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he Problem

Let C' be a (geometrically integral) curve defined over Q.
(We take Q for simplicity; we could use an arbitrary number field instead.)

Problem.
Determine C'(Q), the set of rational points on C'!

Since a curve and its smooth projective model
only differ in a computable finite set of points,
we will assume that C is smooth and projective.

The focus of this talk is on the practical aspects,
in the case of genus > 2.



he Structure of the Solution Set

The structure of the set C(Q) is determined by the genus g of C.
(“Geometry determines arithmetic”)

o g=20:
Either C(Q) = 0, or if Py e C(Q), then C = PL.
The isomorphism parametrizes C'(Q).
e g—=1:
Either C(Q) =0, or if Py € C(Q), then (C, Fy) is an elliptic curve.
In particular, C(Q) is a finitely generated abelian group.
C'(Q) is described by generators of the group.
o > 2.
C'(Q) is finite.
C'(Q) is given by listing the points.



Genus Zero

A smooth projective curve of genus O
is (computably) isomorphic to a smooth conic.

Conics (' satisfy the Hasse Principle:
If C(Q) =0, then C(R) =0 or C'(Qy) = for some prime p.

We can effectively check this condition:
we only need to check R and Q, when p divides the discriminant.
For a given p, we only need finite p-adic precision.

(Note: we need to factor the discriminant!)

At the same time, we can find a point in C(Q), if it exists.
Given Py € C(Q), we can compute an isomorphism P — C.



Genus One

The Hasse Principle may fail.

If we can’'t find a rational point, but C has points “everywhere locally",
we can try (n-)coverings.

Coverings can be used to show that C'(Q) is empty,
or they can help find a point Py € C(Q).

In practice, this is feasible only in a few cases:

e y2 = quartic in z and n = 2;
e intersections of two quadrics in P3 and n = 2;
e plane cubics and n = 3 (current PhD project).



Elliptic Curves

Now assume that we have found a rational point Py on C.
Then (C, Py) is an elliptic curve, which we will denote FE.

We know that E(Q) is a finitely generated abelian group;
the task is now to find explicit generators.

The hard part is to determine the rank r = dimg £(Q) ®7 Q.

Computation of the n-Selmer group of E gives an upper bound on r.
This n-descent is feasible for n =2,3,4.8;, n = 9 is current work.

A search for independent points gives a lower bound on r.
However, generators may be very large. Descent can help find them.
When » = 1, Heegner points can be used.



Higher Genus — Finding Points

Now consider a curve C of genus g > 2.
The first task is to decide whether C has any rational points.

If there is a rational point, we can find it by search.
Unlike the genus 1 case, we expect points to be small:

Conjecture (A consequence of Vojta's Conjecure: Su-Ion Ih).
If C — B is a family of higher-genus curves, then there is Kk such that

He(P) < Hp(b)" for all P e C,(Q)
if the the fiber C, is smooth.



Examples

Consider a curve
C’:y2=f6l'6+°"‘|‘f1$‘|‘f0

of genus 2, with fj c 7.
Then the conjecture says that there are v and x such that
the z-coordinate p/q of any point P € C(Q) satisfies

Pl lal < v max{[fol; /1], -, [fel}" -

Example (Bruin-St).
Consider curves of genus 2 as above such that f; € {-3,-2,...,3}.

If C' has rational points,
then there is one whose z-coordinate is p/q with [p|,|q| < 1519.

We will call these curves small genus 2 curves.



Local Points

If we do not find a rational point on C,
we can check for local points (over R and Q).
We have to consider primes p that are small or sufficiently bad.

Example (Poonen-St).
About 84—85 % of all curves of genus 2 have points everywhere locally.

Conjecture.
0 % of all curves of genus 2 have rational points.

So in many cases, checking for local points will not suffice
to prove that C(Q) = 0.

Example (Bruin-St).
Among the 196 171 isomorphism classes of small genus 2 curves,
there are 29 278 that are counterexamples to the Hasse Principle.



