EFFICIENT REDUCTION OF BINARY FORMS

MICHAEL STOLL

ABSTRACT. We explain how one can efficiently reduce a binary form (in the sense
of [SCO3]).

1 Introduction

Let F € RIx, z] be a binary form of some degree n. We assume that F is stable, i.e., F
is not divisible (over C) by the mth power of a linear form with 2m > n. Then one
can associate to F its Julia covariant z(F) in the upper half plane H, which is the unique
point where the sum of the unit tangent vectors in direction of the roots of F (which are
identified with points in P'(C), viewed as the boundary at infinity of hyperbolic three-
space H?; H can be seen as the subset of H? that is fixed by the involution induced by
complex conjugation on the boundary) vanishes; see [SCO3, Cor. 5.4].

In terms of formulas, this description is equivalent to the following. Write F(x,z) =
H]L (Bjx — oyx) with o, 35 € C and set

F(t,u) = [JUBst — o5 + 1B "u?)

j=1

fort € R (or C) and u € R.y. Then the Julia covariant of F is the unique point
t + iu € ‘H that minimizes F(t,u)/u"; see [SCO3, Prop. 5.1].

The Julia covariant is defined (as a point in *) for stable binary forms with complex
coefficients and is equivariant with respect to the action of SL(2, C) on binary forms by
linear substitution of variables on the one hand and by (generalized) Mobius transfor-
mation on #> on the other hand. It restricts to an SL(2, R)-equivariant map from stable
binary forms with real coefficients to H.

A stable binary form F € R[x, z] is then reduced, if its covariant z(F) lies in the standard
fundamental domain

F={zeH:—J<Rez< 3, |z >1}

for the action of SL(2,7Z) on H. The equivariance of z(F) then implies that every form
is SL(2, Z)-equivalent to a reduced form, and that the latter is essentially unique (there
can be several reduced orbit representatives when z(F) lies on the boundary of F).

In applications, it is useful to be able to determine a reduced form in the SL(2,7Z)-
orbit of a given (stable) binary form, because the reduced representative tends to have
smaller coefficients, which is helpful when one needs to do computations. For example,
a reduction algorithm can be used to produce good models of hyperelliptic curves.

Date: August 8, 2025.

The goal of this note is to explain how to determine a transformation y € SL(2,Z) such
that F - v is reduced, in a reasonably efficient way. Here SL(2,7Z) acts on binary forms
on the right by linear substitution of the variables.

The Computer Algebra System Magma [BCP97] currently (version 2.28-26) includes a
function Reduce that performs this task by first computing the Julia covariant z(F) and
then determining y such that y-z(F) € F (via the standard shift-and-invert procedure),
where SL(2,7Z) acts via Mobius transformations. Then F -y~ is reduced. The compu-
tation of the covariant proceeds by numerically minimizing F(t,u)/u", which in some
cases is challenging due to numerical instabilities. We propose an algorithm that avoids
these problems. The main idea is that we do not need to determine the covariant pre-
cisely; it suffices to decide whether its real part is positive or negative. Furthermore, the
latter reduces to determining the minimum of F(0, e*)e ™", which is a one-dimensional
convex optimization problem instead of the two-dimensional original problem.

One can then also use this approach to determine the Julia covariant z(F), by pinning
down its real part using the procedure mentioned above and a bisection scheme. The
imaginary part is then given as e", where u is the minimizing value along the vertical
geodesic (parameterized by arc length) given by the real part.

2 The reduction algorithm

The main building block is the following procedure. For a multiset S of points in P'(C),
we define z(S) to be z(F), where F is any nonzero binary form whose roots are given
by S. The condition on S below is equivalent to saying that F is stable.

Algorithm 2.1 (Left or Right?).

function RePos?(F)
Input: A multiset S ={o; : 1 <j < n} C P'(C) such that all multiplicities are < n/2.
Output: true, if Rez(S) > 0, false otherwise.

1. S —{xeS:a#oco}; men—#S
2. S—{aeS :a#0m— m— (#S —#S)
3. Find ny € R such that ny minimizes

nr— hn) = Zlog(!oc!e’“ +lof"e") —mn.

x€S

4. Compute
Re(«x)
0= Z |od2+ ezﬂo ’
x€ES
5. If § > 0 then return true, else return false.

In practice, it makes sense to also return 6 and n,.

For Step 3, one can use Newton’s method to find the unique zero of h’, falling back
to a bisection step when the Newton step does not decrease the absolute value of h’
sufficiently.

Lemma 2.2. Algorithm 2.1 is correct.

Proof. Writing o = (x; : y;), by [SCO3, Section 5] we have to minimize log(F(0, e")e ™),
where

log(F(t,u)/u™) =) log(lyt — x*/w + y; /")

j=1
o)
log(F(0,e")e ™) = > log(Ixjf’e ™ + [y;*e") .
j=1
Scaling any pair (x;,y;) by a common nonzero factor only changes this function by
adding a constant. So we can assume that x;y; = 1 or (xj,y;) € {(1,0),(0,1)}. The
terms with x; = O then give a contribution of n each, and the terms with y; = 0 give a
contribution of — each. For o ¢ {0, oo}, we can write the summand as
log(logl/e" + €"/|ey]) .

This shows that the function h given in the algorithm is correct (up to adding a con-
stant).

