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Diophantine m-Tuples

Definition.
A (rational) Diophantine m-tuple is an m-tuple (a1, . . . , am)

of distinct nonzero integers (rational numbers)
such that aiaj + 1 is a square for all 1 ≤ i < j ≤ m.

Examples.
(1, 3, 8, 120) is a Diophantine quadruple (found by Fermat):

1 · 3+ 1 = 22, 1 · 8+ 1 = 32, 1 · 120+ 1 = 112

3 · 8+ 1 = 52, 3 · 120+ 1 = 192, 8 · 120+ 1 = 312

In fact, this is just the case t = 2 in the family(
t− 1, t+ 1, 4t, 4t(4t2 − 1)

)
of Diophantine quadruples.

(See Andrej Dujella’s homepage for exhaustive information.)



A Diophantine Problem

Consider a given rational Diophantine quadruple (a1, a2, a3, a4),
for example Fermat’s quadruple (1, 3, 8, 120).

Problem.
Find all rational numbers a5
such that (a1, a2, a3, a4, a5) is a rational Diophantine quintuple.

Fact.
We can always take (the “regular extensions”)

a5 = z± =
(a1+a2+a3+a4)(a1a2a3a4+1)+2(a1a2a3+a1a2a4+a1a3a4+a2a3a4)±2s

(a1a2a3a4−1)
2 ,

where s =
√

(a1a2 + 1)(a1a3 + 1)(a1a4 + 1)(a2a3 + 1)(a2a4 + 1)(a3a4 + 1)

(unless z± ∈ {0, a1, a2, a3, a4}).

Are there more possibilities in our concrete case?



Extending Fermat’s Quadruple

For all quadruples in the family shown before, we have z− = 0,
so there is only one regular extension.

For Fermat’s quadruple (1, 3, 8, 120), this is z+ = 777 480
8 288 641

.
We will show that this is the only extension.

Any extension z ∈ Q× gives rise to a bunch of rational points on the curve

z+ 1 = u21, 3z+ 1 = u22, 8z+ 1 = u23, 120z+ 1 = u24 .

This curve has genus 5, so there are only finitely many solutions.

With x = u4, this gives x2 + 119 = 120u21, x
2 + 39 = 40u22, x

2 + 14 = 15u23, hence

y2 = 5(x2 + 119)(x2 + 39)(x2 + 14)

with y = 600u1u2u3.



Rational Points on a Curve of Genus 2

The curve

C : y2 = 5(x2 + 119)(x2 + 39)(x2 + 14)

has genus 2. We want to find its rational points.

A search turns up points with x-coordinates ±1 and ±10 079
2 879

:

> P<x> := PolynomialRing(Rationals());
> C := HyperellipticCurve(5*(x^2+119)*(x^2+39)*(x^2+14));
> ptsC := Points(C : Bound := 10^5); ptsC;
{@ (-1 : -600 : 1), (-1 : 600 : 1), (1 : -600 : 1), (1 : 600 : 1),
(-10079 : -22426285104600 : 2879), (-10079 : 22426285104600 : 2879),
(10079 : -22426285104600 : 2879), (10079 : 22426285104600 : 2879) @}

They correspond to z = 0 and z = 777 480
8 288 641

.



Standard Chabauty Does not Work

The differences of the points we found
generate a subgroup of rank 2 in the Mordell-Weil group of C
(which actually does have rank 2 itself),
so the standard version of Chabauty’s method does not apply.

> bas := ReducedBasis([pt - ptsC[1] : pt in ptsC]); bas;
[ (x^2 - 1, 600, 2), (x^2 - 1, 600*x, 2) ]
> J := Jacobian(C);
> RankBound(J);
2

(“Quadratic Chabauty” would apply here, since C is bielliptic.)

So we need to do something else.



Two-Cover Descent

We compute the “fake 2-Selmer set” Sel
(2)
fake(C) of C.

> Sel, mSel := TwoCoverDescent(C);
> #Sel;
2
> A<th> := Domain(mSel);
> Sel eq {mSel(x0 - th) : x0 in {1,-1}};
true

The last line verifies that the points (±1,±600) account for all of Sel(2)fake(C).
So if (ξ, η) ∈ C(Q), then (for one choice of sign and some a ∈ Q×)

ξ−
√
−119

±1−
√
−119

∈ aQ(
√
−119)×2, ξ−

√
−39

±1−
√
−39
∈ aQ(

√
−39)×2, ξ−

√
−14

±1−
√
−14
∈ aQ(

√
−14)×2

The automorphism x 7→ −x of C swaps the two elements,
hence it suffices to consider one of them. We take the image of (1,±600).



An Elliptic Curve

Recall that we have (w.l.o.g.)

ξ−
√
−119

1−
√
−119

∈ aQ(
√
−119)×2, ξ−

√
−39

1−
√
−39
∈ aQ(

√
−39)×2, ξ−

√
−14

1−
√
−14
∈ aQ(

√
−14)×2 .