Coverings

To resolve these cases, we can use coverings.

Example.
Consider C:y?2 =g(z)h(x) with degg, degh not both odd.
Then D :u? = g(x), v2 = h(z)

is an unramified Z/2Z-covering of C.
Its twists are D, :du” = g(z), dv? = h(z), deQ*/(QX)?.

Every rational point on C' lifts to one of the twists,
and there are only finitely many twists
such that D, has points everywhere locally.



Example

Consider the genus 2 curve

C:y?=-(@?+2-1)@*+°+2°+2+2) = f(z).

C' has points everywhere locally

(f(0) =2, f(1) =-6, f(-2) =-3-22, f(18) € (Q3)?, f(4) € (Q3)?).

The relevant twists of the obvious Z/2Z-covering are among
du2=—x2—as—|-1, dv2=a:4—|—:133—|—:r;2—|—x—|—2

where d is one of 1,—-1,19,—-19. (The resultant is 19.)
If d <0, the second equation has no solution in R;
if d=1 or 19, the pair of equations has no solution over 3.

So there are no relevant twists, and C'(Q) = 0.



Descent

More generally, we have the following result.

Descent Theorem (Fermat, Chevalley-Waell, ...).
Let DL C be an unramified and geometrically Galois covering.

T
Its twists Dy SO are parametrized by ¢ € H1(Q,G)
(a Galois cohomology set), where GG is the Galois group of the covering.

We then have the following:
e C(Q= | J 7 (De(@).
(e (Q,G)

o Sel™(C) :={¢ € HY(Q,G) : D¢ has points everywhere locally}
is finite (and computable). This is the Selmer set of C' w.r.t. .

If we find Sel™(C) =0, then C(Q) = 0.



Abelian Coverings

A covering D — (' is abelian if its Galois group is abelian.

Let J be the Jacobian variety of C.
Assume for simplicity that there is an embedding ¢: C — J.

Then all abelian coverings of C' are obtained from n-coverings of J:

We call such a covering an n-covering of C';
the set of all n-coverings with points everywhere locally
is denoted Sel() ().



Practice — Descent

It is feasible to compute Sel(2)((C) for hyperelliptic curves C' (Bruin-St).

This is a generalization of the y2 = g(z)h(z) example,
where all possible factorizations are considered simultaneously.

Example (Bruin-St).
Among the small genus 2 curves, there are only 1492 curves C
without rational points and such that Sel(2>(0) = ().



A Conjecture

Conjecture 1.
If C(Q) =0, then Sel(™(C) =@ for some n > 1.

Remarks.

e In principle, Sel(”)(C) is computable for every n.
The conjecture therefore implies that “C'(Q) = (07" is decidable.
(Search for points by day, compute Sel(™(C) by night.)

e [ he conjecture implies that the Brauer-Manin obstruction
is the only obstruction against rational points on curves.
(In fact, it is equivalent to this statement.)



An Improvement

Assume we know generators of the Mordell-Weil group J(Q)
(a finitely generated abelian group again).
Then we can restrict to n-coverings of J that have rational points.

They are of the form J>P—nP+QcJ, with Q € J(Q);
the shift @ is only determined modulo nJ(Q).

The set we are interested in is therefore

1Q+nJ(Q) : (Q+nJ(Q@)Nu(C)# 0} CJ(Q)/nJ(Q).

We approximate the condition by testing it modulo p for a set of primes p.



he Mordell-Weil Sieve

Let S be a finite set of primes of good reduction for C.
Consider the following diagram.

C(Q)——J(Q@ J(Q)/nJ(Q)

T ;

[[c@®y)—— 1] 7E)—— ] JEp)/n](Fp)
peS —_peS  |pes

We can compute the maps a and (.

If their images do not intersect, then C(Q) = 0.
(Scharaschkin, Flynn, Bruin-St)

Poonen Heuristic/Conjecture:
If C(Q) =0, then this will be the case when n and S are sufficiently large.



