
Explicit 8-Descent on Elliptic Curves

by

Sebastian Karl Michael Stamminger

A thesis submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
in Mathematics

Approved, Thesis Committee:

Professor Michael Stoll

Professor Dierk Schleicher

Professor John E. Cremona

Date of Defense : December 09, 2005

School of Engineering and Science



ii



Abstract

In this thesis I will describe an explicit method for performing an 8-descent
on elliptic curves. First I will present some basics on descent, in particular
I will give a generalization of the definition of n-coverings, which suits the
needs of higher descent. Then I will sketch the classical method of 2-descent,
and the two methods that are known for doing a second 2-descent, also called
4-descent.

Next I will locate the starting position for 8-descent and supplement the
exposition of 4-descent by some more detailed geometric information.

In Chapter 3, I will describe the construction of the descent map. It is
very similar to Cassels’ method for doing a 4-descent, however there are some
differences that make our situation more complicated.

This descent map can be used to give an explicit description of a subset
of the 8-Selmer group. However, the set we get is only close to the right one,
so I call it the fake Selmer set. The methods for computing the fake Selmer
set are described in Chapter 4.

The elements of the fake Selmer set are algebraic objects. One would like
to have them represented by geometric objects, for example by n-coverings.
Finding a method for representing elements of the fake Selmer set as n-
coverings is one of my main results. The description of this method is the
content of Chapter 5.

The most important result I achieved is the Galois cohomological inter-
pretation of 4- and 8-descent. The relation of Merriman, Siksek, and Smart’s
method of 4-descent to Galois cohomology has been open for almost ten years
now. The methods with which I could solve that problem could immediately
be transferred to the Galois cohomology of 8-descent. I guess that these
methods, which I will explain in Chapter 6, can be used for giving the Galois
cohomological interpretation of most higher descent that might be developed
in future.

Being able to compute new examples was the driving force for developing
this method of 8-descent. With the program I wrote I was able to find explicit
equations for curves of order 8 in the Shafarevich-Tate group of an elliptic
curve—the first of such high order—and I was able to prove the Birch- and
Swinnerton-Dyer conjecture at the prime 2 for several elliptic curves, where
previous methods could not succeed. I will present some examples which
illustrate the methods nicely.

Finally, I will conclude by giving some directions for further work related
to 8-descent and beyond.
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Introduction

Mathematics is often particularly exciting and fruitful when several areas of
research meet. This can be seen in mathematical fields such as algebraic
topology, where the powerful machinery from algebra supports the study
in topology, differential geometry, where methods from differential analysis
yield deep geometrical theorems, or complex dynamics, where the methods
from complex analysis allow to make significant progress on dynamical sys-
tems. The field of research I pursued is arithmetic geometry, which is the
combination of number theory, algebra, and geometry.

The number theoretic problem of finding rational solutions to algebraic
equations can be interpreted as the problem of finding points on varieties.
With this interpretation, number theoretic problems can be solved with the
help of the elaborate techniques from algebraic geometry. Thus arithmetic
geometry can be understood as the art of finding rational points on algebraic
varieties over number fields.

Among the favorite varieties of study of arithmetic geometers are elliptic
curves. There has been an enormous amount of research on the arithmetic
geometry of elliptic curves, and some of the deepest results in mathemat-
ics are concerned with them, such as Andrew Wiles proof of Fermat’s Last
Theorem. Elliptic curves also have important applications. For example in
cryptography they can be used for encrypting messages, and also for the
converse, to attack other cryptographic methods. The main fascination of
elliptic curves is that they lie at the intersection of different branches of math-
ematics: as curves they belong to the field algebraic geometry, in analysis
they show up in the study of doubly periodic functions on the complex plane
C, and in number theory they have been studied for centuries as one of the
most interesting Diophantine equations.

An elliptic curve E over a number field K can be given by the following
equation in two variables y2 = x3 + Ax + B, where A,B ∈ K. The set of
solutions (x, y), with x, y ∈ K, of this equation—in geometrical language
the K-rational points on the curve—is the object of study. It is one of
the miracles about elliptic curves that this set carries the structure of an
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abelian group. Number theory alone would not have indicated that; it was
the connection to complex analysis and algebraic geometry that gave rise to
this observation.

Already the fact that this group is finitely generated is a deep theorem
due to Mordell and Weil. This finitely generated abelian group is called
Mordell-Weil group and denoted by E(K). By another deep theorem of
Mazur [13, 14], the torsion part of E(Q) has only one of fifteen possibilities:

Z/NZ, 1 ≤ N ≤ 10 or N = 12,

Z/2Z× Z/2NZ, 1 ≤ N ≤ 4.

In addition, the torsion part can be effectively determined. The free part of
the Mordell-Weil group makes the difficulties. It is conjectured that the rank
of this group can be any non-negative integer; while most elliptic curves have
rank 0 or 1, examples with ranks up to 24 are known. There is no method
known that guarantees to determine the rank. Even if we know the rank, it
might be a practical problem to find points on E that generate E(K).

One simplification is known: for finding E(K) it is enough to find the
group E(K)/nE(K) for any integer n ≥ 2, since then E(K) can be ob-
tained by the so called theory of heights. However, so far there is no algo-
rithm known that guarantees to find the Mordell-Weil group or equivalently
E(K)/nE(K).

At least in principle there is a method called n-descent to get a bound on
E(K)/nE(K), n ≥ 2, and the larger n is the more information it produces.
What n-descent actually does is to compute the so called n-Selmer group of
E. This group contains E(K)/nE(K), but sometimes it can be greater than
E(K)/nE(K); in the latter case, there is no method known to determine
which subgroup E(K)/nE(K) is.

The cases where the n-Selmer group is strictly greater than E(K)/nE(K)
are rare, but exciting. The difference between them is measured by the
Shafarevich-Tate group, which became one of the most fascinating objects in
arithmetic geometry and is the main unknown in the Birch and Swinnerton-
Dyer conjecture.

In practice, even over K = Q the only n for which n-descent is feasible
are n = 2, 3, 4, and by the work I have done n = 8. In special cases other
n might be possible, e.g. if there is a K-rational n-torsion point on E as
in the method described in [21]. This special case was already solved for
n = 2 by Pierre de Fermat (1601 - 1665), who invented the name descent.
The method of 2-descent was used in Birch and Swinnerton-Dyer’s extensive
computations which led to their famous conjecture. For n = p an odd prime
there is a theoretical description which is feasible in practice only for n = 3
[19].

2



The first practical method for doing a second 2-descent, also called 4-
descent, was presented by Merriman, Siksek, and Smart [15] in 1996 based
on Sikseks thesis [20]. A different method was described by Cassels [6] two
years later. With these methods they were able to compute examples where
2-descent was known to fail because of a theoretical obstruction. This ob-
struction comes from non-trivial 2-torsion in the Shafarevich-Tate group.
The method of Merriman, Siksek, and Smart has another feature: they are
able to represent the elements of the 4-Selmer group as geometric objects,
namely as the intersection of two quadrics in P3, which is an important start-
ing position for 8-descent. However, what is missing in both expositions is a
Galois cohomological interpretation of their methods.

The aim of my research was to extend the methods of 4-descent to 8-
descent. Starting with the intersection of two quadrics produced by a 4-
descent, I wanted to perform a further 2-descent on them, to get parts of
the 8-Selmer group. The next goal was to find a method for representing the
elements of the 8-Selmer group as geometric objects. Under the condition
that the first two steps can be done, the last objective was to develop methods
for minimizing these geometric objects.

I succeeded with the first two steps. Finding a method to compute parts
of the 8-Selmer group could almost be done with the method my advisor
Michael Stoll proposed to me, by adjusting Cassels’ method of 4-descent to
our situation. The differences between Cassels’ starting position and our situ-
ation turned out to cause some unforeseen difficulties. For example, handling
the set of bad primes is one of these problems.

As one of my main results I consider the exploration of a method for rep-
resenting the algebraic elements of the fake Selmer set as geometric objects,
namely as n-coverings. I had the main idea for this when I extensively stud-
ied a particular example, which turned out to be a lucky choice because of
its beauty and simplicity. It still took me a few months to understand that
my methods produce not one geometric object, but the union of two, which
I would have to separate.

The most important result I achieved is the Galois cohomological inter-
pretation of 4- and 8-descent. It turned out to be much more complicated
than I first thought. The existing methods for the cohomological interpre-
tation of explicit descent could not be applied, since all these methods work
with writing down short exact sequences of groups and taking their long ex-
act cohomology sequence. However, this cannot work in our setting, since
we do not have groups, but only cosets of groups. That is the typical situ-
ation for higher descent, and no higher descent had a Galois cohomological
interpretation so far. I have been trying to solve this problem for more than
two years, and only a few weeks before finishing this thesis I found the last
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missing ingredient, which made my previous attempts work. The importance
of the methods I developed is first, that I can relate 4- and 8-descent to co-
homology and safely make statements about Shafarevich-Tate groups, and
secondly, that it provides a framework for the Galois cohomological interpre-
tation of most higher descents that might be developed in future.

The method of 8-descent can be used to compute examples where 4-
descent is known to fail because of the obstruction coming from non-trivial
4-torsion in the Shafarevich-Tate group. The program I wrote should be able
to compute all of these examples, and I tested it successfully on some of them.
Another application is to construct elements of order 8 in the Shafarevich-
Tate group, and in fact with these methods I am able to get explicit equations
for curves of order 8 in the Shafarevich-Tate group—the first of such high
order. To really see that these curves are in the Shafarevich-Tate group, we
need some additional information, such as the rank of E(Q) being zero or
one. For using 8-descent to search for points on the elliptic curve, first a
method for minimization has to be found.
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Chapter 1

Basics on Descent

1.1 What is Descent?

The first account to this question is the following. An n-descent on an elliptic
curve E over a number field K is a method to compute the n-Selmer group,
Sel(n)(E/K), of E over K. The n-Selmer group is defined to be the kernel of
the homomorphism α where α is defined by the following diagram:

0→ E(K)/nE(K)
δn - H1(K,E[n]) - WC(E/K)[n] → 0

0→
∏

v

E(Kv)/nE(Kv)

?

-
∏

v

H1(Kv, E[n])

?

-
∏

v

WC(E/Kv)[n]

?

α

-

→ 0.

This diagram is quite standard in Galois cohomology and a good exposition
can be found in [21, X.4]. The group on the right, WC(E/K), is the Weil-
Châtelet group of E over K, which we will encounter again in the next
section, where I will give its definition. This answer to the question, what
an n-descent is, is precise, but it does not tell us much about how descent
works, and why it is called descent.

A completely different answer to this question was given to me by Samir
Siksek: “Factor whenever you can! If you cannot factor, enlarge the field!”
I was very surprised by this answer, but now I understood the guiding prin-
ciple in the tricky calculations of Pierre de Fermat. There is a very nice
exposition of the calculations that Pierre de Fermat called descent in [28],
where Fermat’s letters and marginalia are cited. Let us look at an exam-
ple what factoring means in this context. Suppose we are searching rational
solutions to the equation y2 = f(x) where f(x) is a polynomial of degree 3
over Z. Now we try to factor. Suppose we can decompose f(x) into linear
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factors f(x) = (x − e1)(x − e2)(x − e3) over Z. If now (x, y) is a hypothet-
ical solution, then we can look at the square free part ξi of (x − ei), hence
x− ei = ξiu

2
i for some ui. For a given f(x) there is a method to restrict the

set of possible ξi’s to a finite set. This can be done by elementary but tricky
divisibility arguments, or more conceptually by using a descent map. One
obvious restriction on the possible ξi’s is that the product ξ1ξ2ξ3 is a square,
say η2. Then for each possible (ξ1, ξ2, ξ3) we get a new system of equations

ξ1u
2
1 = x− e1

ξ2u
2
2 = x− e2

ξ3u
2
3 = x− e3

(1.1)

with variables x, u1, u2, and u3. In fact, the system is redundant and we can
leave away the third equation and the variable u3. Going from the equation
y2 = f(x) to a finite set of systems of equations (1.1) is a typical example
of descent. What do we win by this process? First, it might be easier to
find solutions to (1.1) than to y2 = f(x), and secondly, it might be easier to
rule out the existence of solutions to (1.1) than to y2 = f(x). Thus we have
a tool to help us finding solutions and proving that there are no more, but
there are cases where this tool will not suffice. If f(x) does not factor we
have to use the suggestion to enlarge the field until f(x) factors. To get back
the information over Q we need some algebraic number theory that Fermat
did not know.

The third answer to our initial question is geometric: Doing a descent
means searching for unramified coverings. We have already seen an example
for that above, but I did not use the geometric language. The equations
(1.1) define a curve, say C, and with (x, u1, u2, u3) 7→ (x, ηu1u2u3), where
η2 = ξ1ξ2ξ3, we get a map from C to E : y2 = f(x). This covering corresponds
to adjunction of the square roots of the functions x− ei, and since they have
double zeros and poles on E the covering is unramified. With this geometric
language we will have a concrete guide for the method of descent in cases
where it is not so clear anymore what factoring should mean, for example on
a system of equations of several variables. I will make the notion of coverings
more precise in the next section, where we will also see how these geometrical
objects are naturally related to cohomology, so that we are led back to the
first answer.

For the rest of this thesis I will take the number field K = Q. Most of
what follows smoothly generalizes to arbitrary number fields, but I want to
emphasize that the following methods work over Q without having to enlarge
the base field. Also for practical computations the most interesting case is
K = Q.
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1.2 n-Coverings

To make the distinction better visible between maps that are defined over Q
and maps defined over Q̄ we use dotted arrows for the latter ones.

On an elliptic curve E the multiplication by n map is an example of a
so called n-covering, and the twists of that are defined to be the n-coverings
of E, see [9] for details of the definition and the meaning of twists in this
situation. However, we need a more general definition, since we want to do
higher descent, hence we start with a (principal) homogeneous space (C, µ)
of E, i.e. a smooth curve C and a morphism µ : C × E → C over Q which
induces a simply transitive action of E on C. By a standard abuse of notation,
we refer to a homogeneous space as C rather than (C, µ), the morphism µ to
be understood. An isomorphism of homogeneous spaces (C, µ) and (C ′, µ′)
is an isomorphism of curves π : C ........- C ′ such that π(Q + P ) = π(Q) + P
for every P ∈ E(Q̄) and every Q ∈ C(Q̄), where the left plus sign means
the action of E on C and the right one means the action of E on C ′. The
set of homogeneous spaces of E modulo Q-isomorphy is called the Weil-
Châtelet group, WC(E/Q), of E. This set can be given the structure of a
group, see [21]. A homogeneous space is Q̄-isomorphic to E, since for every
P0 ∈ C(Q̄) we have the isomorphism ψC : E → C, P 7→ P0 + P . Its inverse
can be written as C → E, Q 7→ [Q − P0] where [Q − P0] denotes the class
represented by the degree 0 divisor Q−P0 in Pic0(C) = E. Now we can give
the generalized definition of an n-covering.

An n-covering of the homogeneous space C is a homogeneous space D of
E and a morphism φ : D → C over Q such that

φ(Q+ P ) = φ(Q) + [n]P

for any P ∈ E(Q̄) and Q ∈ D(Q̄). This means that geometrically φ is
multiplication by n, since the following diagram commutes

D
φ

- C

E

ψD

6
............. [n]

- E,

ψC

6
.............

where ψC : E ..........- C, P 7→ P0 + P , for any choice of P0 ∈ C, and ψD :
E ........- D, P 7→ Q0 + P , for any choice of Q0 ∈ φ−1(P0). That is the reason
for the name n-covering.

An isomorphism of two n-coverings φ : D → C and φ′ : D′ → C of C is
an isomorphism of homogeneous spaces π : D ........- D′ such that the following

7



diagram

D
φ

- C

D′

π
?

......... φ′
- C

wwwww
commutes. Then φ′ : D′ → C is called a twist of φ : D → C. Two n-coverings
are called Q-isomorphic or just isomorphic if there is an isomorphism π over
Q.

An n-covering φ : D → C is called everywhere locally solvable, if D(Qv) 6=
∅ for every place v, i.e. v runs through the primes and ∞, and we write
Q∞ := R.

In this language, 2-descent on an elliptic curve E means to compute the
set of all everywhere locally solvable 2-coverings φ2 : C2 → E of E up to
Q-isomorphism. Doing a 4-descent on E means to compute the set of all
everywhere locally solvable 4-coverings C4 → E of E. However, since every
4-covering can be split into C4 → C2 → E for some 2-covering φ2 : C2 → E,
a 4-descent can be done in two steps: First, do a 2-descent to get a set of
2-coverings, next, for every 2-covering φ2 : C2 → E find all 2-coverings of C2.
This is meant by a second 2-descent. Combining all this information gives
the set of all 4-coverings of E.

The same holds for an 8-descent. We want to compute all everywhere
locally solvable 8-coverings of E. We can do that in three steps: First, do a
2-descent, then a second 2-descent, and finally a third 2-descent, i.e. for every
4-covering C4 → E find all 2-coverings φ8 : C8 → C4 of C4. The following
diagram should give an overview:

C8

φ8 - C4

φ4 - C2

φ2 - E

E

ψ8

?

............ [2]
- E

ψ4

?

............ [2]
- E

ψ2

?

............ [2]
- E

wwwwwww
where ψ8, ψ4, and ψ2 are the Q̄-isomorphisms to E.

What is the relation to cohomology? There is a general principle relating
twists of geometric objects to Galois cohomology. The following proposition
can be found in [26, Prop. 1.3].

Proposition 1.2.1. Let X be some sort of algebraic or geometric object, de-
fined over Q. Then the set of twists of X, i.e., objects Y defined over Q such
that X and Y are isomorphic over Q̄, up to Q-isomorphism, is parameterized
by H1(Q,AutQ̄(X)).
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What does this mean in our context? Let us first look at n-coverings of
E. These are twists of [n] : E → E. The automorphisms of [n] : E → E
are the translations by n-torsion points (acting on the left E), hence the n-
coverings up to Q-isomorphism are parameterized byH1(Q, E[n]) by Proposi-
tion 1.2.1. The subset of everywhere locally solvable n-coverings corresponds
to Sel(n)(E/Q).

Now let us look at general n-coverings φ : D → C. The automorphisms of
φ : D → C are given by the Q̄-isomorphisms D → D induced by the action
of n-torsion points of E on D. Hence they are parameterized by H1(Q, E[n]),
too.

This has an important consequence for higher descent. Take for example
a 2-covering φ2 : C2 → E obtained by a 2-descent. Then by a second 2-
descent on C2 we would like to get some information about the coset above
C2 in Sel(4)(E/Q) ⊂ H1(Q, E[4]). However, as we have just seen the set of
2-coverings of C2 is parameterized by H1(Q, E[2]), and not by a subset of
H1(Q, E[4]). The same holds for 8-descent: A third 2-descent on a curve C4,
where C4 → C2 → E is a 4-covering, produces 2-coverings of C4, which are
parameterized by H1(Q, E[2]), and not by a subset of H1(Q, E[8]). This is
not a problem since we have canonical maps

0→ E(Q)[m]

nE(Q)[mn]
- H1(Q, E[n]) - H1(Q, E[mn]).

We will see this effect later in the section about the Galois cohomological
interpretation of 4- and 8-descent.

Let us see how to interpret the superfluous part coming from the subgroup
E(Q)[m]/nE(Q)[mn] in H1(Q, E[n]) in terms of n-coverings. In the case
of a second 2-descent this is E(Q)[2]/2E(Q)[4]. If we have a 2-covering
φ4 : C4 → C2 and a point S ∈ E(Q)[2], then φ′4 := τS ◦ φ4 is another 2-
covering of C2, where τS : C2 → C2, P → P + S, using the action of E on
C2. φ4 and φ′4 are not isomorphic as 2-coverings unless there is a rational
4-torsion point S ′ ∈ E(Q)[4] with [2]S ′ = S which we could use to define a
Q-isomorphism τS′ : C4 → C4, Q 7→ Q + S ′. However, as 4-coverings of E
the maps φ2 ◦ φ4 : C4 → E and φ2 ◦ φ′4 : C4 → E are isomorphic, since the
action of S on C2 gets annihilated by φ2.

Analogously, in the case of 8-descent the difference between isomorphy
of 2-coverings of C4 and isomorphy of 8-coverings of E is measured by
E(Q)[4]/2E(Q)[8].

It would be interesting to make this observation more explicit, to be able
to remove the part coming from E(Q)[m]/nE(Q)[mn] in practical computa-
tions.
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1.3 Sketch of the Method of 2-Descent

In this section I will sketch the method of 2-descent. The method I will
describe is usually called the number field method. There is also an invariant
theory based method, which I will not present. An extensive description of
the number field method of 2-descent can be found in [5, 22].

