #Sel;

2

> A<th> := Domain(mSel) ;

> Sel eq {mSel(x0 - th) : x0 in {1,-1}};
true

The last line verifies that the points (4+1,4600) account for all of Sel](ca)ke(C).
So if (&,1) € C(Q), then (for one choice of sign and some a € Q%)

LU € aQ(V=TI9)Y, E3 e a@(v=39)2, £ € aQ(v—14) 2

The automorphism x — —x of C swaps the two elements,
hence it suffices to consider one of them. We take the image of (1,+600).



An Elliptic Curve

Recall that we have (w.l.0.9.)

LVl € aQVETT9 Y, BV e aQv=39)Y, BV € aQIVETH .

This implies in particular that there is Tt € K = @(\/—119, v/—39) such that
=151 — vV=119)(1 — v=39) - (§% + 14)(& — V—119)(& — vV—39)

so we get a K-rational point with rational X-coordinate
on the elliptic curve

E: Y2 =15(1 —vV—=119)(1 — vV—=39) - (X2 + 14)(X — V—119)(X — vV—39).
This is the setting for Elliptic Curve Chabauty.



Elliptic Curve Chabauty

We want to find all points (&, 1) € E(K) with & € Q.
This works when rank E(K) < [K: Q] = 4.

K := AbsoluteField(ext<Rationals() | x~2 + 119, x~2 + 39>);

w119 := Roots(x~2 + 119, K)[1,1]; w39 := Roots(x~2 + 39, K)[1,1];

PK<X> := PolynomialRing(K) ;

E := HyperellipticCurve(15*(1-w119)*(1-w39)*(X~2+14)*(X-w119)*(X-w39));
EE, EtoEE := EllipticCurve(E, E![1, 15*%(1-w119)*(1-w39)]);
Invariants(TorsionSubgroup(EE)); Invariants(TwoSelmerGroup(EE)) ;

2 ]

2, 2, 2 1]

bas := Saturation(ReducedBasis([EtoEE(pt) : pt in Points(E, 10079/2879)]), 7); #bas;

MW := AbelianGroup([2,0,0]);

MWmap := map<MW -> EE | m :-> &+[s[il*bas[i] : i in [1..3]] where s := Eltseq(m)>;
P1 := ProjectiveSpace(Rationals(), 1);

pi := Expand(Inverse(EtoEE)*map<E -> P1 | [E.1, E.3]>);

chab := Chabauty(MWmap, pi : IndexBound := 2%3%5%7);

{pi(MWmap(pt)) : pt in chab}l};

(1 : 1), (10079/2879 : 1) }

~ VvV VVVVVWVmMmsme/,)Y VYV YV VY

This finishes the proof.



What is Going on Here?

Given a Diophantine quadruple (ay, ay, a3, a4), the equations

a1z+1:u%, a2z+1:u%, a3z+1:u§, a4z+1:uﬁ

define (after homogenising via 1 :u% and eliminating z)
a diagonal curve X c P* of genus 5:

(a4—a1)u%— a4u% + a1uﬁ:O
(ag — az)u% — a4u% + (Jtzuf1 =0
(ag — a3)u(2) — a4u§ + aguﬁ =0

Eliminating u; gives a double cover X — F; with F; of genus 1.
Eliminating u; and u; gives a degree 4 map X — Qi with a conic Q.



Isogeny and 2-Torsion

4
There is a “Richelot-type isogeny” ¢: Jac(X) — | [ Jac(Fy).
i—0

Its kernel is ker ¢ ~ (Z/ZZ)5; all points are defined over Q.
So we can easily compute the @-Selmer set Sel@(X).

The kernel gives us 31 distinct étale double covers At — Jac(X),
which we can pull back to étale double covers Y — X.

30 of these have a nice explicit description.
For each & & Sel@(X) there is a twist Yyg — X;
each point P € X(Q) lifts to one of these twists (same & for all T).

The Prym variety of Y1z — X is (generically) the Weil restriction
of an elliptic curve Eyg over a biquadratic field K.

There are morphisms YT,& — ET,& and ET,& P

whose composition is defined over Q.

In this setting, Elliptic Curve Chabauty can be used to find YT,a(@)-



“Algorithm”

Given a diagonal genus 5 curve X with X(Q) # 0:
1. Compute S = Sel?(X).
2. For each & e S (modulo action of Aut(X)) do:

2a. Find 0 # T € ker ¢ such that
e E1:(Ky) can be determined (up to finite index), and
e rank ET,E(KT) < 4.
2b. Apply Elliptic Curve Chabauty to find Y7(Q)
and its image X(Q); in X(Q).

3. If Step 2 was successful, then X(Q) = Aut(X U X(@Q
&eS

(This extends and improves on recent work by Gonzales-Jiménez.)



Further Results

We have applied this “algorithm” to quadruples from the family

(t— Tyt + 1,41, 4t(4t% — 1))

(where +t £ 0, 1,%, %, }1).

In this way, we could show that the regular extension is the only one for

2 3 3 4 1 2 3 5 4
t:2(see above), 3, 3 D 4, 4 3 Jy 5y 5y 5 4 § -

(For t = 3, there is a second “illegal” extension besides 0
> 2 2
given by 2, which is already present. Note that ()" +1=(%)".)
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