Now we note that for any r € R., the function
n+— log(r/e" 4+ e"/r)
is strictly convex: its second derivative is

4 B 1 =0
(r/en +en/r)2 cosh(n — logr)?

This implies that h is also strictly convex. Also, the stability condition implies that
h(n) — 400 asn — +o0; so h has a unique minimum.

It follows that (0, e") is the (unique) point on {0} x R., minimizing F(t,u)/u™ there.
Also,

F(t, en°

ilo tew) _ -25.
dt emo |i—0

Consider the geodesic vy from ie" € H to z(F). Acting by an element of SL(2,R)

that moves y to the geodesic from 0 to ico, we see that the argument above shows

that log(F(t,w)/u") is strictly convex along y as well. Unless z(F) = ie" (in which
case & = 0), the derivative of log(F(t,u)/u") along vy (taken in the direction of z(F))
at ie" must be strictly negative. But as z(F) is not on the imaginary axis when & # 0,
this derivative is a positive multiple of —26 when Rez(F) > 0 and a negative multiple

of —25 when Re z(F) < 0. This shows that the returned boolean value is correct. O

To reduce a stable binary form F with multiset S C P'(C) of roots, we now proceed as
follows. First we determine an integer m such that m—% < Rez(F) < m+%. To this end,
we use Algorithm 2.1 repeatedly with {« — (k+ %) : o« € S} for suitable integers k. Then
we shift (the roots of) F by m to obtain |Re z(F)| < % Next, we determine if |z(F)| > 1
or not. If so, we are done. Otherwise, we replace F by F(—z,x) and repeat. Note that
checking whether |z(F)| > 1 or not can be done by applying Algorithm 2.1 again; this
time with S’ = {(a + 1)/(x — 1) : « € S}. This transformation sends the circular arc
going from —1 to 1 in H to the vertical geodesic from 0 to co. Then Rez(S’) > 0 is
equivalent to |z(S)| > 1.

To get something reasonably efficient, we double the step size in the first part of this
procedure until we have enclosed Re z(F) between two numbers in Z + % Then we use
binary subdivision to pin down the vertical strip containing z(F).

In the following, we write S —r for {odx —r : & € S}, where r € R, with the understanding
that co — r = oo. The action of SL(2,Z) on binary forms is on the right and given by

F(x,z) - (¢5) = Flax + bz,cx + dz).

Algorithm 2.3 (Reduction).
Input: F € Z[x, z] homogeneous of degree n, stable.
Output: vy € SL(2,7Z) such that F - y is reduced.

vy (%) // initialize
while true do
S « multiset of roots of F in P'(C)
// Find L, u € Zwithl—] <Rez(F) <u-—
if RePos?(S — 1) then
k0 l—0;ue1+1
while RePos?(S — (u+ 1)) do
k—k+1;le—uue—u+2
end while
else
k—0u—0;l—u—1
while not RePos?(S — (1 + %)) do
ki—k+T;ue 1L 1—2%
end while
end if
// Now1—1 <Rez(F) <u—1 Bisect to getu=1+1.
whileu—1> 1do
m«— |[(1+u)/2]
if RePos?(S — (m + %)) thenl «+— melse u +— mend if
end while
//Nowl—7] <Rez(F) <u—J=1+1; shift by L.
F—Fx+1lz,z); vy —v- (1)
// Check whether |z(F)| > 1. If so, we are done.
if RePos?({(x+ 1)/(x—1) : « € S}) then return y end if
// |z(F)| < 1: invert and repeat.
FeFl—z,x); vy —v-(¢7)
end while

=

3 Computation of the covariant

We can use the RePos? function also to find z(F). To this end, we modify the reduction
algorithm as follows.

Algorithm 3.1 (Covariant).
Input: F € Z[x, z] homogeneous of degree n, stable; an error bound «¢.
Output: z(F) € H to precision .

S « multiset of roots of F in P'(C)
if RePos?(S) then
k—0l—0;ue—1+1
while RePos?(S — u) do
ki—k+1;l—uue—u+2
end while
else
k—0u—0;l—u—1
while not RePos?(S — 1) do
ke—k+l,ue11e1—2
end while
end if
// Now 1 < Re z(F) < u. Bisect until desired precision is reached.
whileu—1> ¢ do

me (L+u)/2
if RePos?(S — m) then 1l «+ m else u < m end if
end while

return m + e"°i, where 1, is computed in RePos?(S — m)

References

[BCP97] Wieb Bosma, John Cannon, and Catherine Playoust, The Magma algebra system. I. The user
language, J. Symbolic Comput. 24 (1997), no. 3-4, 235-265, DOI 10.1006/jsc0.1996.0125.
Computational algebra and number theory (London, 1993). MR1484478 T1

[SC03] Michael Stoll and John E. Cremona, On the reduction theory of binary forms, J. Reine Angew.
Math. 565 (2003), 79-99, DOI 10.1515/crll.2003.106. MR2024647 T(document), 1, 2

MATHEMATISCHES INSTITUT, UNIVERSITAT BAYREUTH, 95440 BAYREUTH, GERMANY
Email address: Michael.Stoll@uni-bayreuth.de
URL: http://www.mathe2.uni-bayreuth.de/stoll/

http://www.mathe2.uni-bayreuth.de/stoll/

	Introduction
	The reduction algorithm
	Computation of the covariant