We want to perform a 2-descent on the elliptic curve E : y2 = f(x) over
Q. For that, one uses a descent map, which is the so called x− T -map. Let
A := Q[θ] := Q[T ]/(f(T )) be the étale algebra. Then we define

x− T : E(Q) −→ A∗/A∗2

P 7−→ x(P )− θ

If there is rational 2-torsion on E, then one has to modify the x− T -map a
little bit. For simplicity, we just stick to the generic case, when there is no
rational 2-torsion. One can show either directly using the geometrical group
law on E or using more abstract arguments involving Picard groups, that
the x− T -map is a homomorphism, and that its kernel is 2E(Q).

It is easy to see that the image of the x−T -map is contained in the kernel
of the norm

N : A∗/A∗2 −→ Q∗/Q∗2

ξ 7−→ N(ξ).

Let H := ker(N), then one can identify H with H1(Q, E[2]) using the Weil
pairing. Thus with H we have a very concrete description of a cohomology
group. The 2-Selmer group, which is a subgroup of H1(Q, E[2]), can now be
identified with a subgroup of H, which can be computed in practice. It is
the intersection of all the local images of the x− T -map, i.e.

Sel(2)(E/Q) =
⋂
v

res−1
v ((x− T )(E(Qv)))

where resv : A∗/A∗2 → A∗
v/A

∗2
v , where Av := A ⊗ Qv, is the canonical map,

and v runs through all primes and ∞. Here Q∞ means R. By an additional
argument we can restrict to a finite set of primes, so that the 2-Selmer group
can actually be computed.

The next step is to represent the elements in the 2-Selmer group as 2-
coverings of E. Suppose we have an element in Sel(2)(E/Q) ⊂ A∗/A∗2,
represented by ξ ∈ A∗, then we can construct a 2-covering φ2 : C2 → E by
the following procedure:
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The hypothesis that ξ is the image of a point P = (x, y) ∈ E(Q) under
the x− T -map implies

x− θ = ξη2 (1.2)

for some η ∈ A∗. Write ξ = ξ1 + θξ2 + θ2ξ3 and η = y1 + θy2 + θ2y3. Since we
do not know x, y, and y1, y2, y3, we interpret them as variables. Multiplying
out the right hand side of (1.2) gives

x− θ = Q1(y1, y2, y3) + θQ2(y1, y2, y3) + θ2Q3(y1, y2, y3)

for some quadratic forms Q1, Q2, and Q3 depending on ξ. Sorting by powers
of θ impliesQ2 = −1 andQ3 = 0. This defines a curve C2 in A3 with variables
y1, y2, y3 as the intersection of two quadrics. The morphism φ2 : C2 → E is
given by x = Q1(y1, y2, y3) and y = ±rN(η) where N(η) is a polynomial in
the variables y1, y2, y3 and r ∈ Q∗ is a square root of N(ξ). Recall that ξ
is in the kernel of N : A∗/A∗2 → Q∗/Q∗2. The choice of the sign does not
matter, since it gives isomorphic 2-coverings.

This is one possible model of the 2-descendent C2. Another model for C2

is of the form
y2 = g(x),

with a degree 4 polynomial g, which one can get by using the fact that the
quadric Q3 = 0 is singular. It has a singularity at infinity. The isomorphism
between these two models can be given explicitly, see [5].

1.4 Two Methods for 4-Descent

There are two methods for doing a 4-descent, i.e. a second 2-descent on C2.
One method uses the model y2 = g(x) for C2 and the other uses the model
which describes C2 as the intersection of two quadrics.

1.4.1 Merriman, Siksek, and Smart’s Method

Merriman, Siksek, and Smart’s method [15] for performing a second 2-descent
uses the model y2 = g(x) for C2. For the descent map they adapt the x−T -
map, which we again denote by x− T .

x− T : C2(Q) −→ A∗/A∗2Q∗

P 7−→ x(P )− θ

where A := Q[θ] := Q[T ]/(g(T )). Notice that here A has degree 4 instead of
3 compared to the 2-descent case. Notice also that we have to divide out Q∗,

11



which corresponds to the fact that C2 is unramified above infinity, whereas
E is ramified there—as coverings of the projective line.

This x − T -map does not have all the nice properties that the one from
2-descent has. The norm condition has to be adjusted, but computing the
intersection of the local images is almost the same. Taking the intersection
of the local images, we get a finite coset of A∗/A∗2Q∗, which we call the fake

2-Selmer set of C2, denoted by Sel
(2)
fake(C2/Q). As I will show in Section 6.1.3

Sel
(2)
fake(C2/Q) is related to a coset in Sel(4)(E/Q).
By a similar argument as in the 2-descent one can construct a 2-covering

φ4 : C4 → C2 out of an element in Sel
(2)
fake(C2/Q) represented by ξ ∈ A∗. For

details see [15]. Again C4 is given by the intersection of two quadrics, this
time in P3,

C4 : Q1(x1, x2, x3, x4) = Q2(x1, x2, x3, x4) = 0.

Similarly to the construction above we get the map φ4 : C4 → C2 where we
have to choose the sign for the y-coordinate. However, this time the choice of
sign does matter, hence we get in fact two different 2-coverings φ±4 : C4 → C2.

Another difference to the situation of 2-descent is that the two quadrics
Q1 = 0 and Q2 = 0 are both non-singular. Thus it is not possible to get a
model for C4 of the form y2 = quartic as above.

1.4.2 Cassels’ Method

Cassels’ method [6] for performing a second 2-descent uses the model of C2

given by the intersection of two quadrics produced by a 2-descent. Remember
that one of them was singular. When we take its projective closure, we can
write

C2 : Q1(x1, x2, x3, x4) = Q2(x1, x2, x3, x4) = 0

for two quadratic forms Q1 and Q2 where w.l.o.g. Q1 is singular. C2 is
contained in the whole pencil of quadrics λ1Q1 + λ2Q2 = 0 where (λ1 :
λ2) ∈ P1. Let M1 and M2 be the symmetric matrices corresponding to Q1

and Q2, i.e. Q1(x1, . . . , x4) = ~xM1~x
t and Q2(x1, . . . , x4) = ~xM2~x

t. Then
f(T ) := det(TM1 +M2) is a polynomial of degree 3 in the variable T .

Moreover, f is in fact (equivalent to) the cubic polynomial of the under-
lying elliptic curve E : y2 = f(x).

As étale algebra we take A := Q[θ] := Q[T ]/(f(T )). For simplicity, let us
assume that f is irreducible, hence A is a number field.

Since det(θM1 +M2) = 0, the quadric Qθ := θQ1 + Q2 is singular. Pro-
jection from the singularity of Qθ gives a conic C. Since C2 is everywhere
locally solvable, so is C, hence by the Hasse-Principle it has a Q[θ]-point.
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Take the tangent line at this point and lift it under the projection map to a
tangent plane at Qθ. Denote the linear form defining this tangent plane by
L1. The same argument works for the singular quadric Q1 = 0, and since Q1

is defined over Q, so is the linear form, which we denote by L0.
The descent map then is

C2(Q) −→ A∗/A∗2

P 7−→ L1

L0

(P )

Here again one has to compute the intersection of the local images to get a
finite subset, which should somehow be related to a subset of the 4-Selmer
group. This is not the path Cassels treads in [6], he uses this construction
to give an explicit definition of the so called Cassels-Tate pairing instead.
However, using this descent map for computing the 4-Selmer group should
be very similar to the methods I will describe for 8-descent.
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Chapter 2

The Starting Position for
8-Descent

We want to perform an 8-descent on an elliptic curve E, which we can do
in three steps, first, a 2-descent to get a set of everywhere locally solvable
2-coverings φ2 : C2 → E, and next, a second 2-descent on each C2 using the
method of Merriman, Siksek, and Smart to get everywhere locally solvable
2-coverings φ4 : C4 → C2. The last step will be to perform a third 2-descent
on each C4.

The first two stepsare already implemented. For doing a 2-descent we can
use John Cremona’s program mwrank or a recent different implementation
in Magma, and for 4-descent we can use Tom Womack’s implementation in
Magma, which was part of his thesis [29] in 2003.

So we concentrate only on the last step—the third 2-descent. Thus our
starting position is that we are given an everywhere locally solvable 2-covering
φ4 : C4 → C2 of a 2-descendent C2. Since C4 is given by the intersection of
two quadrics, we will adapt Cassels’ method of a second 2-descent, however
our situation is more difficult as we will see.

2.1 The Pencil of Quadrics

The 4-descendent C4 is given by the intersection of two quadrics in P3, i.e.
C4 : Q1 = Q2 = 0 for quadratic forms over Q in four variables. Then C4

is contained in the whole pencil of quadrics Qλ : λ1Q1 + λ2Q2 = 0 where
λ := (λ1 : λ2) ∈ P1.

Let M1 and M2 be the symmetric matrices corresponding to Q1 and Q2,
i.e. Q1(x1, . . . , x4) = ~xM1~x

t and Q2(x1, . . . , x4) = ~xM2~x
t. Then g(T ) :=

det(TM1 +M2) is a polynomial of degree 4 in the variable T . Let θ1, . . . , θ4
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be the zeros of g. Then the matrices θiM1 + M2, i = 1, . . . , 4 are singular,
hence the quadrics Qθi

: θiQ1+Q2 = 0 are the singular quadrics in the pencil.
In addition, the curve C2 : y2 = g(x) is the underlying 2-descendent of

C4, at least equivalent to it, see [15].

2.2 The Étale Algebra A

Let g(T ) := det(TM1 +M2) be as above, then we define the étale algebra to
be

A := Q[θ] := Q[T ]/(g(T )).

A is a product of number fields A ∼=
∏t

i=1Ki and there can be three cases:

1. t = 1, i.e. A ∼= K1 is a degree 4 number field,

2. t = 2, and K1 and K2 are degree 2 number fields,

3. g has a linear factor.

The first case is the generic case. The second case can also happen, and we
call it the split case. However, the third case is not interesting, since if g has
a linear factor, say T − a, a ∈ Q, then (a, 0) is a rational point on C2, and
we are done.

Notice, that this is the same étale algebra as in Merriman, Siksek, and
Smart’s method of 4-descent. This will have a positive effect as we will see
in Theorem 3.6.5.

The Magma1 code for computing the étale algebra is as follows.

function EtaleAlgebra(C4)
// C4 is the intersection of two quadrics produced by a 4-descent.
QT<T> := PolynomialRing(Rationals());
bool, M := IsQuadricIntersection(C4);
// M[1] and M[2] are the corresponding symmetric matrices.
g := Determinant(T*M[1] + M[2]);
// g = HyperellipticPolynomials(AssociatedHyperellipticCurve(C4));
if assigned C4‘EtaleAlgebra then
return C4‘EtaleAlgebra, C4‘EtaleAlgebra‘AbsoluteMap, g;

else
QNF := NumberField(Polynomial([0,1]) : DoLinearExtension);
//Q as a number field, since pSelmerGroup needs that.
A<theta> := quo<PolynomialRing(QNF) | g >;
Aabs, iso := AbsoluteAlgebra(A);
//The decomposition of A into number fields.

1All the programs are written for Magma version 2.12-12.
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C4‘EtaleAlgebra := A; // We store A with C4.
return A, iso, g;

end if;
end function;

A remark on the implementation: I store the étale algebra A with the
curve C4, since we do not want to recompute the number fields in the decom-
position of A. The main reason for that is not only to save time, but also
to work over one and the same number field and not to have many different,
but isomorphic ones.

A different interpretation of A, which we will need in the section about
the Galois cohomology, is the following: Let R := {(θi, 0) | i ∈ {1, . . . , 4}}
be the set of ramification points of C2. Let Ā := A ⊗ Q̄, then Ā∗ can be
interpreted as the set of maps from R to Q̄∗,

Ā∗ = Map(R, Q̄∗),

and A∗ can be interpreted as the Galois-equivariant subset

A∗ = Map(R, Q̄∗)Gal(Q̄/Q),

where the action of the Galois group on Map(R, Q̄∗) is defined by φσ :=
(Rσ 7→ φ(R)σ) for φ ∈ Map(R, Q̄∗), hence φ is Galois-equivariant if φ(R)σ =
φ(Rσ) for all R ∈ R. In addition, we write Av := A⊗Qv and Āv := A⊗ Q̄v.
We will also use the second roots of unity µ2(Ā) = Map(R, µ2).

2.3 The Four Singular Quadrics in the Pencil

The singular quadrics in the pencil can be computed by the following func-
tion. It computes one singular quadric for each Galois orbit. The other
singular quadrics are the conjugates of these.

function SingularQuadricsInThePencil(C4)
bool, M := IsQuadricIntersection(C4);
A := C4‘EtaleAlgebra;
iso := A‘AbsoluteMap;
// A.1 is a generic zero of g.
thetas := iso(A.1);
// thetas are the zeros of g in the number fields,
// one for each Galois orbit.
Msing := <theta*M[1] + M[2] : theta in thetas>;
return <Quadric(M) : M in Msing>;

end function;
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where we used the following function to get the quadric represented by
the symmetric matrix.

function Quadric(M);
// M is an (n+1)x(n+1) symmetric matrix.
// Return the corresponding quadric.
K := CoefficientRing(M);
n := NumberOfColumns(M)-1;
Pn<[x]> := ProjectiveSpace(K,n);
Kx := CoordinateRing(Pn);
xvec := Matrix([x]);
// q := x*M*Transpose(x); //the quadratic form.
q := (xvec*ChangeRing(M,Kx)*Transpose(xvec))[1,1];
return Scheme(Pn,q);

end function;

Let Qθ1 , . . . , Qθ4 be the four singular quadrics in the pencil. Projection
from the singular point of Qθi

gives a conic Cθi
over Q[θi]. Since C4 is

everywhere locally solvable, so is Cθi
. By the Hasse-Principle Cθi

has a
Q[θi]-rational point, hence is isomorphic to P1

Q[θi]
. In the following section we

will analyze this map given by projection from the singular point.

2.4 A Nice Geometric Fact About 4-Descent

In this section I will present a further analysis of the geometry of 4-descent.
The main result is Proposition 2.4.1, which we will need in Section 3.6. This
proposition is implicitly used in [15] without mentioning it.

Let φ4 : C4 → C2 be the 2-covering constructed in the 4-descent. With
the notations from above we have C4 : Q1 = Q2 = 0, C2 : y2 = g(x), and φ4

is constructed by invariant theory as described in [15]. Let θ1, . . . , θ4 be the
roots of g and Qθi

: θiQ1 +Q2 = 0 the four singular quadrics in the pencil.
Let πθi

: C4 → P1 be the double cover defined over Q[θi] given by pro-
jection from the singular point of Qθi

. By Hurwitz’ formula πθi
has four

ramification points. They belong to the point (θi, 0) on C2 by the following

Proposition 2.4.1. The four ramification points of πθi
coincide with the

preimage of (θi, 0) under φ4, i = 1, . . . , 4.

Proof. W.l.o.g. i = 1. Since this is a geometric question, we can work over
C. Thus we can assume Q1 = x2

1 +ax2
2 +bx2

3 +cx2
4, and Q2 = x2

1 +x2
2 +x2

3 +x2
4

for a, b, c ∈ C∗, and θ1 = −1.
Now by [15] φ4 : C4 → C2 is given by (x1 : . . . : x4) 7→ (−F1/F2, G/F

2
2 ),

where
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F1 = (a+ b+ c)x2
1 + (ab+ ac+ a)x2

2 + (ab+ bc+ b)x2
3 + (ac+ bc+ c)x2

4,
F2 = (ab+ac+bc)x2

1+(abc+ab+ac)x2
2+(abc+ab+bc)x2

3+(abc+ac+bc)x2
4,

and
G = dx1x2x3x4, where d = −(a− 1)(b− 1)(c− 1)(a− b)(a− c)(b− c).
The formulas for computing F1, F2, and G can be obtained by the recipe

given in [15], which uses invariant theory. Notice that F1 and F2 are non-zero,
since a, b, c are non-zero. And G is non-zero, since d2 = disc(g).

Let r be a square root of b−c
a−b

and s a square root of −a+c
a−b

. Then one can
check that the four points (0 : ±r : ±s : 1) are the preimages of (−1, 0) under
φ4. Notice, that 1, a, b, c must be pairwise distinct, since else C4 is singular.

To see that these are also the ramification points of πθ1 , one observes
that the singular quadric Qθ1 : θ1Q1 + Q2 = 0 corresponding to θ1 = −1
has (1 : 0 : 0 : 0) as singular point. Thus πθ1 is projection from (1 : 0 :
0 : 0). Now the tangent lines at C4 through (0 : ±r : ±s : 1) are given by
x2 ∓ rx4 = x3 ∓ sx4 = 0, which obviously go through (1 : 0 : 0 : 0). Hence
(0 : ±r : ±s : 1) are the ramification points of πθ1 .

In particular we get the

Corollary 2.4.2. If S is a preimage of (θi, 0) under φ4, then S is a hyper-
osculating point.

Proof. The tangent plane to the singular quadric at S meets C4 four times
in S.

Remark 2.4.3. The proof of the proposition shows that the four ramification
points of πθi

lie on a plane. In fact, (0 : ±r : ±s : 1) lie on x1 = 0, and since
we just need a linear change of variables to bring Q1 and Q2 simultaneously
in diagonal form, this holds in general.

There is a more abstract point of view on this setting. It is enlightening
to see this, too. For that we change from the curves to their Picard groups.
Since C4 has genus 1, we can identify its points with Pic1(C4). By the group
law in the 4-Selmer group we can add two homogenous spaces to get another
one, in particular we have [C4] + [C4] = [C2], where [Cn] means the class
of the n-covering Cn → E in the n-Selmer group. This means that we can
identifiy C2 with Pic2(C4) and the following diagram

C4

φ4 - C2

Pic1(C4)
?

6

·2
- Pic2(C4)

?

6
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commutes. In addition, we can identify Pic4(C4) with Pic0(C4). This is
possible, since C4 has degree 4, hence a plane H meets C4 in four points
counting multiplicities, thus we have the bijection

Pic4(C4)→ Pic0(C4), D 7→ D − (H)C4 ,

where we subtract the divisor cut out by H. Finally, we have the well known
identification of Pic0(C4) and E.

With these identifications, we have the diagram

C4

φ4 - C2

φ2 - E

Pic1(C4)
?

6

·2
- Pic2(C4)

?

6

·2
- Pic4(C4)

∼=- Pic0(C4)
?

6

which commutes by Proposition 2.4.1. This diagram coincides with the in-
tuition that φ2 and φ4 correspond to multiplication by 2.

Another possibility to prove Proposition 2.4.1 would be to show that the
map w ◦ ∆ coincides with φ4 where ∆ : C4 → C4 × C4, P 7→ (P, P ), and
w : C4×C4 → C2 is the map described in [28] and [15] by the recipe: if P1, P2

denote points of C4 there is a unique point λ = (λ1 : λ2) ∈ P1 such that the
line through P1 and P2 lies in the quadric Qλ, and then G(λ1, λ2) is a square,
hence gives a point on C2 : y2 = G(x, z) where G is the homogenization of g.

Now if w ◦ ∆ = φ4, then Proposition 2.4.1 would follow by the nice
geometrical argument: Let S be a ramification point of πθi

, then the tangent
line at S goes through the singularity of Qθi

, hence is contained in Qθi
, thus

w(S, S) = (θi, 0)
Finally, I want to conclude that the 16 hyperosculating points correspond

to the 4-torsion points on E, a result which might be well known to the
experts.

Corollary 2.4.4. If we consider C4 as an elliptic curve over Q̄ with a hy-
perosculating point as the origin for the group law, then the hyperosculating
points are the 4-torsion points on the elliptic curve C4.

Proof. By Proposition 2.4.1 we can choose Q̄-isomorphisms ψ2 : C2
.........- E

by (θ1, 0) 7→ O and ψ4 : C4
.........- E by S 7→ O for a hyperosculating point
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S ∈ φ−1
4 (θi, 0) to get the commutative diagram

C4

φ4 - C2

E

ψ4

?

................ [2]
- E.

ψ2

?

................

Hence ψ2 maps the points (θi, 0) to E[2] and ψ4 maps the hyperosculating
points to E[4].

A different proof for the corollary can be found in the end of [1]
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Chapter 3

The Descent Map

3.1 Construction of F

For doing 8-descent, we want to use functions on the curve C4. In the follow-
ing I describe how to construct these functions and how to put them together
to get a descent map F .