Practice — Mordell-Weil Sieve

A carefully optimized version of the Mordell-Weil sieve
works well when r =rank J(Q) is not too large.

Example (Bruin-St).

For all the 1492 remaining small genus 2 curves C,

a Mordell-Weil sieve computation proves that C'(Q) = 0.

(For 42 curves,

we need to assume the Birch and Swinnerton-Dyer Conjecture for J.)

Note: It suffices to have generators of a subgroup of J(Q)
of finite index prime to n.

This is easier to obtain than a full generating set,
which is currently possible only for genus 2.



A Refinement

Taking n as a multiple of NV,
the Mordell-Weil sieve gives us a way of proving
that a given coset of NJ(Q) does not meet +(C).

Conjecture 2.
If (Q+ NJ(Q))Ne(C) =0, then there are n € NZ and S such that
the Mordell-Weil sieve with these parameters proves this fact.

So if we can find an N that separates the rational points on C,
i.e., such that the composition C(Q) = J(Q) — J(Q)/NJ(Q) is injective,
then we can effectively determine C'(Q) if Conjecture 2 holds for C"

For each coset of NJ(Q), we either find a point on C' mapping into it,
or we prove that there is no such point.



Chabauty’'s Method

Chabauty’'s method allows us to compute a separating N
when the rank r of J(Q) is less than the genus ¢ of C.

Let p be a prime of good reduction for C. There is a pairing

R
Qtl](Qp) x J(Qp) — Qp, (w,R) — A w= (w,logR).

Since rank JJ(Q) =r<g= dime Q{ll(@p), there is a differential
0 7% wy € Qu(Qy) = QL(Qy)  that kills J(Q) C J(Qp).

T heorem.
If the reduction &, does not vanish on C'(F,) and p > 2,
then each residue class mod p contains at most one rational point.

This implies that N = #J(F,) is separating.



Practice — Chabauty + MW Sieve

When g =2 and r = 1, we can easily compute wy.

Heuristically (at least if J is simple),
we expect to find many p satisfying the condition.

In practice, such p are easily found;
the Mordell-Weil sieve computation then determines C'(Q) very quickly.

Example (Bruin-St).
For the 46 436 small genus 2 curves with rational points and r =1,
we determined C'(Q). The computation takes about 8—9 hours.



Larger Rank

When r > g, we can still use the Mordell-Weil Sieve
to show that we know all rational points up to very large height.

For smaller height bounds, we can also use lattice point enumeration.

Example (Bruin-St).
Unless there are points of height > 10100
the largest point on a small genus 2 curve has height 209 040.

Note.

For these applications,

we need to know generators of the full Mordell-Weil group.
T herefore, this is currently restricted to genus 2.



Integral Points

If C'is hyperelliptic, we can compute bounds for integral points
using Baker’'s method.

These bounds are of a flavor like  |z| < 1010°%

If we know generators of J(Q), we can use the Mordell-Weil Sieve
to prove that there are no unknown rational points below that bound.

This allows us to determine the set of integral points on C.

Example (Bugeaud-Mignotte-Siksek-St-Tengely).

The integral solutions to
Yy L X
2) \5

have z € {0,1,2,3,4,5,6,7,15,19}.



Genus Larger Than 2

The main practical obstacle is the determination of J(Q):

e Descent is only possible in special cases.
e T hereis no explicit theory of heights.

Example (Poonen-Schaefer-St).

In the course of solving 2 + y> = z’, one has to determine

the set of rational points on certain twists of the Klein Quartic.
Descent on J is possible here; Chabauty+MWS is successful.

Example (St).

The curve ng”(6) classifying 6-cycles under = — z2 4 ¢ has genus 4.
Assuming BSD for its Jacobian, we can show that r = 3;

Chabauty’'s method then allows to determine ng”(6)(@).