This implies in particular that there is τ ∈ K = Q(
√
−119,

√
−39) such that

τ2 = 15(1−
√
−119)(1−

√
−39) · (ξ2 + 14)(ξ−

√
−119)(ξ−

√
−39) ,

so we get a K-rational point with rational X-coordinate
on the elliptic curve

E : Y2 = 15(1−
√
−119)(1−

√
−39) · (X2 + 14)(X−

√
−119)(X−

√
−39) .

This is the setting for Elliptic Curve Chabauty.



Elliptic Curve Chabauty

We want to find all points (ξ, τ) ∈ E(K) with ξ ∈ Q.
This works when rank E(K) < [K : Q] = 4.

> K := AbsoluteField(ext<Rationals() | x^2 + 119, x^2 + 39>);
> w119 := Roots(x^2 + 119, K)[1,1]; w39 := Roots(x^2 + 39, K)[1,1];
> PK<X> := PolynomialRing(K);
> E := HyperellipticCurve(15*(1-w119)*(1-w39)*(X^2+14)*(X-w119)*(X-w39));
> EE, EtoEE := EllipticCurve(E, E![1, 15*(1-w119)*(1-w39)]);
> Invariants(TorsionSubgroup(EE)); Invariants(TwoSelmerGroup(EE));
[ 2 ]
[ 2, 2, 2 ]
> bas := Saturation(ReducedBasis([EtoEE(pt) : pt in Points(E, 10079/2879)]), 7); #bas;
3
> MW := AbelianGroup([2,0,0]);
> MWmap := map<MW -> EE | m :-> &+[s[i]*bas[i] : i in [1..3]] where s := Eltseq(m)>;
> P1 := ProjectiveSpace(Rationals(), 1);
> pi := Expand(Inverse(EtoEE)*map<E -> P1 | [E.1, E.3]>);
> chab := Chabauty(MWmap, pi : IndexBound := 2*3*5*7);
> {pi(MWmap(pt)) : pt in chab};
{ (1 : 1), (10079/2879 : 1) }

This finishes the proof.



What is Going on Here?

Given a Diophantine quadruple (a1, a2, a3, a4), the equations

a1z+ 1 = u
2
1, a2z+ 1 = u

2
2, a3z+ 1 = u

2
3, a4z+ 1 = u

2
4

define (after homogenising via 1 = u20 and eliminating z)
a diagonal curve X ⊂ P4 of genus 5:

(a4 − a1)u
2
0 − a4u

2
1 + a1u

2
4 = 0

(a4 − a2)u
2
0 − a4u

2
2 + a2u

2
4 = 0

(a4 − a3)u
2
0 − a4u

2
3 + a3u

2
4 = 0

Eliminating ui gives a double cover X→ Fi with Fi of genus 1.
Eliminating ui and uj gives a degree 4 map X→ Qij with a conic Qij.



Isogeny and 2-Torsion

There is a “Richelot-type isogeny” ϕ : Jac(X) → 4∏
i=0

Jac(Fi).

Its kernel is kerϕ ' (Z/2Z)5; all points are defined over Q.
So we can easily compute the ϕ̂-Selmer set Selϕ̂(X).

The kernel gives us 31 distinct étale double covers AT → Jac(X),
which we can pull back to étale double covers YT → X.

30 of these have a nice explicit description.
For each ξ ∈ Selϕ̂(X) there is a twist YT,ξ → X;
each point P ∈ X(Q) lifts to one of these twists (same ξ for all T).

The Prym variety of YT,ξ → X is (generically) the Weil restriction
of an elliptic curve ET,ξ over a biquadratic field KT .
There are morphisms YT,ξ → ET,ξ and ET,ξ → P1

whose composition is defined over Q.

In this setting, Elliptic Curve Chabauty can be used to find YT,ξ(Q).



“Algorithm”

Given a diagonal genus 5 curve X with X(Q) 6= ∅:

1. Compute S = Selϕ̂(X).

2. For each ξ ∈ S (modulo action of Aut(X)) do:

2a. Find 0 6= T ∈ kerϕ such that
• ET,ξ(KT ) can be determined (up to finite index), and
• rank ET,ξ(KT ) < 4.

2b. Apply Elliptic Curve Chabauty to find YT,ξ(Q)

and its image X(Q)ξ in X(Q).

3. If Step 2 was successful, then X(Q) = Aut(X) ·
⋃
ξ∈S

X(Q)ξ.

(This extends and improves on recent work by Gonzáles-Jiménez.)



Further Results

We have applied this “algorithm” to quadruples from the family(
t− 1, t+ 1, 4t, 4t(4t2 − 1)

)
(where ±t 6= 0, 1, 12,

1
3,
1
4).

In this way, we could show that the regular extension is the only one for

t = 2 (see above), 3, 23,
3
2, 4,

3
4,

4
3, 5,

1
5,

2
5,

3
5,

5
4,

4
5 .

(For t = 3
5, there is a second “illegal” extension besides 0

given by 12
5 , which is already present. Note that

(
12
5

)2
+ 1 =

(
13
5

)2.)



Thank You!