Let Qθ1 , . . . , Qθ4 be the four singular quadrics in the pencil and πθi
: P3 →

P2 be the projection from the singular point of Qθi
. The image of Qθi

under
πθi

is a conic Cθi
over Q[θi], which has a point since C4 is everywhere locally

solvable, compare Section 2.3. We can find this point by diagonalizing Cθi

and solving a norm equation as we will see in the next section.
If we found a point on Cθi

, we can compute the tangent line to it. Its
preimage under the projection gives a tangent plane at Qθi

, which is given
by a linear form, say Li. For technical reasons Li should have integral coef-
ficients, i.e. coefficients in the ring of integers of Ki, so I just scale it. There
might be better methods, but for our purpose this seems to be good enough.

For each Galois orbit of R = {(θi, 0) | i ∈ {1, . . . , 4}} we compute one
tangent plane given by Li, and for the conjugates in the orbit we take the
conjugates of Li, i.e. we take the map θi 7→ Li Galois-equivariant and get
L := (Li) ∈ A[C4]. For the map F we then take

F : C4(Q) −→ A∗/A∗2Q∗,

P 7−→ L(P ).

Here L(P ) is an abbreviation for (Li(P ))i ∈
∏
Ki
∼= A where we take one Li

from each conjugacy class. If Li(P ) = 0 for some i, then one of the tangent
planes meets C4 in a Q-rational point, which we can easily check beforehand.
In this case we do not need to do any descent anymore, since we already
found a point on C4. We also need this map locally. For that we apply the
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canonical map A → Av, where Av := A ⊗ Qv, to the coefficients of L and
get Lv := (Lv,i) ∈ Av[C4], and Fv : C4(Qv) → A∗

v/A
∗2
v Q∗, Pv 7→ Lv(Pv).

However, here it can happen, that Lv,i(Pv) = 0 fore some i, and then we
have to adjust the definition of F , see Section 4.2.

The idea for using these tangent planes for doing a descent comes from
Cassels method [6] for doing a 4-descent. However, the difference between his
setting and our situation is, that in his case the étale algebra is of the form
Q[T ]/(f(T )), where f is the defining polynomial of the underlying elliptic
curve y2 = f(x) and one of the linear forms, say L4, is already defined over
Q. Hence he can use the functions Li/L4 on the curve to define a map into
(Q[T ]/(f(T )))∗ modulo squares. In contrast to that, we do not have functions
on the curve, but only linear forms to build up F . That is the reason why
we have to divide by Q∗ in addition, since a point on the projective curve C4

is only defined up to a scalar.
However, one can consider F to be defined by functions on C4, too. If we

divide Li by a linear form over Q, for example x4, then Li/x4 is a function
on C4 and F is equal to the map

C4(Q) −→ A∗/A∗2Q∗, P 7−→
(
Li

x4

(P )

)
i

.

In fact, Li

x4
(P ) ≡ Li(P ) mod Q∗. Here the role of Q∗ can be interpreted as

absorbing the poles of the function Li/x4. For some proofs it is useful to
know that F can be defined by functions on C4 rather than just by linear
forms.

The code for computing F in Magma is very nice due to the high level
of the language. If we have a singular quadric, we have to project from the
singular point to get a conic, on which we have to search a point.

function ConicOfSingularQuadric(Qsing)
// Qsing is a singular quadric.
pt := SingularPoints(Qsing)[1];
C<[z]>, projection := Projection(Qsing,pt);
// This is a conic and the projection P3 -> P2.
return ImprovedIntegralModel(C), projection;

end function;

If we are able to compute a point on a conic, we can continue by taking
the tangent line to the conic at this point, and lift it under the projection
map. With ImprovedIntegralModel I just multiply through with the lowest
common denominator to make the coefficients integral.

function TangentPlaneAt(Qsing : Point := Point)
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// Qsing is a singular quadric in the pencil.
C, projection := ConicOfSingularQuadric(Qsing);
vprintf EightDescent, 1 :
"Projection from the singularity leads to a conic given by %o.\n",
DefiningPolynomial(C);
pt := PointOnConic(C : Point := Point);
line := TangentLine(pt);
vprintf EightDescent, 1 : "The tangent line to this point is %o, ",
DefiningPolynomial(line);
t := line @@ projection; // t is the tangent plane.
// Make it integral:
t := ImprovedIntegralModel(t);
vprintf EightDescent, 1 :
"which lifts under the projection to the tangent plane %o.\n\n",
DefiningPolynomial(t);
return t;

end function;

If we now evaluate the linear forms Li, which define the tangent planes,
at points of C4, we get the map F . For technical reasons, I define F as a map
starting at the set of sequences rather than C4, because I want to avoid that
every point at which I evaluate F is checked to be in C4 and gets normalized
by Magma.

function TheMapF(C4,L)
// L = <L[1]> or <L[1],L[2]>.
C4seq := PowerSequence(Integers());
A := C4‘EtaleAlgebra; iso := A‘AbsoluteMap;
F := map<C4seq -> A | pt :-> <Evaluate(L[i],pt) : i in [1..#L]>@@iso >;
return F;

end function;

3.2 Finding a Point on a Conic

For constructing our map F , we have to find a point on a conic over a number
field. This is a crucial step, which needs much computational power.

Over Q there are very fast algorithms for finding points on conics. How-
ever, we have to solve a conic over a number field, which generically has
degree 4.

3.2.1 Diagonalizing a Conic

Diagonalizing a quadratic form is standard. I write it up here, since we are
interested in finding points on a conic, and when diagonalizing, there might
show up some easy points. In addition, from the explicit formulas we can
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read off, what happens to the coefficients, and why they get blown up so
much.

Let C : q = 0, where q := ax2
1 + bx1x2 + cx1x3 + dx2

2 + ex2x3 + fx2
3,

a, b, c, d, e, f ∈ K be a conic in P3. We want to find an isomorphism of P3

such that C is isomorphic to Cdiag : αx2
1 + x2

2 + βx2
3 = 0, α, β ∈ K.

If a = 0 then (1 : 0 : 0) is a point on C. Similar for d and f . If b2−4ad = 0
then (b : −2a : 0) is a point on C. And if 4adf − ae2 − b2f + bce− c2d = 0,
then (2cd− be : 2ae− bc : b2 − 4ad) is a point on C.

In all the other cases we can define the diagonalized conic by

Cdiag : αx2
1 + x2

2 + βx2
3 = 0

with α := 4ad − b2 and β := 4a(4adf − ae2 − b2f + bce − c2d), and the
isomorphism φ : C → Cdiag is given by (2ax1 + bx2 + cx3 : (4ad − b2)x2 +
(2ae− bc)x3 : x3).

Notice, that if a, b, c, d, e, f are integral, so are α and β. The coefficient β
is a polynomial of degree 4 in a, b, c, d, e, f , thus the order of magnitude of its
height is about 4 times as large as the one of a, b, c, d, e, f . This blow up of the
coefficients might make a nice looking conic into one with huge coefficients.
However, now we can apply the machinery for solving norm equations, if our
coefficients and the number field are in the range of practicability.

3.2.2 Finding a Point by Solving a Norm Equation

If we have a conic in diagonal form, then we can use the machinery for solving
norm equations to find a point on it. This is standard knowledge, however,
for completeness I include it.

We can assume that the conic is of the form C : αx2
1 + x2

2 + βx2
3 = 0,

α, β ∈ K, since we can divide by the coefficient of x2
2. If −α is a square in

K, say ξ2 = −α, then (ξ : α : 0) is a point on C. Else, K[
√
−α]|K is a field

extension of degree 2, and if we can find a solution to the norm equation

NK[
√
−α]|K( ) = −β,

say η ∈ K[
√
−α], then we have η = η1 +

√
−αη2, η1, η2 ∈ K, such that

NK[
√
−α]|K(η) = η2

1 + αη2
2 = −β, hence (η2 : η1 : 1) is a point on C.

Solving norm equations is an own area of research. There are algorithms
for doing this, however, they are quite limited. Number fields of degree 8
such as K[

√
−α] appear to be feasible most times in practice. One obstacle

is, that for computing the norm equation, we have to know the class group
of K[

√
−α]. This might be a serious problem. However, we do not need a

provable result about the class group. It is enough if we computed it under
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the Generalized Riemann Hypothesis or even using a lower bound. We do
not even care if the class group we computed is wrong, if in the end we get a
point on the conic. If we have a point, it is trivial to check that it is on the
conic, no matter how we got it.

function PointOnDiagonalizedConic(Cdiag)
// Cdiag is defined by alpha*z[1]^2 + z[2]^2 + beta*z[3]^3 = 0.
P2<[z]> := AmbientSpace(Cdiag);
K := BaseField(Cdiag);
fdiag := DefiningPolynomial(Cdiag);
alpha := MonomialCoefficient(fdiag,z[1]^2);
beta := MonomialCoefficient(fdiag,z[3]^2);
// If -alpha is a square, we have a trivial solution,
// the same for -beta,
// else we go on with NormEquation.
bool1, sqrt1 := IsSquare(-alpha);
bool2, sqrt2 := IsSquare(-beta);
if bool1 then
pt := [sqrt1,alpha,0];
vprintf EightDescent,1: "Negative of first coefficient is a square, ";

elif bool2 then
pt := [0,beta,sqrt2];
vprintf EightDescent,1: "Negative of third coefficient is a square, ";

else
L := NumberField(PolynomialRing(K)![alpha,0,1]);
// i.e. L = K[sqrt(-alpha)]
// To speed up the class group computation we use a small bound:
vprintf EightDescent, 2 :
"Starting computation of the class group with bound = 200.\n";
vtime EightDescent,2: _ := ClassGroup(AbsoluteField(L) : Bound:=200);
vprintf EightDescent, 2 : "Starting solving the norm equation.\n";
vtime EightDescent,2: bool, solutions := NormEquation(L,-beta);
assert bool;
vprintf EightDescent, 2 : "Found a solution to the norm equation,";
s := solutions[1];
pt := Reverse(Eltseq(s)) cat [1];

end if;
return Cdiag!pt;

end function;

The above code works fine in the split case, however in the generic case,
this might be too slow. Denis Simon has a more elaborate code using norm
equations for solving conics in his PARI/GP program bnfqfsolve2, which
worked in all examples I tried. It is a good idea to reduce the coefficients
of C before starting to apply the norm equations machinery. This idea was
worked out by Denis Simon and implemented in the function bnfqfsolve.
These programs are contained in the file ell.gp available at Denis Simon’s
web page.
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Over Q there are other methods to solve conics, which do not need di-
agonal forms. Thus one can avoid the blowing up of the coefficients when
diagonalizing. Denis Simon found a method for solving non-diagonal conics
over Q. However, this algorithm is hardly extendible to number fields.

3.3 Independence of the Choice of the Point

on the Conic

In the construction of F there is some choice involved, namely the choice
of the point on the conic. If we take a different point on the conic, we get
different tangent planes, hence a different looking map F . However, F should
be independent of this choice. This is what we will see below.

We look at the generic case A ∼= K1, the split case is analogous. If we
have a point on the conic, we get a tangent plane L1 = 0 to the singular
quadric as described above. If we take a different point on the conic, we
get a different tangent plane, say L′1 = 0. L1 and L′1 are defined over K1.
Let F : C4(Q) → A∗/A∗2Q∗, P 7→ L1(P ), and F ′ : C4(Q) → A∗/A∗2Q∗,
P 7→ L′i(P ) be the corresponding maps.

One would like to have that F and F ′ coincide. This is almost true. They
coincide up to a translation.

Lemma 3.3.1. There is a γ ∈ A∗ such that for every point P ∈ C4(Q)

F (P ) = γF ′(P ).

Proof. We just look at the generic case, when A ∼= K1 is a number field. The
split case is analogous. Write (L1)C4 = 2(S1 + S2) and (L′1)C4 = 2(S ′1 + S ′2)
the divisors cut out by L1, L

′
1 respectively. Then S1, S2, S

′
1, and S ′2 lie on

a plane. In fact, the planes L1 = 0 and L′1 = 0 are tangent to the singular
quadric Qθ1 = 0, hence the two lines L1 = Qθ1 = 0 and L′1 = Qθ1 = 0 meet
in the singularity of Qθ1 = 0, thus are contained in a plane defined over K1,
say H = 0. Thus S1 + S2 + S ′1 + S ′2 = (H)C4 the divisor cut out by H, hence
(L1L

′
1)C4 = (H2)C4 , which means L1L

′
1 = γH2 in K1[C4] for some γ ∈ K1.

Hence modulo squares L1(P ) ≡ γL′1(P ) for every P ∈ C4(Q).

This means that doing a descent using F gives the same information as
doing a descent using F ′.

We will use this lemma in practice to reduce the set of bad primes, see
Section 4.3. The γ and the H in L1L

′
1 = γH2 can be computed with the

following functions. H = 0 is the plane containing the two tangent lines,
thus we take three points on these two lines, the point of intersection and
one on each line, and compute the plane through these three points.
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function PlaneThrough(ThreePoints)
// Given three points in P3 over K.
// Return the plane over K through the three points.
P3<[x]> := Ambient(Scheme(Rep(ThreePoints)));
K := BaseField(P3);
Kc<[c]> := PolynomialRing(K,4);
// c[1],...,c[4] will be the coefficients of H.
KcX<[X]> := PolynomialRing(Kc,4);
H := &+[c[i]*X[i] : i in [1..4]];
// the unknown plane.
HPs := [Evaluate(H,Eltseq(P)) : P in ThreePoints];
// H(P) must be zero for P in ThreePoints.
coeffs := [[MonomialCoefficient(HP,c[i]) : i in [1..4]] : HP in HPs];
Ker := Kernel(Transpose(Matrix(coeffs)));
vprintf EightDescent,3: "Number of possible planes: %o. Expected 1.
\n",Dimension(Ker);
c := Eltseq(Basis(Ker)[1]);
H := &+[c[i]*x[i] : i in [1..4]];
return H;

end function;

Now we are able to compute the plane H = 0 going through S1, S2, S
′
1,

and S ′2. Then the constant γ in the equation L1L
′
1 = γH2 could be obtained

by evaluating L1L
′
1 and H2 at any point of C4(Q̄) different from S1, S2, S

′
1,

and S ′2 and take the quotient of these two. A different method, which we use
here is to take the unique normal form of L1L

′
1 and H2 with respect to I(C4)

and take the quotient of them1.

function TheGamma(C4,L1,L11,Qsing)
// L1/L1’ = gamma*q^2 on C4. This function computes the gamma.
// Or: L1*L1’ = gamma*H^2. (q = H^2/L1’^2)
// Notation: L1’ = L11.
vprint EightDescent,3: "Computing gamma...";
P3<[x]> := Ambient(Qsing);
K := BaseField(P3);
Kx := CoordinateRing(P3);
L1 := Kx!L1;
Q1,Q2 := Explode(ChangeUniverse(DefiningPolynomials(C4),Kx));
pt1 := SingularPoints(Qsing)[1];
i := 1; // If pt1[i] = 0, then we take a different i.
while pt1[i] eq 0 do i+:=1; end while;
ThreePoints := {pt1} join Points(Scheme(Qsing,[L1,x[i]]))
join Points(Scheme(Qsing,[L11,x[i]]));
vprint EightDescent,3: "Computing the plane through the three points.";
vtime EightDescent,3: H := PlaneThrough(ThreePoints);

1γ can be computed already using the tangent lines on the conic without having to
compute H. This might be a little bit faster.
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I := ideal<Kx | DefiningPolynomials(C4)>;
vprintf EightDescent,3:
"The plane H with L1 L1’ = gamma H^2 is\n%o\n", H;
// Now gamma:
return K!( NormalForm(L1*L11,I)/NormalForm(H^2,I) );

end function;

3.4 F as a Homomorphism on Pic(C4)

Since C4 has genus 1, we can identify C4(Q) with Pic1(C4). And Pic1(C4) is
a coset in the group Pic(C4). Is F compatible with this group law?

Yes, it is. We can even define F as a homomorphism on all of Pic(C4). The
definition is canonical, the well-definedness follows from Weil-Reciprocity as
we will see below.

Let [D] be a divisor class in Pic(C4). By the Moving Lemma, we can
assume that D has disjoint support with the divisor (L1L2L3L4)C4 cut out
by the four planes.

Write D =
∑

P nPP . Then we can define F ([D]) :=
∏

P F (P )nP . Now F
is clearly a homomorphism, if we can show that it is well-defined.

Lemma 3.4.1. F : Pic(C4)→ A∗/A∗2Q∗ is well-defined.

Proof. Let D1 and D2 be linearly equivalent divisors, i.e.D1 −D2 = div(h)
for some h ∈ Q(C4). Write (Li)C4 = 2(Sθi

1 + Sθi
2 ) the divisor cut out by Li,

and (x4)C4 = S∞ the divisor cut out by x4. By Weil-Reciprocity

F (div(h)) = (Li/x4(div(h)))i

= (h(div(Li/x4)))i

= (h(2(Sθi
1 + Sθi

2 )− S∞))i

= (h(Sθi
1 + Sθi

2 )2h(S∞)−1)i ≡ 1 mod A∗2Q∗,

since h and S∞ are defined over Q. Hence F (D1) = F (D2).

Corollary 3.4.2. If C4(Q) 6= ∅, then F (C4(Q)) is a coset in A∗/A∗2Q∗.

Proof. C4(Q) can be identified with Pic1(C4), which is a coset in Pic(C4),
and F is a homomorphism.

3.5 F Modulo the Action of 2E(Q)

Since C4 is a homogeneous space for E, we have an action of E on C4.
Since we want to perform a third 2-descent on C4, we want that F is not
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affected by the action of 2E(Q) on C4(Q). With our interpretation of F as a
homomorphism on all of Pic(C4), this just means that 2E(Q) is in the kernel
of F .

Lemma 3.5.1. We have

2E(Q) ⊂ ker(F ).

Proof. Let P ∈ E(Q). By the identification E(Q) ∼= Pic0(C4) we can consider
P as a degree 0 divisor class on C4. Now by definition F (2P ) = F (P )2, which
is trivial in A∗/A∗2Q∗.

We will see later that 2E(Q) has index 2 in ker(F ). If ker(F ) was too
large, then F would not be useful for a descent. It is analogous to the
situation of 4-descent, where the kernel of the x−T -map is a little bit larger
than 2E(Q), and just leads to the identification of ±1.

3.6 Comparison of F and the x− T -map

In the following we identify Pic0(C4) and Pic0(C2) with E. For the class of
a divisor D we write [D].

Lemma 3.6.1. Let P1, P2 ∈ C4(K̄). Then [2][P1 − P2] = [φ4(P1) − φ4(P2)]
on E.

Proof. For any homogenous space and the corresponding K̄-isomorphism γ :
C → E we have [γ(P1)− γ(P2)] = [P1 − P2].

We have the commuting diagram

C4

φ4 - C2

E

α

?

................ [2]
- E,

β

?

................

thus [φ4(P1)− φ4(P2)] = [β−1[2]α(P1)− β−1[2]α(P2)] = [2][α(P1)− α(P2)] =
[2][P1 − P2].

Now we interpret F : C4(K) → A∗/A∗2K∗ as given by functions on C4,
namely Li/x4. Let (Li)C4 = 2(Sθi

1 + Sθi
2 ) and (x4)C4 = S∞. We think of

2(Sθi
1 + Sθi

2 ), i = 1, . . . , 4 as the zeros, and S∞ as the poles of F . Let Sθi be
a ramification point of πθi

. Then we have the following
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Lemma 3.6.2. Sθi
1 + Sθi

2 ∼ 2Sθi.

Proof. Let H1 be the plane through Sθi
1 , Sθi

2 , Sθi , and H2 the hyperosculating
plane at Sθi . SinceH1 contains the tangent line at Sθi , we have div(H1/H2) =
Sθi

1 + Sθi
2 − 2Sθi .

Let Rθi be the point (θi, 0) on C2. Thus div(x− θi) = 2Rθi − R∞ where
R∞ is the divisor above infinity.

Theorem 3.6.3. [Sθi
1 + Sθi

2 − (S
θj

1 + S
θj

2 )] = [Rθi −Rθj ] on E.

Proof. Let Sθi be a ramification point of the double covering πθi
: C4 → P1

given by projection from the singular point of Qθi
: θiQ1 + Q2 = 0. By the

previous lemma Sθi
1 +Sθi

2 ∼ 2Sθi , thus [Sθi
1 +Sθi

2 −(S
θj

1 +S
θj

2 )] = [2][Sθi−Sθj ] =
[φ4(S

θi)− φ4(S
θj)] = [Rθi −Rθj ] by Lemma 3.6.1 and Proposition 2.4.1.

Corollary 3.6.4. Let Ti := [Sθi
1 + Sθi

2 − (Sθ4
1 + Sθ4

2 )], i = 1, . . . , 4. Then
{T1, . . . , T4} = E[2].

Proof. By the previous theorem Ti = [Rθi − Rθ4 ]. And in the commutative
diagram

C2

φ2 - E

E

ψ2

?

................ [2]
- E

wwwwwwwwww
the Q̄-isomorphism ψ2 maps {Rθ1 , . . . , Rθ4} bijectively to E[2].

This corollary is an important statement. It shows, that the tangent
planes defining F correspond to the 2-torsion points on E. This fact will be
an important ingredient in the proof, that F is the right map for doing an
8-descent.

The next theorem shows that the image of F coincides with the image
of the x − T -map up to translation. Here x − T : C2(Q) → A∗/A∗2Q∗,
(x, y) 7→ x−θ, as in Section 1.4.1. This result is very useful to determine the
local image of F in practice, since we have to compute just one point on C4

and for the rest we can use the local image of x − T , we computed already
during the 4-descent. We will also use this result for the cohomological
interpretation of the map F .
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Theorem 3.6.5. Let K be Q or Qv. If C4(K) 6= ∅, then

im(F ) = α · im(x− T )

for some α ∈ A∗.

Proof. Since C4 has a K-rational point, so has C2, and hence they are both
isomorphic to E, thus we have a K-isomorphism ψ : C4 → C2. Let Rθi :=
(θi, 0) on C2 and ψ∗Rθi its preimage. The divisor Sθi

1 +Sθi
2 −ψ∗Rθi has degree

1, hence is linearly equivalent to a unique point P θi , thus there is a function
Hθi
∈ K[θi](C4) such that div(Hθi

) = Sθi
1 + Sθi

2 − ψ∗Rθi − P θi .
P θi is independent of θi, in particular P θi ∈ C4(K): By the previous

theorem we have [Sθi
1 +Sθi

2 − (S
θj

1 +S
θj

2 )] = [Rθi−Rθj ] = [ψ∗(Rθi)−ψ∗(Rθj)],

thus Sθi
1 + Sθi

2 − ψ∗Rθi ∼ S
θj

1 + S
θj

2 − ψ∗Rθj , hence P θi = P θj =: P .
Now

div

(
Fθi

H2
θi

· 1

ψ∗(x− θi)

)
= 2(Sθi

1 + Sθi
2 )− S∞ − 2(Sθi

1 + Sθi
2 − ψ∗Rθi − P )

− 2ψ∗Rθi + ψ∗R∞

= −S∞ + 2P + ψ∗R∞

is independent of θi, thus equal to div(G) for some G ∈ K(C4). This means

div(
Fθi

H2
θi

G
) = div(ψ∗(x−θi)), thus

Fθi

H2
θi

G
= αiψ

∗(x−θi) for some αi ∈ K[θi]. In

A∗/A∗2K∗ we get F (C4(K)) ≡ (
Fθi

H2
θi

G
(C4(K)))i = (αi(x− θi)(ψ(C4(K))))i =

α(x− T )(C2(K)) for α := (αi).
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Chapter 4

The Fake Selmer Set

4.1 Definition

Let resv : A∗/A∗2Q∗ → A∗
v/A

∗2
v Q∗

v be the canonical restriction map. Then we
define the fake 2-Selmer set of C4 as the intersection of the local images of
F :

Sel
(2)
fake(C4/Q) :=

⋂
v

res−1
v (F (C4(Qv))).

In the following sections we will find conditions that show that Sel
(2)
fake(C4/Q)

is a finite and computable set. One reason why it is so interesting to be able
to compute the fake Selmer set is that it gives us a tool to prove that C4

does not have a rational point in certain cases.

Proposition 4.1.1. We have

F (C4(Q)) ⊂ Sel
(2)
fake(C4/Q).

In particular, if Sel
(2)
fake(C4/Q) = ∅, then C4(Q) = ∅.

Proof. Clear.

4.2 The Norm Condition

Let L = (θi 7→ Li) the linear forms defining F . Then the product L1L2L3L4

can be considered as the norm of L. The aim of this section is to show that
L1L2L3L4 is a square up to a constant.

The following lemma is a weaker version of the theorem we want to have.
A similar statement for the 4-descent situation can be found in [6]. The
linear forms Li are not functions on C4. To get functions on C4 we divide
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by x4. There is nothing special about x4; one could replace it by any linear
form which is defined over Q.

Lemma 4.2.1. There exists a function q ∈ Q(C4) and a constant c ∈ Q
such that

L1

x4

· . . . · L4

x4

= c · q2 on C4.

Proof. We have div(L1

x4
· . . . · L4

x4
) = 2D where D =

∑4
i=1 S

θi
1 + Sθi

2 − 2 (x4)C4
.

Since (x4)C4
∼ (L4)C4

, we have D ∼
∑4

i=1(S
θi
1 +Sθi

2 −(Sθ4
1 +Sθ4

2 )), which sums
up to 0 by corollary 3.6.4, hence D = div(q) for some q ∈ Q(C4). Therefore
div(L1

x4
· . . . · L4

x4
) = div(q2), hence L1

x4
· . . . · L4

x4
= c · q2 for some c ∈ Q.

The divisor (L1L2L3L4)C4 cut out by the four planes is twice a divisor,
say D8, since the planes are tangent to C4, i.e.

(L1L2L3L4)C4 = 2D8.

Lemma 4.2.2. We have the linear equivalence

D8 ∼
(
x2

4

)
C4
.

Proof. By Lemma 4.2.1 we have 2D8−2 (x2
4)C4

= div(q2), henceD8−(x2
4)C4

=
div(q).

Next we want to show that D8 is the divisor cut out by a surface of degree
2. For that, we need the following

Lemma 4.2.3. The linear system LC4(2) of degree 2 surface sections is com-
plete.

Proof. There are 10 forms x2
1, x1x2, . . . , x3x4, x

2
4 of degree 2, and there are

two linear relations Q1 = Q2 = 0 among them, hence they span an at least
8 dimensional vector space, thus LC4(2) is at least of dimension 7.

LC4(2) is contained in the complete linear system |(x2
4)C4|, which is of

dimension deg((x2
4)C4)− 1 = 7, hence they must coincide.

Since the linear system LC4(2) is complete, we can prove a stronger version
of Lemma 4.2.1. Instead of an identity of rational functions, we even get an
identity of polynomials.

Theorem 4.2.4. There exists a quadratic form Q3 ∈ Q[x1, . . . , x4] and a
constant c ∈ Q such that

L1L2L3L4 − c ·Q2
3 ∈ I(C4)

where I(C4) is the homogeneous ideal of C4.
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Proof. By Lemma 4.2.2 and Lemma 4.2.3, D8 ∈ LC4(2), hence D8 = (Q3)C4

for some quadratic form Q3. Since D8 is defined over Q, we can choose Q3

over Q. Hence div(L1L2L3L4

Q2
3

) = 0, thus L1L2L3L4

Q2
3

= c is constant. L1L2L3L4

and Q3 are defined over Q, so is c. This means L1L2L3L4−c·Q2
3 ∈ I(C4).

This has a consequence for the descent map F .

Corollary 4.2.5. Let N : A∗/A∗2Q∗ → Q/Q∗2 be induced by the norm
A→ Q. Then

N(F (C4(Q))) = c.

The same is true locally.

Proof. Let P ∈ C4(Q). Then by Theorem 4.2.4 or even Lemma 4.2.1 we have
N(F (P )) = L1L2L3L4(P ) = c ·Q3(P )2 = c in Q∗/Q∗2. This is true globally,
in particular locally.

In fact, F was not yet defined at zeros of the Li, but the Corollary tells
us how we have to define it. For a point P on C4 such that some Li vanishes
at P , we have to replace Li(P ) by any ξ such that ξ ·

∏
j 6=i Lj(P ) = c. The

same locally.
A method for computing Q3 and c will be described below.

4.2.1 Algorithm for Finding Q3 and c

The four planes intersect C4 in the eight points D8. The quadric Q3 = 0
must go through these eight points. This gives us restrictions on Q3, which
will enable us to find the coefficients of Q3.

The set of quadratic forms in 4 variables is a 10-dimensional Q-vector
space, spanned by the monomials x2

1, x1x2, . . . , x3x4, x
2
4. We want to deter-

mine the subspace of quadrics vanishing on D8.
The eight equations: Generically, D8 consists of one Galois orbit, else one

has to work with one point from each Galois orbit. Let us consider the generic
case. There we compute one point P of D8. For that, we do a Groebner basis
calculation where we enlarge the field step by step until we get a point on
D8. P is defined over a degree 8 number field K8, and D8 consists of all
conjugates of P . A quadric Q in the space of quadrics vanishing on D8 must
fulfill the equation Q(P ) = 0. This is an equation in the coefficients of Q.
It is defined over K8, and since we want Q to be defined over Q, restriction
of scalars gives 8 linear equations over Q. These 8 equations determine the
subspace of quadratic forms vanishing on D8.

On the first sight, one might expect that this space is 2-dimensional,
since it is a subspace of a 10-dimensional space determined by 8 equations.
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However, already Q1 and Q2 are contained in this subspace, since they go
through the eight points – they vanish even on all of C4. Q1 and Q2 span a
2-dimensional space, namely the pencil of quadrics containing C4.

By Theorem 4.2.4 there exists a third quadric Q3, which goes through
D8, but does not vanish on all of C4. Hence the vector space of quadrics that
vanish on D8 is at least 3-dimensional, which means that the 8 equations are
not independent.

Now we can take any quadric in this 3-dimensional space, which is not
already in the pencil of C4, as our Q3. Then Q3 goes through the eight points,
but does not vanish on all of C4. It does not meet C4 in more points, since
a degree 4 curve and a degree 2 surface meet in exactly 8 points.

Now we found Q3, but how do we get the constant c? For that, one can
evaluate L1L2L3L4 and Q2

3 at a point on C4(Q̄), but outside D8. Then the
fraction of these two values is the constant c. Or, one can take the unique
normal forms of L1L2L3L4 and Q2

3 with respect to I(C4). The fraction of
these two again is c.

4.2.2 The Implementation

The implementation is as follows: First, we compute one point in each Galois
orbit of D8. This can be done for general zero dimensional affine schemes.
Note, that the main tool here is a Groebner basis calculation, and the fac-
torization of the last element of the Groebner basis. Each irreducible factor
defines a number field, and its generic zero is the last coordinate of the point.
The rest is recursion.

function OnePointInEachGaloisOrbit(Z)
vprint EightDescent,3: "Computing one point in each Galois orbit.";
// Z is a zero dimensional affine scheme over a number field.
// We want to find one point in each Galois orbit of Z(Qbar).
L := BaseField(Z);
Gr := GroebnerBasis(Z);
g := Gr[#Gr]; // We take the last element.
if g eq 1 then return []; end if; // If Z is empty.
bool, g := IsUnivariate(g);
assert bool; // g should be univariate, since Z is zero dimensional.
fact := Factorization(g);
// The roots of g in suitable number fields:
fields := <NumberField(f[1] : DoLinearExtension) : f in fact>;
d := Rank(Ideal(Z));
//Now the d-th coordinate of our point is L.1.
if d eq 1 then return [* <L.1> : L in fields *]; end if;
// terminating condition.
// Recursion:
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pts := < <OnePointInEachGaloisOrbit(Scheme(Spec(P), [Evaluate(h, x cat
[L.1]) : h in Gr])), L.1> where x := [P.i : i in [1..d-1]] where P :=
PolynomialRing(L, d-1) : L in fields >;
points := [* <Append(tup, pt[2]) : tup in pt[1]>[1] : pt in pts *];
// Turn the tuples into sequences:
return [* [pt[i] : i in [1..#pt]] : pt in points *];

end function;

When a quadric Q has to go through a certain point, this gives some
constraints onQ. The constraints are some linear equations in the coefficients
of Q, which we store as a matrix.

function ConstraintsOnQuadricsThrough(P)
vprintf EightDescent,3:
"Computing the constraints on quadrics through the point... \n";
// P is a point on C4 over some number field.
// We search a quadric Q over the rationals
// which goes through P.
P := Eltseq(P);
L := Universe(P);
Labs := AbsoluteField(L);
Lc<[c]> := PolynomialRing(Labs,10);
// c[1],...,c[10] are the coefficients of Q.
Lcx := PolynomialRing(Lc,4);
xx := MonomialsOfDegree(Lcx,2);
// xx = {x1^2, x1*x2, ..., x3*x4, x4^2}
Q := &+[c[i]*xx[i] : i in [1..10]];
// Q is the unknown quadric.
QP := Evaluate(Q,P); // = Q(P).
coeffs := [Eltseq(MonomialCoefficient(QP,c[i])) : i in [1..10]];
return Matrix(coeffs);

end function;

To get Q3, we take the constraints coming from all the points together,
compute the space of solutions, which is the kernel of the corresponding
matrix, and quotient out by Q1 and Q2.

function ThirdQuadric(C4,L)
vprint EightDescent,3:
"Computing the vector space of quadrics through the eight points.";
ts := [Scheme(Proj(Parent(Li)),Li) : Li in L];
Zs := [Scheme(t,DefiningPolynomials(C4)) : t in ts];
error if &or[Dimension(Scheme(Z,Z.4)) gt -1 : Z in Zs],
"ERROR in ThirdQuadric: We take the wrong affine patch.";
Zs := [AffinePatch(Z,1) : Z in Zs];
pts := &cat[ OnePointInEachGaloisOrbit(Z) : Z in Zs ]; // affine
pts := [* P cat [1] : P in pts *]; // projective
Ms := [ConstraintsOnQuadricsThrough(P) : P in pts];
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Mat := HorizontalJoin(Ms);
vprint EightDescent,3:"Computing the kernel of the constraints matrix.";
Ker := KernelMatrix(Mat);
L := Lattice(Ker);
L1 := PureLattice(L);
// We mod out by Q1 and Q2.
xx := MonomialsOfDegree(CoordinateRing(Ambient(C4)),2);
L2, qmap := quo<L1 | [[MonomialCoefficient(Q,xx[i]) : i in [1..10]] : Q
in DefiningPolynomials(C4)]>;
L3 := TorsionFreeSubgroup(L2);
assert Ngens(L3) ge 1;//space of quadrics mod <Q1,Q2> is at least 1-dim.
c := Eltseq(L3.1 @@ qmap); // The coefficients of Q3.
Q3 := &+[c[i]*xx[i] : i in [1..10]];
return Q3;

end function;

The constant c is obtained by

function TheConstant(C4,L,Q3)
Qx := CoordinateRing(Ambient(C4));
I := Ideal(C4);
FourPlanes := &*[Qx!ProductOfConjugates(Li) : Li in L];
c := Rationals()!(NormalForm(FourPlanes,I)/NormalForm(Q3^2,I));
return c;

end function;

where the product of the conjugates of the polynomial Li ∈ (Q[θi])[x1, . . . , x4]
is computed by taking its norm when considered as an element of the ring
(Q[x1, . . . , x4])[θi].

function ProductOfConjugates(L1)
Kx := Parent(L1);
_, m := SwapExtension(Kx);
return Norm(m(L1));

end function;

4.3 The Set of Bad Primes

For defining the set of bad primes we need the following notations. Let K̃ be
the splitting field of g. For a prime P of K̃ denote the residue class field by
κP. We can consider Li as a polynomial over the ring of integers of K̃, thus
as a polynomial over κP. We denote by {Li = 0 mod P} the κP-points of
Li = 0. In addition, we consider C4(Fp) as a subset of C4(κP).

Now we can define the set S of bad primes as the set of primes containing
2, ∞, and
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1. the primes dividing disc(g) · c,

2. p such that there exists a prime P of K̃ above p such that

C4(Fp) ∩ {Li = 0 mod P} ∩ {Lj = 0 mod P} 6= ∅

for some i 6= j.

The last condition means that two different tangent planes do not meet in a
point on C4 mod p.

The next question is, how to actually compute the set S. The follow-
ing lemma shows that S is contained in a set, which can be computed
explicitly. Let Q3 be the third quadric as in the previous section and let
P8 := Proj(Z[x1, . . . , x4]/(Q1, Q2, Q3)). Recall that Q3 intersects C4 in the
eight points where the four tangent planes L1, . . . , L4 meet C4, hence P8 is
the scheme of these eight points over Z.

Lemma 4.3.1. Let S ′ be the set of primes containing 2, ∞, and

1. the primes dividing disc(g) · c,

2. p such that a prime ideal above p divides all coefficients of L1 (or L2),

3. p such that P8 mod p is singular.

Then S ⊂ S ′.

Proof. Let p /∈ S ′. Suppose p ∈ S, hence p must fulfill the last condition on
S. Thus there is a point

P ∈ C4(Fp) ∩ {Li = 0 mod P} ∩ {Lj = 0 mod P}

for some i 6= j and some P|p.
Since P does not divide all coefficients of Li or Lj, P must be a singular

point of P8 mod P. Since P is Fp-rational, it is a singular point of P8 mod
p, which contradicts the last property of S ′.

With the following Magmacode one can compute a set containing the
set of bad primes. The primes from condition 2 can be computed by the
following function. In fact, it might compute a few more than that. To
avoid working with prime decompositions in number fields, we work with the
norms of the coefficients, which lie in Q, and look for their prime divisors.
However, we might get more primes than condition 2 needs, since different
conjugates above p may divide different coefficients. Thus we might have to
check local solvability at more primes than necessary, but this seems to be
faster than excluding superfluous primes.
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function PrimesDividingTheNormsOfAllCoefficients(L1)
// we assume L1 is integral.
coeffs := Coefficients(L1);
norms := [Norm(c) : c in coeffs];
bad := GCD(ChangeUniverse(norms,Integers()));
return Set(PrimeDivisors(bad));

end function;

A more conceptual way of phrasing condition 3 is that we take the closed
points of the image of the projection from the singular subscheme of P8 to
Spec(Z). Projecting to Spec(Z) can be done by eliminating all variables.

function ProjectionToSpecZ(X)
// X is a scheme over Z.
vprint EightDescent,3: "Projecting to Spec(Z)";
if IsAffine(X) then
I := Ideal(X);
idl := EliminationIdeal(I,{}); // eliminating all variables.
bool, n := IsPrincipal(idl); assert bool;
n := Integers()!n;
if n ne 0 then return n; else return 1; end if;

else // X is projective.
d := Dimension(Ambient(X));
return LCM([ProjectionToSpecZ(AffinePatch(X,i)) : i in [1..d]]);

end if;
end function;

The set of primes fulfilling condition 3 could now simply be computed as
the prime divisors of n := ProjectionToSpecZ(SingularSubscheme(P8)).
However, there can occur a serious problem: n can be so large that we cannot
factor it. This is a very common situation, it already happens in the example
in Section 7.2.1.

However, one can use a trick to avoid this factorization problem in prac-
tice. The trick is: Take a different point on the conic and the corresponding
tangent plane to get a map F ′. In Section 3.3 I showed that F and F ′ differ
by a constant γ.

Let us assume for the moment that γ = 1. If one can compute the set
of bad primes for F ′, then one can just use F ′ and forget F . Usually this
is not the case and one cannot factor the n′ from F ′, too. However, since
the images of F and F ′ coincide, they must involve the same bad primes.
Hence we can take the greatest common divisors of n and n′, which happens
to be a very small number in practice, which we can easily factor. In many
examples it turns out that gcd(n, n′) does not contribute new primes. I even
guess, that the primes from condition 3 are superfluous. I will refer to this
conjecture as the Bad Primes Hypothesis. It would be nice to have a proof
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for that. If γ 6= 1, we also have to take the prime divisors of its norm into
account.

The following function combines all that

function MyBadPrimes(C4,L,Q3 : BadPrimesHypothesis := BadPrimesHypothesis)
g := Modulus(C4‘EtaleAlgebra);
d := LCM([Denominator(c): c in Coefficients(g)]);
g := ChangeRing(g*d,Integers());
c := TheConstant(C4,L,Q3);
// Here we could check, whether c is too big for factorization.
// If so, we could start again with different tangent planes
// until c is nice enough.
vprint EightDescent,3: "Factoring c...";
fc := Factorization(Numerator(c))*Factorization(Denominator(c));
vprintf EightDescent,3: "Factorization of c: %o\n",fc;
S1 := Set(PrimeDivisors(SquareFree(fc)))
join Set(PrimeDivisors(Discriminant(g)));
vprint EightDescent,3: "Bad primes from the coefficients of Li...";
S2 := &join{PrimesDividingTheNormsOfAllCoefficients(Li) : Li in L};
vprint EightDescent,3: S2;
vprintf EightDescent,3:
"Under BadPrimesHypothesis S = %o\n",{2} join S1 join S2;
if BadPrimesHypothesis then
S3 := {};

else
vprint EightDescent,3:
"Projection of the singular subscheme of P_8 to Spec(Z):";
P8 := ChangeRing(Scheme(C4,Q3),Integers());
badP8 := ProjectionToSpecZ(SingularSubscheme(P8));
vprint EightDescent,3: badP8;
// if badP8 is to big (60 digits or more), we try to make it smaller:
if Log(badP8)/Log(10) ge 60 then
//Rem: we could try several different tangent planes.
vprint EightDescent,3: "Trying to reduce the set of bad primes.";
Qsing := SingularQuadricsInThePencil(C4)[1];
L11 := DifferentTangentPlane(Qsing,L[1]);
vprintf EightDescent,3: "The different tangent plane is L1’ =
\n%o.\n",L11;
Lnew := L; Lnew[1] := L11;
// We only change the first one.
// Evtl. better results when changing both in the split case,
// but then TheGamma has to be computed for both.
Q31 := ThirdQuadric(C4, Lnew);
vprintf EightDescent,3: "The quadric Q3’ is \n%o.\n",Q31;
bad1 := BadPrimesUnfactored(C4,Lnew,Q31);
vprint EightDescent,3: "Computed bad primes for L1’.";
gamma := TheGamma(C4,L[1],Lnew[1],Qsing);
vprintf EightDescent,3: "gamma =\n%o.\n",gamma;
Ngamma := Norm(gamma);
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badP8 := GCD(badP8, bad1*Numerator(Ngamma)*Denominator(Ngamma));
end if;
vprintf EightDescent,3: "Factoring %o...\n", badP8;
S3 := Set(PrimeDivisors(badP8));
S := {2} join S1 join S2 join S3;
if S eq {2} join S1 join S2 then
vprintf EightDescent,3: "We proved now:\
\nBadPrimesHypothesis is true.\n";

end if;
end if;
return {2} join S1 join S2 join S3;

end function;

where DifferentTangentPlane takes a different random point on the
conic, to get a different tangent plane L′1 = 0, and BadPrimesUnfactored

returns the unfactored version of the bad primes. For details see the programs
in the appendix.

4.4 Unramifiedness Outside S

Let S be the set of bad primes as above. Let K be a local field. An element
ξ ∈ K∗ is called unramified if K[

√
ξ]|K is an unramified extension. For v - 2

this is equivalent to v(ξ) ≡ 0 mod 2 where v is the normalized valuation
of K. We have to generalize this to our étale algebra. Let Av =

∏
Ki

be the decomposition of Av into local fields Ki. If ξ ∈ Av we denote by
ξi ∈ Ki the image of ξ in Ki. An element ξ ∈ A∗

v is called unramified if
every ξi is unramified. An element of A∗

v/A
∗2
v Q∗

v is called unramified if it has
a representative ξ ∈ A∗

v which is unramified.
An element ξ of A∗/A∗2Q∗ is said to be unramified outside S if resv(ξ) is

unramified for each v /∈ S. Let us denote the subset of A∗/A∗2 of elements
unramified outside S by A(S, 2). Then the subset of A∗/A∗2Q∗ of elements
unramified outside S is isomorphic to A(S, 2)/Q(S, 2) by [17, Proposition
12.8]. If one replaces Q by a number field, this set gets more complicated.
A(S, 2)/Q(S, 2) is a finite computable set and we will show that the fake
Selmer set is contained in it.

Theorem 4.4.1. Let p /∈ S. Then Fp(C4(Qp)) is unramified.

Proof. Let p /∈ S. Let Ap =
∏
Ki the decomposition into local fields, and

let Fp be given by Lp = (θi 7→ Li). Let K̃ be the splitting field of g over Qp.
Fix i0. Let p ⊂ Ki0 be the prime above p, and P ⊂ K̃ be the prime above

p. Then P|p is unramified since p does not divide disc(g). Let P ∈ C4(Qp),
P = (x1 : . . . : x4) for xi ∈ Zp coprime. Let vP be the normalized valuation
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corresponding to P. By the norm condition we have vP(L1(P ) · . . . ·L4(P )) ≡
vP(c) mod 2, and since P does not divide c, we get

vP(L1(P )) + . . .+ vP(L4(P )) ≡ 0 mod 2.

Since the Li are integral, we have vP(Li(P )) ≥ 0 for all i. If vP(Li(P )) > 0,
this means Li(P ) = 0 mod P. Then for all j 6= i we have Lj(P ) 6= 0 mod P

by the last condition on S. That means vP(Lj(P )) = 0 for all j 6= i, thus

vP(Li(P )) = 0 mod 2.

Since this holds for every P above p, we get vp(Li0(P )) = 0 mod 2.

By this theorem and the section about the norm condition we get the
following computable description of the fake Selmer group.

Corollary 4.4.2.

Sel
(2)
fake(C4/Q) = {ξ ∈ A∗/A∗2Q∗ | ξ is unramified outside S,

N(ξ) = c mod Q∗2,

resv(ξ) ∈ Fv(C4(Qv)) for all v ∈ S}.

Proof. For “⊂” the only thing that remains to show is that for a given ξ ∈
Sel

(2)
fake(C4/Q) we have N(ξ) = c mod Q∗2. If not, then by the Chebotarev

Density Theorem applied to the Kummer extension Q[
√
N(ξ)/c]|Q, we would

find N(ξ)/c /∈ Q∗2
v for some v, which would contradict Corollary 4.2.5.

The other inclusion follows from a counting argument using Theorem 3.6.5
and the results about the local image of the x− T -map.

4.5 Implementation of the Fake Selmer Set

The subset of elements of A∗/A∗2Q∗ unramified outside S, which is isomor-
phic to A(S, 2)/Q(S, 2) can be computed with the following function. In
addition, this function computes the subset of A(S, 2)/Q(S, 2) fulfilling the
norm condition. I call this set H, since it corresponds to the cohomology
group H1(Q, E[2];S) as we will see later.

function TheSetH(C4,c,S);
A := C4‘EtaleAlgebra;
// S must be a set of prime ideals in QNF.
S_QNF := {p*MaximalOrder(BaseRing(A)) : p in S};
vprintf EightDescent, 2: "Construction of A(S,2)\n";
vtime EightDescent, 2:
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AS2,A_to_AS2,toVec,bU := pSelmerGroup(A,2,S_QNF:Raw);
vprintf EightDescent, 2:
"Computing the image of S in A(S,2), to get A(S,2)/Q(S,2).\n";
vtime EightDescent,2: ImageOfS := {A_to_AS2(t) : t in {-1} join Set(S)};
AS2Q, modQstar := quo<AS2 | ImageOfS>;
A_to_AS2Q := A_to_AS2 * modQstar;
vprintf EightDescent, 2: "Construction of the norm\n";
bU := Eltseq(bU);
t := Cputime();
NbU := [Norm(b) : b in bU];
QS2,Q_to_QS2 := pSelmerGroup(2,S_QNF);
BruinNorm := hom<AS2 -> QS2 |
[Q_to_QS2(PowerProduct(NbU,[c mod 2 : c in Eltseq(toVec(g))])) :
g in OrderedGenerators(AS2)]>;
MyNorm := hom<AS2Q -> QS2 | [BruinNorm(a@@modQstar) : a in
OrderedGenerators(AS2Q)]>;
// MyNorm: A(S,2)/Q(S,2) -> Q(S,2).
vprintf EightDescent, 2: "%o\n", Cputime(t);
vprintf EightDescent, 2:"Computing the preimage of c under the norm.\n";
t := Cputime();
bool, c1 := HasPreimage(Q_to_QS2(c), MyNorm);
if bool then
Ker := Kernel(MyNorm);
vprintf EightDescent,2: "%o\n", Cputime(t);
vprintf EightDescent,2: "Bound on #Sel after norm condition: 2^%o.\n",
Round(Log(#Ker)/Log(2));
// Representation of the coset c1+Ker:
_, quomap := quo<AS2Q | Ker>;
H := <quomap, {quomap(c1)} >;

else
vprint EightDescent, 2: "Sel was killed by the norm condition.";
H := <{},{}>;

end if;
return H, A_to_AS2Q, toVec, bU;

end function;

Now the fake Selmer set is just the intersection of the local images, where
we only have to consider the primes in S. Notice that I did not yet implement
local solvability at infinity. How to compute the local image of F will be
described in the next section.

function FakeSelmerSet(C4,L,g,Q3,S,H,A_to_AS2Q,toVec,bU)
// Preliminaries:
Zx := PolynomialRing(Integers(),4);
F := TheMapF(C4,L);
c := TheConstant(C4,L,Q3);
Q1,Q2 := Explode(DefiningPolynomials(C4));
EightPts := Scheme(Proj(Zx),[Q1,Q2,Q3]);
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// Now we start:
Sel := H;
for p in S do
vprintf EightDescent, 2: "\nLooking at prime p = %o.\
\nComputing the local image.\n", p;
vtime EightDescent, 2: localimage, res_p, Fpt:= LocalImage(C4,F,p,g);
vprintf EightDescent, 2:
"Setting up res_p:A(S,2)/Q(S,2)->Q(S,2) as a homomorphism.\n";
t := Cputime();
lbU := [res_p(b) : b in bU];
AS2Q := Codomain(A_to_AS2Q);
modQstar := Components(A_to_AS2Q)[2];//A_to_AS2Q = A_to_AS2*modQstar.
// Now Res_p = res_p, but as a homomorphism A(S,2)/Q(S,2) -> Q(S,2).
Res_p := hom<AS2Q -> Codomain(res_p)| [ &+[v[i]*lbU[i] : i in [1..#v]]
where v := Eltseq(toVec(a @@ modQstar)) :
a in OrderedGenerators(AS2Q)]>;
vprintf EightDescent, 2: "%o\n", Cputime(t);
vprintf EightDescent, 2:
"Computing the preimage of the local image under res_p:\n";
t := Cputime();
modU := localimage[1];
// modU is the quotient map with the information about the subgroup.
xi_p := localimage[2]; //the coset representative.
modURes_p := hom<AS2Q->Codomain(modU) | [modU(Res_p(a)) : a in
OrderedGenerators(AS2Q)]>;
bool, xi := HasPreimage(xi_p, modURes_p);
if not bool then
vprintf EightDescent, 1:
"Local image does not have a preimage under res_p,\
\ni.e. the preimage is not unramified outside S.\n";
return {}, _;

end if;
V := Kernel(modURes_p);
// We use the following representation of the coset xi+V:
_, quomap := quo<AS2Q | V>;
xiV := <quomap, {quomap(xi)}>;
vprintf EightDescent, 2: "%o\n", Cputime(t);
vprintf EightDescent, 2: "and intersecting with Sel.\n";
vtime EightDescent, 2: Sel := CosetIntersection(Sel,xiV);
vprintf EightDescent, 2: "Bound on #Sel now: 2^%o.\
\nCoset representative: %o\n",
Round(Log(#Kernel(Sel[1]))/Log(2)), Sel[2];
if IsEmpty(Sel[2]) then
return {}, _;

end if;
end for;
// Sel is a coset, represented as Sel = <quomap,{zeta}>.
// We want to have it as an actual set.
quomap, setzeta := Explode(Sel);
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assert #setzeta eq 1; //Only one coset. (not empty: checked before)
zeta := Rep(setzeta);
z := zeta @@ quomap;
U := Kernel(quomap);
Sel := {z + u : u in U};
vprintf EightDescent, 0: "Attention: I did not check p = infinity.\n\n";
return Sel, A_to_AS2Q;

end function;

4.6 Computing the Local Image of F

Now we will see how we can find the local image of F , i.e. the image of the
function Fv : C4(Qv)→ A∗

v/A
∗2
v Q∗

v. First, we compute the image of one local
point.

4.6.1 One Local Point

The curve C4 is everywhere locally solvable, since it is an element of the 4-
Selmer group. Thus we know that there exist points in C4(Qv) for every place
v. Also explicitly finding such a point is not a problem in theory. However,
a theoretical problem is, that one can compute such a point only to a finite
precision. Thus we have to know up to which precision we have to compute
it. In addition, we want to compute this point efficiently.

So what do we do? Let v = p be a finite prime. The curve C4 is given
by two quadrics Q1 and Q2, which we can assume to have integer coeffi-
cients, i.e.Q1, Q2 ∈ Z[x1, . . . , x4]. We look for a Zp-integral point in the
affine patches. We suppose that there is one in {x4 6= 0}. Thus we dehomog-

enize Q1 and Q2 to get Q
(0)
1 (X, Y, Z) := Q1(X,Y, Z, 1) and Q

(0)
2 (X, Y, Z) :=

Q2(X, Y, Z, 1) in Z[X, Y, Z] and set C4,affine : Q
(0)
1 = Q

(0)
2 = 0.

Now we reduce C4,affine mod p and take an Fp-point P0 = (ā0, b̄0, c̄0),
with integers 0 ≤ a0, b0, c0 < p, on it. If P0 is smooth, it lifts to a p-
adic point. Next we set Q

(1)
i := 1

p
Q

(0)
i (a0 + pX, b0 + pY, c0 + pZ), i = 1, 2.

Then Q
(1)
1 and Q

(1)
2 are again in Z[X, Y, Z], since mod p we have Q

(0)
i (a0 +

pX, b0 + pY, c0 + pZ) ≡ Q
(0)
i (P0) ≡ 0. Now we reduce the affine curve

Q
(1)
1 = Q

(1)
2 = 0 mod p and take a point P1 = (ā1, b̄1, c̄1), 0 ≤ a0, b0, c0 < p,

on it. If there is none, we have to start again with a different P0. Next we
set Q

(2)
i := 1

p
Q

(1)
i (a1 + pX, b1 + pY, c1 + pZ), i = 1, 2. Then Q

(2)
1 and Q

(2)
2

are again in Z[x1, x2, x3], since mod p, P1 is a zero of Q
(1)
i . Now we take

a point on the affine curve Q
(2)
1 = Q

(2)
2 = 0 mod p, and so on. Then with

a := a0 +pa1 +p2a2 + . . ., b := b0 +pb1 +p2b2 + . . ., and c := c0 +pc1 +p2c2 . . .
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we get the p-adic point P := (a : b : c : 1) on C4.
The following lemma tells us how long we have to proceed.

Lemma 4.6.1. Let p 6= 2. Suppose we computed a p-adic point P ∈ C4(Qp)
up to precision N , and that vp(N(F (P ))) < N , then F (P ) is independent of
the precision higher than N .

In other words: Every point that reduces to P mod pN has the same
image under F .

Proof. Locally Ap
∼=

∏tp
i=1Ki where the Ki are local fields corresponding to

the irreducible factors of g over Qp. Write Fp(P ) = (Fp,i(P ))i with Fp,i(P ) ∈
Ki. Recall, that F is given by linear forms with integral coefficients.

Hence

Fp,i(P ) = Fp,i(a0, b0, c0, 1) + pFp,i(a1, b1, c1, 0) + p2Fp,i(a2, b2, c2, 0) + . . .

in Ki. Let e be the ramification index of Ki over Qp. Let π be a uniformizing
element of Ki, i.e. (π) = p for the prime ideal above p, hence uπe = p for a
unit u. Hence

Fp,i(a0, b0, c0, 1) + pFp,i(a1, b1, c1, 0) + p2Fp,i(a2, b2, c2, 0) + . . .

= Fp,i(a0, b0, c0, 1) + uπeFp,i(a1, b1, c1, 0) + uπ2eFp,i(a2, b2, c2, 0) + . . .

= πkxk + πk+1xk+1 + πk+2xk+2 + . . .

for some xk+j ∈ Ki with vp(xk+j) ≥ 0 and vp(xk) = 0.
Since vp(N(F (P ))) < N , we have k < N . Hence the terms aN , bN , cN

and higher cannot affect xk. Since modulo squares πkxk + πk+1xk+1 + . . . is
uniquely determined by k and xk, we are done.

Remark 4.6.2. We could get a better estimate for the precision we need,
when we take the ramification indices and inertia degrees of the involved
number fields into account. However, lifting a point to higher precision costs
almost nothing. So for practical purposes this estimate is enough.

For p = 2 we have to compute not only the first non-zero digit xk in the
π-adic expansion, but at least the first three digits, more precisely the first
2ei + 1, where ei is the ramification index of Ki|Q2.

Let e := max ei, for the fields in the decomposition A2
∼=

∏t2
i=1Ki.

Lemma 4.6.3. If we know the point P ∈ C4(Q2) up to precision N and
v2(N(F2(P ))) < N − 2e − 1, where e is the maximum of the ramification
indices as above, then F2(P ) is determined.
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Proof. To know F2(P ) = πkxk + πk+1xk+1 + πk+2xk+2 + . . . in K∗
i modulo

squares, it is enough to know k and xk, . . . , xk+2ei+1.
Since v2(N(F (P ))) < N − 2e − 1, we have k < N − 2e − 1. Hence for

n ≥ N , F (an, bn, cn, 0)πnei has valuation at least nei ≥ N > k+2e+1, hence
the terms an, bn, cn cannot affect xk, . . . , xk+2e+1.

Corollary 4.6.4. If we know the point P ∈ C4(Q2) up to precision N and
v2(N(F2(P ))) ≤ N − 10, then F2(P ) is determined.

Proof. The degree of g is four, hence e ≤ 4, and the corollary follows.

With this theoretical result, we are able to compute the local image of a
point. We just compute a local point, look whether the precision is enough,
and if not, lift it to higher precision and so on.

Let me conclude with a remark on the practical computation of a local
point. Computing a local point on a variety can be done in the way I de-
scribed above for the curve C4 by reduction mod p and deducing equations
for the next level. Nils Bruin has implemented this method for very gen-
eral varieties. He also has some improvements of this method. This is the
Magma-intrinsic IsLocallySolvable. However, he needs to compute the
whole set of points mod p, which can take a long time for large p.

Since we know that C4 is locally solvable, and we just want to get one
point, we can compute a random point mod p instead of all points. How to
do this efficiently is the content of the next section.

4.6.2 Random Fp-points on the Intersection of Two
Quadrics

For finding a random Fp-point on C4,affine we set the first coordinate to a
random Fp-value a. This is equivalent to intersecting C4,affine with the plane
{X = a}. Usually this is a zero-dimensional scheme, on which we can easily
find a point by a Groebner basis computation. If there is no point, we take
a different random value a.

This procedure is very fast, and the following heuristics shows why it is
so fast. If the reduction of C4 mod p is smooth, it is an elliptic curve over
Fp, thus has about p many points by Hasse-Weil. If it has one singularity, it
has genus 0, thus is parameterized by P1

Fp
, hence has about p many points,

too. It can also happen, that it has two singular points, but then we use Nils
Bruin’s function IsLocallySolvable, which is very fast in this case, since it
first looks into the singular locus. So we just work with the first two cases,
where we have about p many points on C4.
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On the other hand, we have p many planes of the form {X = a}, a ∈ Fp.
Since C4 has degree 4, a plane meets C4 in at most 4 points, thus at least every
fourth plane must meet C4 in an Fp-point. In the examples it turned out to
be about every second plane. Thus usually we have to try two values for a
and compute the points of the zero-dimensional scheme C4,affine ∩ {X = a},
to get an Fp-point on C4. This is much faster than computing all points of
C4(Fp).

4.6.3 The Whole Image

By Theorem 3.6.5, we know that the image of Fv and the image of the local
x− T -map coincide up to a translation, i.e.

im(Fv) = α · im(x− T ).

for some α ∈ A∗
v/A

∗2
v Q∗

v. Thus if we know im(x − T ) in A∗
v/A

∗2
v Q∗

v, and one
element ξ ∈ im(Fv), then we get the whole im(Fv) in the following way.

By the local version of Corollary 3.4.2, im(Fv) is a coset in A∗
v/A

∗2
v Q∗

v,
and so is im(x− T ), hence im(x− T ) = η · U for some η and a subgroup U
of A∗

v/A
∗2
v Q∗

v. Then im(Fv) = ξ · U .

4.6.4 Implementation

With the following functions we can compute the local image of F . The first
function computes a random point on an affine curve as described above.

function RandomPoint(C)
// C is an affine curve over Fp in A3.
vprintf EightDescent,3: "Computing a random F_p-point";
assert Dimension (C) eq 1;
Fp := BaseField(C);
pts := {};
while IsEmpty(pts) do
vprintf EightDescent,3: ".";
// The number of dots is the number of trials, which is
// expected to be less than 4 on average.
x := Random(Fp);
Z := Scheme(C, C.1 - x);
//some hyperplane section (C.1 must have some value x).
pts := Points(Z); // Z is 0-dim.

end while;
vprintf EightDescent,3: "\n";
return Random(pts);

end function;
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Using an Fp-point, we compute the equations for the next level as de-
scribed in the beginning of Section 4.6.1.

function NextLevel(C,pt_p)
// C an affine scheme over the integers.
// pt_p a point mod p.
Fp := Parent(pt_p[1]);
p := Characteristic(Fp);
pt := ChangeUniverse(Eltseq(pt_p),Integers());
newpols := [Evaluate(f,[pt[i] + p*C.i : i in [1..3]]) div p : f in
DefiningPolynomials(C)];
return Scheme(Ambient(C),newpols);

end function;

With the following function we compute the image of one local point
under F . For the cases where the singularities are bad or for small primes,
i.e. p ≤ 5, we hand over to ImageOfOnePointAtVeryBadOrSmallPrime which
uses Nils Bruin’s function IsLocallySolvable.

function ImageOfOneLocalPoint(C4,F,p)
if p le 5 or Dimension(SingularSubscheme(ChangeRing(C4,GF(p)))) ge 1
or #SingularPoints(ChangeRing(C4,GF(p))) ge 2 then
return ImageOfOnePointAtVeryBadOrSmallPrime(C4,F,p);

else
Fp := GF(p);
C_i := AffinePatch(ChangeRing(C4,Integers()),1);
// Might be a bad affine patch (e.g. at p=2).
error if Dimension(C_i) lt 1,
"ERROR in MyImageOfOneLocalPoint: We took the wrong affine patch.";
pt := [0,0,0];
for i in [0..1000] do
C_i_Fp := BaseChange(C_i,Fp);
if Dimension(SingularSubscheme(C_i_Fp)) ge 1 or
#SingularPoints(C_i_Fp) ge 2 then // hand over to IsLocallySolvable.
return ImageOfOnePointAtVeryBadOrSmallPrime(C4,F,p);

end if;
pt_i := RandomPoint(C_i_Fp);
// If pt_i is smooth, it lifts. Thus we take only smooth points.
while IsSingular(pt_i) do pt_i := RandomPoint(C_i_Fp); end while;
C_i := NextLevel(C_i,pt_i);
pt := [pt[j] + p^i*Integers()!pt_i[j] : j in [1..3]] cat [1];
v := Valuation(Integers()!Norm(F(pt)),p);
if v lt i then
//Then precision i is enough to determine F(pt) mod A^*2.
return F(pt), pt, i;

end if;
end for;
error
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"ERROR: Precision 1000 was not enough to compute the local image.";
end if;

end function;

The whole local image of F can now be computed using the local image
of the x − T -map. This is already implemented in Magma as part of Tom
Womack’s FourDescent-routine with some improvements by Mark Watkins.
We only have to modify the function LocalPoints there to get the local
image (x− T )(C2(Qp)), which I call LocalImageOfC2.

function LocalImage(C4,F,p,g)
A := Codomain(F);
g := ChangeRing(g,Rationals()); // needed for local image of C2.
Fpt := ImageOfOneLocalPoint(C4,F,p);
kgens, res_p := LocalImageOfC2(g,p : Algebra:=A);
xi_p := res_p(Fpt);
//The local image of F is the coset xi*U, where U is generated by kgens.
_, quomap := quo<Codomain(res_p)|kgens>;
localimage := <quomap, quomap(xi_p)>;
return localimage, res_p, Fpt;

end function;
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Chapter 5

Representation as 2-Coverings

So far we computed the fake Selmer set as a coset of A∗/A∗2Q∗. What we
really want to have are 2-coverings of C4. In this chapter I will show how
one can construct these geometrical objects out of the algebraic ones. I did
the main work for this in Paris at the Institut Henri Poincaré during the
trimester on “Explicit Methods in Number Theory” in fall 2004.

5.1 Abstract Geometrical Construction

Let K := Q̄(C4) be the function field of C4 over Q̄. Let L1, . . . , L4 be
the tangent planes as constructed in the 8-descent. Then ti := Li/L4, i =
1, . . . , 4 are functions on C4. On E = Pic0(C4) we have [1

2
div(ti)] = Ti, with

{T1, T2, T3} = E[2] \ O and T4 = O by Corollary 3.6.4. If we adjoin the
square roots of the ti, we get a field extension of degree 4:

Proposition 5.1.1. The extension K[
√
t1,
√
t2,
√
t3]|K is Galois with Galois

group Z/2Z× Z/2Z.

Proof. The proposition follows immediately from the two facts
√
ti /∈ K for

i 6= 1, 2, 3, and
√
t1t2t3 ∈ K.

Later we will construct an unramified covering of C4 with this function
field. Then the following proposition, which is well known to the experts,
compare e.g. [1, 6], shows that this will be a 2-covering.

Proposition 5.1.2. Let C8 be a curve defined over Q and φ8 : C8 → C4 be
an unramified morphism defined over Q such that the extensions of function
fields Q̄(C8)|φ∗8(Q̄(C4)) is Galois with Galois group Z/2Z× Z/2Z, then φ8 :
C8 → C4 is a 2-covering.
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Proof. Since φ8 is unramified C8 has genus 1 by Riemann-Hurwitz. If we
consider C4 as an elliptic curve with the point (θ1, 0) as zero, and C8 as
an elliptic curve with a preimage of (θ1, 0) under φ8 as zero, then φ8 is an
isogeny. The kernel of φ8 is Z/2Z × Z/2Z, since this is the Galois group of
the function field extension.

By the uniqueness of an isogeny with predescribed kernel [21, III, Prop.
4.12], φ8 must be multiplication by 2 up to a Q̄-isomorphism.

Next we will show how one can construct a model for C8 explicitly.

5.2 Explicit Construction of φ8

In this section we will show how to construct a model for C8 in P3 and the
equations for the 2-covering φ8 : C8 → C4.

5.2.1 The First Two Quartics

We will first look at the generic case, when A is a number field. We start
with an element ξ ∈ Sel

(2)
fake(C4/Q) and we want to represent it as a 2-covering

of C4. In fact, we will see that we can construct two 2-coverings from ξ.
Recall that we were working with the map F : C4(Q)→ A∗/A∗2Q∗. What

do we know about F? Usually we do not know the set C4(Q), else we would
not have to do a descent on C4. This means, that we have a map F whose
domain we do not know. However, we know that F is given by a linear form
L1, and we know a possible image ξ, but we know ξ only up to a square and
a Q∗-scalar. Thus we are searching a point P ∈ C4(Q) and an element y ∈ A
such that

F (P ) = ξy2. (5.1)

The Q∗-scalar is absorbed by the left hand side of (5.1), since F is given by
a homogeneous polynomial.

Equation (5.1) contains the main information for constructing the 2-
covering. Write P = (x1 : . . . : x4), ξ = ξ1 + θξ2 + θ2ξ3 + θ3ξ4, ξ1, . . . , ξ4 ∈ Q,
and y = y1+θy2+θ2y3+θ3y4. Since we do not know x1, . . . , x4 and y1, . . . , y4,
we interpret them as variables. Then equation (5.1) reads

L1(x1, . . . , x4) = (ξ1 + θξ2 + θ2ξ3 + θ3ξ4)(y1 + θy2 + θ2y3 + θ3y4)
2. (5.2)

If we sort the left hand side of (5.2) by powers of θ, we get

L1(x1,. . ., x4) = l1(x1,. . ., x4)+θl2(x1,. . ., x4)+θ
2l3(x1,. . ., x4)+θ

3l4(x1,. . ., x4)
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for some linear forms li ∈ Q[x1, . . . , x4]. If we multiply out the right hand
side of (5.2) and sort by powers of θ, we get

(ξ1 + θξ2 + θ2ξ3 + θ3ξ4)(y1 + θy2 + θ2y3 + θ3y4)
2 =

q1(y1, . . . , y4) + θq2(y1, . . . , y4) + θ2q3(y1, . . . , y4) + θ3q4(y1, . . . , y4)

for some quadratic forms qi ∈ Q[x1, . . . , x4] depending on ξ. Thus equa-
tion (5.2) reads

l1(x1, . . . , x4) + θl2(x1, . . . , x4) + θ2l3(x1, . . . , x4) + θ3l4(x1, . . . , x4) =

q1(y1, . . . , y4) + θq2(y1, . . . , y4) + θ2q3(y1, . . . , y4) + θ3q4(y1, . . . , y4).

Restriction of scalars gives the system of equations

l1(x1, . . . , x4) = q1(y1, . . . , y4),

l2(x1, . . . , x4) = q2(y1, . . . , y4),

l3(x1, . . . , x4) = q3(y1, . . . , y4),

l4(x1, . . . , x4) = q4(y1, . . . , y4),

(5.3)

over Q, which we can write as

M

x1
...
x4

 =

q1(y1, . . . , y4)
...

q4(y1, . . . , y4)


with the matrix M of coefficients of the li. Generically M is invertible, see
also 5.2.5. In this case we can multiply with its inverse, and getx1

...
x4

 = M−1

q1(y1, . . . , y4)
...

q4(y1, . . . , y4)

 =:

r1(y1, . . . , y4)
...

r4(y1, . . . , y4)

 (5.4)

for some quadratic forms ri ∈ Q[x1, . . . , x4].
In addition, P = (x1 : . . . : x4) stands for a point on C4, i.e. (x1, . . . , x4)

must be a zero of Q1 and Q2, thus substituting xi = ri(y1, . . . , y4), i =
1, . . . , 4, gives two quartics

G1(y1, . . . , y4) := Q1(r1(y1, . . . , y4), . . . , r4(y1, . . . , y4))

and
G2(y1, . . . , y4) := Q2(r1(y1, . . . , y4), . . . , r4(y1, . . . , y4))
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Let C8 : G1 = G2 = 0 in P3, then equation (5.4), defines a rational map

φ8 : C8 → C4.

by (y1, . . . , y4) 7→ (x1 : . . . : x4) = (r1(y1, . . . , y4), . . . , r4(y1, . . . , y4)).
However, C8 consists of two components, and is not yet the 2-covering

we want to have. Michael Stoll pointed out to me that I did not use the
norm condition so far, which should give me a third quartic. In fact, this
third quartic separates the two components of C8, and each of these two
components is a 2-covering as we will see below.

Before I describe how to find the third quartic, I want to show how one
finds φ8 : C8 → C4 in the split case A ∼= K1 × K2. Here we have F (P ) =
(L1(P ), L2(P )) and ξ = (ξ1 + θ1ξ2, ξ3 + θ2ξ4) ∈ K1 ×K2, ξ1, . . . , ξ2 ∈ Q, and
a generic element of K1 × K2 can be written as y = (y1 + θ1y2, y3 + θ2y4).
Thus equation (5.1) reads

l1(x1, . . . , x4) + θ1l2(x1, . . . , x4) = L1(x1, . . . , x4) = (ξ1 + θ1ξ2)(y1 + θ1y2)
2

l3(x1, . . . , x4) + θ2l4(x1, . . . , x4) = L2(x1, . . . , x4) = (ξ3 + θ2ξ4)(y3 + θ2y4)
2.

Multiplying out the right hand side and sorting by powers of θ1 and θ2 gives
the a system of the form (5.3) and we can continue as above.

5.2.2 The Third Quartic

In this section we show how to find the third quartic, which separates the two
components of C8. We get the third quartic from the norm condition. Let us
look at the generic case where A is a number field, the split case is analogous.
By Theorem 4.2.4 we have N(L1(x1, . . . , x4)) = c ·Q3(x1, . . . , x4)

2, for some
Q3 ∈ Q[x1, . . . , x4] and some c ∈ Q∗. In addition, we have N(ξ) = ca2 for

some a ∈ Q∗, since ξ ∈ Sel
(2)
fake(C4/Q).

Now, taking norms on each side of ξy2 = F (P ) = L1(x1, . . . , x4), we get

N(ξ)N(y)2 = c ·Q3(x1, . . . , x4)
2.

Here y = y1 + θy2 + θ2y3 + θ3y4, and N(y) is a polynomial in y1, . . . , y4 over
Q. Using N(ξ) = ca2 and substituting xi = ri(y1, . . . , y4), i = 1, . . . , 4, gives

ca2N(y)2 = c ·Q3(r1(y1, . . . , y4), . . . , r4(y1, . . . , y4))
2

Cancelling c and taking square roots, gives the two equations

aN(y) = ±Q3(r1(y1, . . . , y4), . . . , r4(y1, . . . , y4)),

54



The polynomials aN(y) ∓ Q3(r1(y1, . . . , y4), . . . , r4(y1, . . . , y4)) are quartic
forms over Q in the variables y1, . . . , y4, say G+

3 and G−
3 .

Let C+
8 : G1 = G2 = G+

3 = 0 and C−
8 : G1 = G2 = G−

3 = 0, and φ+
8 :

C+
8 → C4 and φ−8 : C−

8 → C4 be the restrictions of φ8. We will see in Section
5.2.3 that φ+

8 and φ−8 are in fact 2-coverings of C4. Thus we constructed two

geometrical objects out of one algebraic object ξ ∈ Sel
(2)
fake(C4/Q).

Compare this with the situation of 4-descent, where one gets two 2-
coverings of C2 from one element ξ ∈ Sel

(2)
fake(C2/Q). However, by a 4-descent

we get one curve C4 and two different morphisms to C2, φ
+
4 : C4 → C2,

(x1, . . . , x4) 7→ (x, y), and φ−4 : C4 → C2, (x1, . . . , x4) 7→ (x,−y). In my
construction of the 8-descendents, we get two different curves C+

8 and C−
8 ,

which are the two components of C8, but the two morphisms φ+
8 : C+

8 → C4

and φ−8 : C−
8 → C4 are given by the same equations xi = ri(y1, . . . , y4),

i = 1, . . . , 4, since they are just the restrictions of φ8.

Remark 5.2.1. The schemes C+
8 and C−

8 are not saturated. If one takes
their saturations, one gets four more quintics. That was pointed out to me
by v. Bothmer.

5.2.3 The Function Field of C±8

The construction above produces in fact 2-coverings of C4 by the following

Theorem 5.2.2. The morphisms φ+
8 : C+

8 → C4 and φ−8 : C−
8 → C4 con-

structed above are 2-coverings of C4.

Proof. The function field of C+
8 over Q̄ can be obtained by looking at the

affine patch {L4 6= 0}, i.e. we consider L4 = 0 as the plane at infinity. Over
Q̄ the four planes given by L1, . . . , L4 are rational, thus the equation F (P ) =
ξy2, which we used to construct C+

8 , reads

L1 = y2
1, L2 = y2

2, L3 = y2
3, L4 = y2

4. (5.5)

Here we can neglect ξ, since we can put its square root to the yi’s, since we
are working over Q̄. Now we consider L4 = 0 as the plane at infinity, and in
the affine patch {L4 6= 0}, equations (5.5) mean

L1

L4

=

(
y1

y4

)2

,
L2

L4

=

(
y2

y4

)2

,
L3

L4

=

(
y3

y4

)2

.

Writing ti := Li/L4, i = 1, . . . , 4, we see that the function field of C+
8 is

K[
√
t1,
√
t2,
√
t3], where K = Q̄(C4) is the function field of C4, and φ+

8 cor-
responds to the inclusion K ⊂ K[

√
t1,
√
t2,
√
t3]. The same holds for φ−8 .
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In addition, φ+
8 and φ−8 are unramified, since the zeros and poles of ti, i =

1, . . . , 3, have multiplicity 2, thus their square root exists in a neighborhood
of a zero or pole.

Thus φ+
8 and φ−8 are 2-coverings of C4 by Proposition 5.1.1 and Proposi-

tion 5.1.2.

5.2.4 Local Solvability of C+
8 ∪ C−8

Now we want to see how much we can say about the local solvability of our 2-
coverings φ±8 : C±

8 → C4. At this stage we can only note that the union C8 =
C+

8 ∪C−
8 has points everywhere locally. That each component is everywhere

locally solvable will follow from the Galois cohomological interpretation.
Let ξ ∈ Selfake(C4/Q). Thus resv(ξ) ≡ Fv(Pv) mod A∗2

v Q∗
v for a point

Pv ∈ C4(Qv). Hence there exists an element y = y1 + θy2 + θ2y3 + θ3y4 ∈ A∗
v

such that Lv(Pv) = resv(ξ)y
2 for a suitable scaling of Pv. Then (y1 : . . . : y4)

is a v-adic point on C8 by the construction of C8. However, we cannot decide
on which component of C8 it lies. So we just know that one of the components
has a v-adic point. To conclude that the other component also has a v-adic
point, we will use Corollary 6.2.8.

5.2.5 Remark on the Invertibility of M

We just consider the case where A is number field, the split case is analogous.
Let L1 = l1 + θ1l2 + θ2

1l3 + θ3
1l4, and M be the matrix of the coefficients of

l1, . . . , l4, thus

M

x1
...
x4

 =

l1...
l4

 .

Let L1, . . . , L4 be the conjugates of L1.

Theorem 5.2.3. The following are equivalent:

(a) M is invertible.

(b) The four planes in P3 given by L1, . . . , L4 do not intersect.

(c) L1, . . . , L4 are linearly independent in the Q̄-vector space Q̄[x1, . . . , x4].

Proof. The intersection of the Li is a subspace of P3(Q̄) which is defined over
Q, and is precisely the kernel of M . Then the equivalence of (a), (b), and
(c) is obvious.
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Generically, three planes in P3 intersect in one point, and a fourth plane
does not meet this point. Thus if L1, . . . , L4 behave like randomly chosen
planes, M is invertible. However, L1, . . . , L4 are conjugate, so they do not
look so independent.

In fact, if L1 meets C4 in a Q-rational point, then L2, L3, and L4 have to
go through this point, too. And this situation really occurs in practice, but
it is not a problem, since then we found a point in C4(Q) and we are done.

However, this is not the only case when M is non-invertible. It is true,
that if L1, . . . , L4 meet in one point P , that P must be Q-rational, however,
P need not lie on C4. It is not clear to me whether one can use this situation
to find a rational point on C4. What one can do in practice in this case, is to
choose a different point on the conic to get different tangent planes, which
might not meet in a point.

Alternatively, one can try to get equations for the 2-covering, even if M
is not invertible. Working this out might also lead to an idea how to use the
non-invertibility of M for finding a rational point on C4.

5.2.6 Twenty Quadrics in P7

It is known that an 8-covering of an elliptic curve can be represented by 20
quadrics in P7. We can get such a model from our C±

8 , which is given by
three quartics in P3, in the following way.

Let D := (H)C8 be the divisor cut out by a plane, for example the plane
given by y1 = 0. Then D has degree 8, hence the complete linear system |D|
induces a rational map φ|D| : C±

8 → P7. The image of φ|D| is then given by
20 quadrics by Riemann-Roch.

The code for doing this in Magma is

function TwentyQuadrics(C8)
// Another good name would be QuadricIntersection(C8).
// C8 is the eightdescendent given by three quartics
D := Divisor(C8, Scheme(C8,C8.1));
// D is the divisor cut out by the plane y_1 = 0.
phi_D := DivisorMap(D);
C20<[y]> := Image(phi_D);
return C20, phi_D;

end function;

5.3 Implementation of 8-Descent

With the following functions we can compute the representations of an ele-
ment of the fake Selmer set as 2-coverings.
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function TheMatrix(L)
// The matrix M of the coefficients.
Ms := [Matrix([Eltseq(MonomialCoefficient(Li,Parent(Li).i))
: i in [1..4]]) : Li in L];
return HorizontalJoin(Ms);

end function;

With the function CorrespondingSubstitution we can get the quadratic
forms from equation (5.4), which define φ8.

function CorrespondingSubstitution(L,xi)
// L = <L[1],L[2]> or <L[1]>.
// xi = <xi[1],xi[2]> or <xi[1]> in K1 (x K2).
// we compute "(xi*y^2) * M^-1" in the following sense:
M := TheMatrix(L);
error if not IsInvertible(M), //Should be checked before.
"ERROR: M is not invertible. Choose a different point on the conic!";
// The following is like SwapExtension,
// but over the product of 1 or 2 fields.
Ks := <BaseRing(Parent(Li)) : Li in L>;
gs := <DefiningPolynomial(K) : K in Ks>;
Qy<[y]> := PolynomialRing(Rationals(),4);
Qyths := [quo<PolynomialRing(Qy) | g/LeadingCoefficient(g)> : g in gs];
m := [hom<Ks[i] ->Qyths[i] | Qyths[i].1 > : i in [1..#L]];
gen := <&+[y[i+2*j-1]*Qyths[j].1^i : i in [0..Degree(Ks[j])-1]] :
j in [1..#L]>;
// generic element of K1 (x K2) = y = y_1 + y_2 theta_1 + ...
rhs := [Eltseq(m[i](xi[i])*gen[i]^2) : i in [1..#L]];
rhs := Matrix([ChangeUniverse(&cat rhs, Qy)]); // as matrix.
subst := Eltseq(rhs * ChangeRing(M^-1,Qy));
// We return in addition Norm(y), since we have it already.
return subst, &*[Norm(gen[i]) : i in [1..#L]];

end function;

Now we can compute the three quartics that define φ±8 : C±
8 → C4.

function ThreeQuartics(C4,L,Q3,xi)
// C4 is the 4-descendent.
// L are the linear forms defining the tangent planes.
// Q3 is the third quadric through the 8 points.
Qx<[x]> := CoordinateRing(AmbientSpace(C4));
vprintf EightDescent, 2:
"\nComputing the substitution corresponding to xi = %o.\n",xi;
subst, NormOfy := CorrespondingSubstitution(L,xi);
vprintf EightDescent, 2: "Computing the first two quartics.\n";
G1, G2 := Explode([Evaluate(f,subst) : f in DefiningPolynomials(C4)]);
// G1 and G2 are two quartics, which define C8.
// C8 consists of the two components C8plus and C8minus.
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// They are separated by a third quartic, which comes from
// the norm condition (L1L2L3L4 = c*Q3^2).
// Since L1L2L3L4 = Norm(xi*y^2), this is equiv. to
// Norm(xi)*(Norm(y))^2 = c*Q3^2, and since Norm(xi) = c*a^2 for some a,
// equiv. to a*Norm(y) = +/- Q3(subst).
c := TheConstant(C4,L,Q3);
b := &*[Norm(xi[i]) : i in [1..#xi]]/c;
vprintf EightDescent, 2: "Computing the square root of Norm(xi)/c.\n";
bool, a := IsSquare(b);
assert bool; // Norm(xi) = c*a^2.
vprintf EightDescent, 2: "Computing the third quartic.\n";
G3plus := a*NormOfy + Evaluate(Q3,subst);
vprintf EightDescent,2: "Magma is checking that C8plus is a curve.\n";
vtime EightDescent, 2 :
C8plus := Curve(AmbientSpace(C4),[Qx|G1,G2,G3plus]);
G3minus := a*NormOfy - Evaluate(Q3,subst);
vprintf EightDescent,2: "Magma is checking that C8minus is a curve.\n";
vtime EightDescent,2:
C8minus := Curve(AmbientSpace(C4),[Qx|G1,G2,G3minus]);
phi1 := map<C8plus ->C4 | subst>;
phi2 := map<C8minus->C4 | subst>;
return [phi1,phi2];

end function;

Putting everything together we can perform a third 2-descent on C4, i.e.
an 8-descent. I implemented the following optional parameters:

UsePari: When this parameter is turned on, then the necessary data for
computing a point on a conic is written into the file “conic.gp”. When you
open the file “conic.gp” with PARI/GP (you need Denis Simon’s PARI file
“ell.gp” available at his web page) the point is computed and written into
the file “solution.m”. Then you can load “solution.m” and get a point, which
you can use as the optional parameter Point.

Point: This parameter can be set to a point (as sequence) on the conic
which is used in the 8-descent. E.g. if it was computed with PARI.

StopWhenFoundPoint: When this parameter is turned on, the function
stops if it happens to find a point on C4 during the 8-descent, and returns
this point.

BadPrimesHypothesis: If this is set to true, then the program assumes
that the set of bad primes consists just of S1 := prime divisors of 2c disc(g),
and S2 := primes dividing the norms of all coefficients of L1 (and L2). The
primes coming from projection of the singular subscheme of P8 to Spec(Z)
are disregarded.

DontTestLocalSolvabilityAt: This parameter can be set to a set of
primes. At these primes local solvability will not be tested. You can test
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the resulting curves in the end for local solvability if you want. E.g. with
IsLocallySolvable(Projection(C8),p).

function EightDescent(C4 : UsePari := false, Point := [],
StopWhenFoundPoint := false, BadPrimesHypothesis := false,
DontTestLocalSolvabilityAt := {})
P3<[x]> := Ambient(C4); // for nicer output.
A<theta>, iso, g := EtaleAlgebra(C4);
error if not g/LeadingCoefficient(g) eq Parent(g)!Modulus(A),
"ERROR: The assigned etale algebra is wrong.";
vprintf EightDescent,1:
"The etale algebra is A = \\Q[T]/(g(T)) where g = %o\n", g;
g := ChangeRing(g,Integers());
// for nicer output we assign the names theta_1 and theta_2:
K1<theta_1> := Codomain(iso)[1];
vprintf EightDescent,1: "It is isomorphic to ";
if #iso(theta) eq 2 then
K2<theta_2> := Codomain(iso)[2];
vprintf EightDescent,1:
"K_1\\times K_2 where K_1 = \\Q[T]/(%o) and K_2 = \\Q[T]/(%o).\n",
DefiningPolynomial(K1), DefiningPolynomial(K2);

else
vprintf EightDescent,1: "K_1 where K_1 = \\Q[T]/(%o).\n",
DefiningPolynomial(K1);

end if;
Qsing := SingularQuadricsInThePencil(C4);
vprintf EightDescent,1: "The singular quadrics in the pencil are \n%o ",
DefiningPolynomial(Qsing[1]);
if #Qsing eq 2 then
vprintf EightDescent,1: "and\n%o ", DefiningPolynomial(Qsing[2]);

end if;
vprintf EightDescent,1: "and their conjugates.\n";
vprintf EightDescent,4: "As symmetric matrices: \n%o\n",
<SymmetricMatrix(DefiningPolynomial(C)) : C in Qsing>;
if UsePari then
error if #Qsing gt 1, "do not use PARI.
Magma should be able to find a point.";
C, pr := ConicOfSingularQuadric(Qsing[1]);
C := ImprovedIntegralModel(C);
diagmap := diag(C);
m := InputForPARI(Codomain(diagmap));
// writes the necessary data into the file "conic.gp".
print "\n\n\nOpen conic.gp with PARI/GP,";
print "it writes the solution to the file solution.m.";
print "(You need Denis Simon’s file ell.gp)";
print "Then load the file solution.m.";
print "It contains the point you can use as optional parameter.";
return " ";

end if;
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vprintf EightDescent,2: "\nComputation of the tangent planes.\n";
ts := [TangentPlaneAt(Q : Point:=Point) : Q in Qsing];
L := <DefiningPolynomial(t) : t in ts>;//The linear forms for the map F.
if not IsInvertible(TheMatrix(L)) and StopWhenFoundPoint then
vprintf EightDescent,2: "Checking the intersection of the four planes
with C4 for Q-rational points.\n";
trivialpts := Points(Scheme(C4, &*[Qx!ProductOfConjugates(Li)
: Li in L])) where Qx := CoordinateRing(Ambient(C4));
if not IsEmpty(trivialpts) then
vprintf EightDescent,1: "Tangent planes meet C4 in a Q-point:\n";
return trivialpts;

end if;
end if;
while not IsInvertible(TheMatrix(L)) do
vprint EightDescent, 2 : "M is not invertible.";
L := <DifferentTangentPlane(Qsing[i],L[i]) : i in [1..#L]>;
vprintf EightDescent,2: "We chose a different point.\nNow L = %o\n",L;

end while;
vprintf EightDescent,2: "Computing the third quadric ... \n";
vtime EightDescent,2: Q3 := ThirdQuadric(C4,L); //(C4,L);
vprintf EightDescent,1: "The third quadric in the pencil is %o.\n", Q3;
vprintf EightDescent,4:"As symmetric matrix:\n%o\n",SymmetricMatrix(Q3);
c := TheConstant(C4,L,Q3);
vprintf EightDescent,1:
"The constant in L_1L_2L_3L_4 = c*Q3^2 is c = %o.\n", c;
vprintf EightDescent,2: "\nComputing the bad primes ...\n";
t := Cputime();
S := MyBadPrimes(C4,L,Q3 : BadPrimesHypothesis := BadPrimesHypothesis);
vprintf EightDescent,2:
"Time: %o for computing the set of bad primes.\n", Cputime(t);
vprintf EightDescent,1: "The set of bad primes is %o.\n", S;
vprintf EightDescent,2: "\nComputing the subset H of A(S,2)/Q(S,2),
fulfilling the norm condition.\n";
t := Cputime();
H,A_to_AS2Q,toVec,bU := TheSetH(C4,c,S);
vprintf EightDescent,2:
"Time: %o for computing the set H.\n", Cputime(t);
// if H is empty then we can stop.
if IsEmpty(H[2]) then
return [];

end if;
vprintf EightDescent,2:
"\nComputing the intersection of the local images\n";
S := S diff DontTestLocalSolvabilityAt;
if not IsEmpty(DontTestLocalSolvabilityAt) then
vprintf EightDescent,3:
"Attention: We do not test local solvability at %o.\n",
DontTestLocalSolvabilityAt;

end if;
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t := Cputime();
Sel, mSel := FakeSelmerSet(C4,L,g,Q3,S,H,A_to_AS2Q,toVec,bU);
vprintf EightDescent,2: "Time: %o
for computing the intersection of the local images\n", Cputime(t);
Xi := {iso(xi @@ mSel) : xi in Sel};
vprintf EightDescent,1: "The fake Selmer set consists of \n%o\n", Xi;
return &cat[ThreeQuartics(C4,L,Q3,xi) : xi in Xi];

end function;
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Chapter 6

Cohomological Interpretation
of 4- and 8-Descent

6.1 Galois Cohomology of 4-Descent

6.1.1 The Main Tool

Let φ4 : C4 → C2 be an everywhere locally solvable 2-covering of the 2-
descendent C2 : y2 = g(x, z), if there is one. Let Ri := (θi, 0) ∈ C2(Q̄),
i = 1, . . . , 4, and R := {R1, . . . , R4} the set of ramification points on C2.
Then the divisor cut out by the vertical line x− θiz = 0 is (x− θiz)C2 = 2Ri.
The pullback φ∗4(Ri) is the divisor cut out by a surface (Gi)C4 = φ∗4(Ri) for
some form Gi ∈ Q[θi][x1, . . . , x4]. For the model of C4 as intersection of two
quadrics in P3 and φ4 : C4 → C2 given by invariant theory, we can even tell
explicitly what Gi = 0 is: It is the plane through the four hyperosculating
points φ−1

4 (Ri). See Remark 2.4.3 for the fact that they lie on a plane. Hence
we have the following equality in the coordinate ring Q[θi][C4]

G2
i ξi = φ∗4(x− θiz) (6.1)

for some constant ξi ∈ Q[θi]. We choose Ri 7→ Gi Galois-equivariant and
write G := (Gi) ∈ A[C4]. Let ξ := (ξi) ∈ A∗.

This ξ is the most important ingredient for the whole Galois cohomo-
logical interpretation. We will see that we have a kind of correspondence
between 2-coverings of C2 and elements of A∗

(φ4 : C4 → C2)←→ ξ.

Before we get into the Galois cohomology, I want to note that already at
this stage we can prove that 4-descent [15] really finds all everywhere locally
solvable 2-coverings of C2.
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Theorem 6.1.1. Let φ4 : C4 → C2 be an everywhere locally solvable 2-
covering of C2. Let ξ as above. Then

ξ ∈ Sel
(2)
fake(C2/Q).

Proof. Let φ4 : C4 → C2 and ξ be given, such that G2ξ = φ∗4(x − Tz)
in A[C4]. Then for every place v and every point Qv ∈ C4(Qv) we have

(x− T )(φ4(Qv)) ≡ ξG(Qv)
2 ≡ ξ ∈ A∗

v/A
∗2
v Q∗

v, hence ξ ∈ Sel
(2)
fake(C2/Q).

Remark 6.1.2. If Sel
(2)
fake(C2/Q) happens to be empty as for the 2-descendents

in the example of the elliptic curve E : y2 + y = x3−x2− 929x− 10595 given
in [15], then this theorem shows that there is no everywhere locally solvable
2-covering of C2. Thus this theorem verifies Merriman, Siksek, and Smart’s
claim that they have computed the 2-primary part of the Shafarevich-Tate
group of the elliptic curve. They did show that for every 2-descendent the set
of points C2(Q) is empty, hence C2 ∈X(E/Q), and #X(E/Q) is at least
4, but they did not show that all everywhere locally solvable 2-coverings of C2

can be obtained by their method and hence #X(E/Q) = 4.

6.1.2 More on the Correspondence

In the following I want to say some more words on the correspondence be-
tween 2-coverings of C2 and elements of A∗

(φ4 : C4 → C2)←→ ξ.

For a given ξ ∈ A∗, we can construct two different 2-coverings φ±4 : C4 →
C2 as we have seen in Section 1.4.1. C4 and φ±4 are constructed from the
equation

(x− Tz)(P ) = ξη2 (6.2)

for a generic point P = (x : y : z) on C2 and a generic element η = y1 +θy2 +
θ2y3 + θ3y4 ∈ A. The curve C4 is deduced from this such that η leads to a
generic point Q = (y1 : . . . : y4) on C4. The map φ±4 is defined by mapping Q
to (x : ±y : z). With G(y1, . . . , y4) := y1 +θy2 +θ2y3 +θ3y4 ∈ A[C4] equation
(6.2) reads

(x− Tz)(φ±4 (y1 : . . . : y4)) = ξG(y1, . . . , y4)
2,

which is nothing else than equation (6.1) with the same ξ as the one we
started with.

For the converse, if we have a 2-covering φ4 : C4 → C2, then we get an
element ξ ∈ A∗ and a linear form G ∈ A[C4] such that equation (6.1) holds

G2ξ = φ∗4(x− Tz).
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Further, we can assume by a linear change of variables that G is given by
G(y1, . . . , y4) = y1+θy2+θ2y3+θ3y4 and C4 is embedded in P3 with variables
y1, . . . , y4. Then reversing the above argument our initial φ4 : C4 → C2 is
one of the two 2-coverings that we can construct out of ξ.

6.1.3 Cohomological Interpretation of Sel
(2)
fake(C2/Q)

Now we turn our attention to the Galois cohomological interpretation of 4-
descent. We need some maps, which we will define below. Assume that there
exists an everywhere locally solvable 2-covering φ4 : C4 → C2. The following
map is a kind of twisted version of the connecting homomorphism

δ2 : E(Q) −→ H1(Q, E[2])

of the long exact cohomology sequence. To indicate that the following map
depends on the choice of the 2-covering φ4 : C4 → C2, I denote it by δφ4 . Let

δφ4 : C2(Q) −→ H1(Q, E[2])

P 7−→ (σ 7→ [Qσ −Q])

where Q ∈ C4(Q̄) with φ4(Q) = P . Let e2 be the Weil pairing, and fix
R1 ∈ R. Now we interpret Ā as Map(R, Q̄) and A as the Galois-equivariant
subset Map(R, Q̄)Gal(Q̄/Q). Let

ε : E[2] −→ µ2(Ā)/µ2

T 7−→ (Ri 7→ e2(T, [Ri −R1])).

Remark 6.1.3. The map above is a special case of the map ε introduced by
Poonen and Schaefer in the end of Section 6 in [17].

This can be seen by applying Proposition 7.1 in [17], which reads in our
notation: If T ∈ E[2], then ε(T ) = (Ri 7→ e2(T,Ri)). Poonen and Schaefer
extended the Weil pairing such that they are able to write e2(T,Ri). The bilin-
earity of their extended pairing implies e2(T, [Ri−R1]) = e2(T,Ri)/e2(T,R1),
hence in µ2(Ā)/µ2 we have the equality

(Ri 7→ e2(T, [Ri −R1])) = (Ri 7→ e2(T,Ri)) = ε(T ).

Notice that ε is independent of the choice of R1 since we divide by µ2,
thus ε is a homomorphism of Galois modules, hence it induces a map

ε∗ : H1(Q, E[2]) −→ H1(Q, µ2(Ā)/µ2).
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Variations of this map are also studied by Lopez-Neumann [11]. We also
need the injective homomorphism from the Kummer sequence

q∗ : A∗/A∗2Q∗ ⊂ - H1(Q, µ2(Ā)/µ2)

a - (σ 7→ ασ/α) with α2 = a

which can also be found in [17]. With the ξ ∈ A∗ from (6.1) above we have
the translation by ξ-map

A∗/A∗2Q∗ → A∗/A∗2Q∗, α 7→ αξ.

In addition, we have all these maps locally, i.e. over Qv. To relate them we
have the canonical restriction maps

resv : H1(Q, E[n]) −→ H1(Qv, E[n])

and on the corresponding groups from the étale algebra modulo squares and
scalars

resv : A∗/A∗2Q∗ −→ A∗
v/A

∗2
v Q∗

v

where Av := A ⊗ Qv, which we also denote by resv. Now we can set up the
main diagram for the Galois cohomological interpretation of 4-descent.

Theorem 6.1.4. The following diagram commutes.

C2(Q)
x− T

- A∗/A∗2Q∗

A∗/A∗2Q∗

·ξ
?

H1(Q, E[2])

δφ4

? ε∗ - H1(Q, µ2(Ā)/µ2).

q∗
?

∩

The same holds over Qv. For that, we take the local versions of the maps
δφ4,v, ε∗,v, q∗,v, and multiplication by resv(ξ). Notice that ξ is defined globally.

Proof. The main tool for the proof is the following short cut map, going from
the upper left corner to the lower right one.

s : C2(Q) −→ H1(Q, µ2(Ā)/µ2)

P 7−→
(
σ 7→

(
Ri 7→

Gi(X + [Qσ −Q])

Gi(X)

))
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where Gi is as in equation (6.1), Q is a point of C4(Q̄) with φ4(Q) = P , and
X is any point on C4 such that Gi is non-zero at X and X + [Qσ −Q]. Here
the plus sign means the action of E on C4.

By a slight generalization of the definition of the Weil pairing we get (up
to a global change of sign for all i simultaneously)

e2(T, [Ri −R1]) =
Gi(X + T )

Gi(X)
,

which shows that the lower triangle commutes, i.e. ε∗ ◦ δφ4 = s.
To show that the upper triangle commutes, let P ∈ C2(Q) and Q ∈ C4(Q̄)

such that φ4(Q) = P . First, assume that P /∈ R. Then (x−T )(P ) = ξG(Q)2

in A∗/A∗2Q∗, and putting X = Q, we get

s(P ) =

(
σ 7→

(
Ri 7→

Gi(Q
σ)

Gi(Q)

))
= (σ 7→ (ασ/α))

where α = (Ri 7→ Gi(Q)) = G(Q) ∈ Ā∗ = Map(R, Q̄∗). Hence

q∗(ξ · ((x− T )(P ))) = q∗(ξ
2G2(Q))

= q∗(G
2(Q))

= (σ 7→ ασ/α)

= s(P ).

The case P ∈ R does not happen over Q, since else C2 has a trivial Q-
rational point, and we do not do a further descent. However, over Qv this
can happen, and then we use linearity.

For that, let PE ∈ E(Qv) be any point such that P + PE /∈ R. The plus
sign means action of E on C2. Then (x− T )(P ) = ((x− T )(P + PE))/((x−
T )(PE), where (x− T )(PE) means evaluation of the x− T -map at a suitable
degree 0 divisor representing PE. Remember that the x − T -map can be
defined on all of Pic(C2). On the other hand, δφ4(P +PE) = δφ4(P )+ δ2(PE)
by the following lemma. Hence the claim follows from ε∗δ2(PE) = q∗((x −
T )(PE)), which holds by [17, Theorem 9.4], see also Theorem 6.1.8 below.

Lemma 6.1.5. Let P ∈ C2(Q) and PE ∈ E(Q). Then

δφ4(P + PE) = δφ4(P ) + δ2(PE).

The same holds over Qv.
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Proof. Let QE ∈ E(Q̄) with [2]QE = PE, then δ2(PE) = (σ 7→ (Qσ
E − QE)).

On the other hand, φ4(Q+QE) = P + PE, hence

δφ4(P + PE) = (σ 7→ [(Q+QE)σ − (Q+QE)])

= (σ 7→ [Qσ −Q]) + (σ 7→ (Qσ
E −QE))

= δφ4(P ) + δ2(PE).

Lemma 6.1.6. If there exists an everywhere locally solvable 2-covering φ4 :
C4 → C2 of C2, then⋂

v

res−1
v (δφ4,v(C2(Qv))) = Sel(2)(E/Q)

in H1(Q, E[2]).

Proof. Take a point Qv ∈ C4(Qv) as the origin for the group law on C4, and
Pv := φ4(Qv) as the origin for the group law on C2, then C4

∼= C2
∼= E, and

φ4 is multiplication by 2. With these identifications δφ4,v and δ2,v are exactly

the same. The claim follows from Sel(2)(E/Q) =
⋂

v res−1
v (δ2,v(E(Qv)))

The short exact sequence

0→ E[2] ⊂
i- E[4]

[2]- E[2]→ 0,

where i is the inclusion, induces a long exact sequence

0→ E(Q)[2]

2E(Q)[4]
- H1(Q, E[2])

i∗- H1(Q, E[4])
[2]∗- H1(Q, E[2]).

Let π4
2 : Sel(4)(E/ Q) → Sel(2)(E/Q) be the restriction of [2]∗ to the Selmer

groups, then we can compute the fibers of π4
2 by the following

Proposition 6.1.7. If there exists an everywhere locally solvable 2-covering
φ4 : C4 → C2 of C2, then

(π4
2)
−1([C2]) = [C4] + i∗(Sel(2)(E/Q)),

where [Cn] denotes the class in Sel(n)(E/Q) represented by the n-covering Cn.

Proof. Clear.

This shows that we can parametrize the coset (π4
2)
−1([C2]), which we

actually want to compute, by Sel(2)(E/Q). And Sel(2)(E/Q) is related to

Sel
(2)
fake(C2/Q) by Theorem 6.1.4.
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6.1.4 The Size of Sel
(2)
fake(C2/Q)

let us have a more detailed look at the size of the fake Selmer set. It is
exactly 1/2 of the size of Sel(2)(E/Q), since the map ε∗ is 2:1. One can prove
that by elementary methods, looking at the resolvent of g(x).

However, it might be illuminating to deduce it from the theory about
descent on Jacobians of cyclic covers of the projective line [17]. Our curve
C2 : y2 = g(x) is one of the simplest examples of a cyclic cover of the
projective line. We can consider E as the Jacobian of C2 and use the x− T -
map on C2 to do 2-descent on E. This is useless in practice, since we already
did a 2-descent on E to compute C2, however in theory it gives us a new
point of view. Notice that we use the x − T -map on C2, not the one on E.
We just identify E with Pic0(C2) and evaluate the x−T -map on degree zero
divisors of C2. Poonen and Schaefer call the following subgroup of A∗/A∗2Q∗

the fake 2-Selmer group of E:

Sel
(2)
fake(E/Q) :=

⋂
v

res−1
v ((x− T )(E(Qv))).

Below we will identify Sel
(2)
fake(E/Q) with its image under q∗.

Theorem 6.1.8 (Poonen-Schaefer). Let δ2, ε∗, and q∗ as above. Then the
diagram

E(Q)
x− T

on Pic0(C2)
- A∗/A∗2Q∗

H1(Q, E[2])

δ2

? ε∗ - H1(Q, µ2(Ā)/µ2)

q∗

?

∩

commutes. The same holds locally.

Proof. This is a special case of Theorem 9.4 in [17]. Our map δ2 is called
ι there, p = 2, and we restrict the domain of the x − T -map and δ2 to
Pic0(C2) = E(Q). These maps could be defined on a larger domain, but we
do not need that.

Now we come to the fact that the map ε∗ is 2:1.

Theorem 6.1.9 (Poonen-Schaefer). The sequence

0→ µ2
- Sel(2)(E/Q)

ε∗- Sel
(2)
fake(E/Q)→ 0

is exact.
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Proof. This is a special case of Theorem 13.2 in [17]. The conditions for
exactness on the left side are satisfied: g(x) never has factors of degree prime
to p = 2, and the genus of C2 is g = 1, hence is not even. Looking at the
definition of the map µ2 → Sel(2)(E/Q) one even sees that −1 7→ [C2], where
[C2] denotes the class of the 2-covering φ2 : C2 → E in the 2-Selmer group,
i.e. ker(ε∗) = {0, [C2]}.

Next, we will see that our fake Selmer set Sel
(2)
fake(C2/Q) is just a transla-

tion of Sel
(2)
fake(E/Q).

Lemma 6.1.10. Let φ4 : C4 → C2 be an everywhere locally solvable 2-
covering of C2. Let ξ as in equation (6.1). Let v be some place. Let Q0,v ∈
C4(Qv) and P0,v := φ4(Qv). Let ψv : C2(Qv) → E(Qv), Pv 7→ [Pv − P0,v] be
the isomorphism depending on P0,v. Then

C2(Qv)
x− T

on Pic1(C2)
- A∗

v/A
∗2
v Q∗

v

E(Qv)

ψv

? x− T
on Pic0(C2)

- A∗
v/A

∗2
v Q∗

v

· resv(ξ)

?

H1(Qv, E[2])

δ2,v

? ε∗ - H1(Qv, µ2(Āv)/µ2)

qv,∗

?

∩

commutes.

Proof. The commutativity of the lower square is the Theorem above, and
the commutativity of the upper square follows from (x − T )(P0,v) = resv(ξ)
by equation (6.1).

This lemma can be used to give a different proof of Theorem 6.1.4. One
just has to use δ2 ◦ ψ = δφ4 , which holds by Lemma 6.1.5.

Remark 6.1.11. Note that ξ is independent of v. The existence of such a
global ξ depends on the existence of an everywhere locally solvable 2-covering
of C2.

If we do not have an everywhere locally solvable 2-covering of C2, then we
can still get isomorphisms ψ′v : C2(Qv)→ E(Qv), Pv 7→ [Pv−P1,v] by choosing
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any point P1,v ∈ C2(Qv). But then we have to choose ξv := x−T (P1,v) to get
a commutative diagram

C2(Qv)
x− T

on Pic1(C2)
- A∗/A∗2Q∗

E(Q)

ψ′

? x− T
on Pic0(C2)

- A∗/A∗2Q∗.

·ξv
?

Different ξv’s might move the local images to different cosets, such that the
intersection of them is empty, i.e. Sel

(2)
fake(C2/Q) = ∅.

Only if there exists an everywhere locally solvable 2-covering of C2, then
all the local ξv’s patch together to a global ξ, and we get the following

Corollary 6.1.12. If there exists an everywhere locally solvable 2-covering
of C2, then

# Sel
(2)
fake(C2/Q) =

1

2
# Sel(2)(E/Q),

else # Sel
(2)
fake(C2/Q) = 0.

Proof. If there exists an everywhere locally solvable 2-covering of C2, then
by Lemma 6.1.10 Sel

(2)
fake(C2/Q) is a translation of Sel

(2)
fake(E/Q), hence has

the same size, and # Sel
(2)
fake(E/Q) = 1

2
# Sel(2)(E/Q) by Theorem 6.1.9.

If there is no everywhere locally solvable 2-covering of C2, then Sel
(2)
fake(C2/

Q) is empty by Theorem 6.1.1.

This shows why it makes sense that we can construct two 2-coverings out
of one element ξ ∈ A∗.

6.2 Galois Cohomology of 8-Descent

The Galois cohomological interpretation of 8-descent is very similar to the
one of 4-descent. We use the same tools and get analogous results.

6.2.1 The Main Tool

Let φ4 : C4 → C2 be an everywhere locally solvable 2-covering of the 2-
descendent C2. Now we assume that there exists an everywhere locally solv-
able 2-covering φ8 : C8 → C4 of C4. Let L ∈ A[C4] be the linear form which
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defines the descent map F . Geometrically, L = 0 defines a tangent plane to
the generic singular quadric in the pencil. Denote the divisor cut out by this
plane by (L)C4 = 2(Sθ

1 + Sθ
2). By the lemma below the pullback φ∗8(S

θ
1 + Sθ

2)
is the divisor cut out by a hyperplane (G)C8 = φ∗8(S

θ
1 + Sθ

2) for some linear
form G ∈ A[C8]. Hence we have the following equality in the coordinate ring
A[C8]

G2ξ = φ∗8(L) (6.3)

for some constant ξ ∈ A∗.

Lemma 6.2.1. The divisor φ∗8(S
θ
1 +Sθ

2) is the divisor cut out by a hyperplane
defined over A for a suitable model of C8.

Proof. Let θ1, . . . , θ4 be the roots of g in Q̄, and L1, . . . , L4 the corresponding
linear forms. Let the divisor (Li)C4 = 2(Sθi

1 +Sθi
2 ). Note that φ∗8(S

θi
1 +Sθi

2 ) =∑
T∈E[2]((Q

θi
1 +T )+(Qθi

2 +T )) for some Qθi
1 , Q

θi
2 ∈ C8(Q̄) with φ8(Q

θi
1 ) = Sθi

1

and φ8(Q
θi
2 ) = Sθi

2 . Here Qθi
j + T is the action of E on C8.

Then the class of the divisor

[φ∗8((S
θi
1 + Sθi

2 )−(Sθ4
1 + Sθ4

2 ))]

=
∑

T∈E[2]

[(Qθi
1 + T ) + (Qθi

2 + T )− (Qθ4
1 + T )− (Qθ4

2 + T )]

=
∑

T∈E[2]

[Qθi
1 +Qθi

2 −Qθ4
1 −Qθ4

2 ]

= 4[Qθi
1 +Qθi

2 −Qθ4
1 −Qθ4

2 ]

= 2[Sθi
1 + Sθi

2 − Sθ4
1 − Sθ4

2 ]

= O,

since [Sθi
1 + Sθi

2 − Sθ4
1 − Sθ4

2 ] ∈ E[2] by Corollary 3.6.4. Thus φ∗8(S
θi
1 + Sθi

2 )
is linearly equivalent to φ∗8(S

θ4
1 + Sθ4

2 ) =: D for all i. Hence it is enough to
show that D is the divisor cut out by a hyperplane for a suitable model of
C8.

For that, we can use the degree 8 divisor D, whose class is defined over
Q, to embed C8 into a Severi-Brauer variety S/Q of dimension 7. Since C8

is everywhere locally solvable, so is S, hence has a Q-rational point by the
Hasse principle, thus is Q-isomorphic to P7. For this embedding of C8 into
P7 the divisor D obviously lies on a plane.

Since φ∗8(S
θi
1 + Sθi

2 ) is defined over Q[θi], the hyperplane Gi = 0 through
it is defined over Q[θi], moreover θi 7→ φ∗8(S

θi
1 + Sθi

2 ) is Galois-equivariant,
hence we can choose θi 7→ Gi Galois-equivariant, then G := (Gi) is defined
over A.
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With this ξ we have again a kind of correspondence between 2-coverings
of C4 and elements of A∗

(φ8 : C8 → C4)←→ ξ

We now prove the most important part of this correspondence, which
shows that our method of doing an 8-descent finds all everywhere locally
solvable 2-coverings of C4.

Theorem 6.2.2. Let φ8 : C8 → C4 be an everywhere locally solvable 2-
covering of C4. Let ξ as above. Then

ξ ∈ Sel
(2)
fake(C4/Q).

In particular, if Sel
(2)
fake(C4/Q) = ∅, then there cannot exist an everywhere

locally solvable 2-covering of C4.

Proof. Let φ8 : C8 → C4 and ξ be given, such that G2ξ = φ∗8(L) in A[C8].
Then for every place v and every point Qv ∈ C8(Qv) we have L(φ8(Qv)) ≡
ξG(Qv)

2 ≡ ξ ∈ A∗
v/A

∗2
v Q∗

v, hence ξ ∈ Sel
(2)
fake(C4/Q).

6.2.2 More on the Correspondence

The correspondence between 2-coverings of C4 and elements of A∗

(φ8 : C8 → C4)←→ ξ

is very similar to the case of 4-descent.
For a given ξ ∈ A∗, we can construct two different 2-coverings φ±8 : C±

8 →
C4 as we have seen in Section 5. C±

8 and φ±8 are constructed from the equation

F (P ) = ξy2 (6.4)

for a generic point P = (x1 : . . . : x4) on C4 and a generic element y =
y1 + θy2 + θ2y3 + θ3y4 ∈ A, which leads to a generic point Q = (y1 : . . . :
y4) on C+

8 ∪ C−
8 . The maps φ±8 are defined by mapping Q to P . With

G(y1, . . . , y4) := y1 + θy2 + θ2y3 + θ3y4 ∈ A[y1, . . . , y4] equation (6.4) reads

L(φ±8 (y1 : . . . : y4)) = ξG(y1, . . . , y4)
2,

which is nothing else than equation (6.3) with the same ξ as the one we
started with.
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For the converse, if we have a 2-covering φ8 : C8 → C4, then there is an
element ξ ∈ A∗ and a linear form G ∈ A[C8] by Lemma 6.2.1 such that

G2ξ = φ∗8(L).

for a suitable model of C8 ⊂ Pn with variables z1, . . . , zn+1. The proof of
the lemma shows n = 7. Write G = G1(z1, . . . , zn+1) + θG2(z1, . . . , zn+1) +
. . .+ θ3G4(z1, . . . , zn+1) with Gi(z1, . . . , zn+1) ∈ Q[z1, . . . , zn+1], i = 1, . . . , 4.
Then by the linear change of variables yi := Gi(z1, . . . , zn+1), i = 1, . . . , 4, we
get G = y1 + θy2 + θ2y3 + θ3y4. In addition, this linear change of variables
should give an embedding of C8 into P3, which coincides with one of the two
2-coverings we can construct out of ξ.

Then reversing the above argument our initial φ8 : C8 → C4 would be
one of the two 2-coverings that we can construct out of ξ.

6.2.3 Cohomological Interpretation of Sel
(2)
fake(C4/Q)

For the Galois cohomological interpretation of 8-descent we need almost the
same maps as for the 4-descent. Assume that there exists an everywhere
locally solvable 2-covering φ8 : C8 → C4 of C4. Let

δφ8 : C4(Q) −→ H1(Q, E[2])

P 7−→ (σ 7→ [Qσ −Q])

where Q ∈ C8(Q̄) with φ8(Q) = P . Let ε∗ and q∗ the maps defined in Section
6.1.3.

Now the main diagram for the Galois cohomological interpretation of
8-descent is the following

Theorem 6.2.3. The following diagram commutes, and the local versions,
too.

C4(Q)
F

- A∗/A∗2Q∗

A∗/A∗2Q∗

·ξ
?

H1(Q, E[2])

δφ8

? ε∗ - H1(Q, µ2(Ā)/µ2).

q∗
?

∩
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Proof. The proof is completely analogous to the one of Theorem 6.1.4. Here
we use

s : C4(Q) −→ H1(Q, µ2(Ā)/µ2)

P 7−→
(
σ 7→

(
Ri 7→

Gi(X + [Qσ −Q])

Gi(X)

))
where Gi is as in equation (6.3), Q is a point of C8(Q̄) with φ8(Q) = P , and
X is any point on C8 such that Gi is non-zero at X and X + [Qσ −Q].

Lemma 6.2.4. If there exists an everywhere locally solvable 2-covering φ8 :
C8 → C4 of C4, then⋂

v

res−1
v (δφ8,v(C4(Qv))) = Sel(2)(E/Q).

Proof. Analogous to the proof of Lemma 6.1.6.

The short exact sequence

0→ E[2] ⊂
i- E[8]

[2]- E[4]→ 0,

where i is the inclusion, induces a long exact sequence

0→ E(Q)[4]

2E(Q)[8]
- H1(Q, E[2])

i∗- H1(Q, E[8])
[2]∗- H1(Q, E[4]).

Let π8
4 : Sel(8)(E/ Q) → Sel(4)(E/Q) be the restriction of [2]∗ to the Selmer

groups, then we can compute its fibers by the following

Lemma 6.2.5. If there exists an everywhere locally solvable 2-covering φ8 :
C8 → C4 of C4, then

(π8
4)
−1([C4]) = [C8] + i∗(Sel(2)(E/Q)).

Proof. Clear.

This shows that we can parametrize the coset (π8
4)
−1([C4]), which we

actually want to compute, by Sel(2)(E/Q). And Sel(2)(E/Q) is related to

Sel
(2)
fake(C4/Q) by Theorem 6.2.3.
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6.2.4 The Size of Sel
(2)
fake(C4/Q)

The size of the fake Selmer set Sel
(2)
fake(C4/Q) is 0 or half of the size of

Sel(2)(E/Q). It should be possible to show that the diagram

E(Q)
F

on Pic0(C4)
- A∗/A∗2Q∗

H1(Q, E[2])

δ2

? ε∗ - H1(Q, µ2(Ā)/µ2)

q∗

?

∩

commutes, and then one can proceed as in Section 6.1.4.
However, we can use Theorem 3.6.5, which says that im(F ) and im(x−T )

coincide up to a translation.

Theorem 6.2.6. Let φ4 : C4 → C2 be a 2-covering of C2, and let ξ4 be
the corresponding element in A∗. Assume there exists an everywhere locally
solvable 2-covering φ8 : C8 → C4, and let ξ8 be the corresponding element in
A∗. Let Qv ∈ φ8(C8(Qv)), and Pv := φ4(Qv). Then we have an isomorphism
(of elliptic curves) ψv : C4 → C2 defined by mapping Qv 7→ Pv and the
diagram

C4(Qv)
Fv - A∗

v/A
∗2
v Q∗

v

C2(Qv)

ψv

? x− T
- A∗

v/A
∗2
v Q∗

v

· resv(ξ4/ξ8)

?

commutes.

Proof. By the proof of Theorem 3.6.5 we have Fv = αvψ
∗
v(x − T ) for some

αv in A∗
v. Since Fv(Qv) = resv(ξ8) and (x− T )(ψv(Qv)) = resv(ξ4), we must

have αv = resv(ξ4/ξ8).

The novelty here is that the translation can be obtained by a global object
ξ8/ξ4.

Corollary 6.2.7. If there exists an everywhere locally solvable 2-covering of
C4, then

# Sel
(2)
fake(C4/Q) =

1

2
# Sel(2)(E/Q),

else # Sel
(2)
fake(C4/Q) = 0.
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Proof. If there exists an everywhere locally solvable 2-covering of C4, then by
the previous theorem Sel

(2)
fake(C4/Q) is translation of Sel

(2)
fake(C2/Q) by ξ4/ξ8,

hence has the same size, and # Sel
(2)
fake(C2/Q) = 1

2
# Sel(2)(E/Q) by Corollary

6.1.12.
If there is no everywhere locally solvable 2-covering of C4, then Sel

(2)
fake(C4/

Q) is empty by Theorem 6.2.2.

Again, this shows why it makes sense that we can construct two 2-
coverings out of one element ξ ∈ A∗. By a counting argument we get the

Corollary 6.2.8. The two 2-coverings φ±8 : C±
8 → C4 constructed out of an

element ξ ∈ Selfake(C4/Q) are both everywhere locally solvable.
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Chapter 7

Examples

7.1 X(E/Q) ⊃ (Z/8Z)2

The method of 8-descent can be used to show that there are elements of
order 8 in X(E/Q) for certain elliptic curves E. In the following example
E has many isogenous curves, and the étale algebra splits into two number
fields of degree 2. So this is an example for the split case, whereas the generic
case will occur in the next example. The existence of isogenies has some nice
effects. The first is, that the coefficients do not get blown up so much, so
this example illustrates the method of 8-descent very nicely. Secondly, using
isogenous curves we can actually prove that X(E/Q) = (Z/8Z)2, whereas
an 8-descent could only show X(E/Q) ⊃ (Z/8Z)2. For proving equality by
descent, one would have to do a fourth 2-descent, i.e. a 16-descent.

However, if there are no isogenies, then we are dependent on 8-descent to
show X(E/Q) ⊃ Z/8Z, which I could do for example for the elliptic curve
which is referred to as 31252a1 in John Cremona’s database.

7.1.1 The Elliptic Curve 1230f7

The elliptic curve E : y2 + xy + y = x3 + x2 − 14346720x − 20921901465,
which is referred to as 1230f7 in John Cremona’s database, is known to have
(analytical-) rank 0 and torsion subgroup {O, T} with the 2-torsion point
T = (−8749/4, 8745/8). The Birch and Swinnerton-Dyer conjecture predicts
that #X(E/Q) = 64, which would mean X(E/Q) = Z/8Z × Z/8Z, since
the bound on the rank of E from the the 2-Selmer rank is 2.

It can be proven that the Birch and Swinnerton-Dyer conjecture is true for
this curve. I learned the methods from William A. Stein at the workshop on
Rational Points on Curves in Bremen, 2005. He gave a talk about the project
of proving the Birch and Swinnerton-Dyer conjecture for all curves up to
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conductor 1000 with some additional assumptions. Our curve has conductor
1230, hence is not in this list, but the same methods can be applied:

The index of the Heegner point on the quadratic twist by -119 of E is 256,
which can be computed with SAGE [23], hence by Kolyvagin’s Theorem [12]
#X(E/Q) must be a power of 2. Thus it remains to prove the Birch and
Swinnerton-Dyer conjecture at the prime 2. By Cassels’ Isogeny Theorem [4]
it is enough to do that for an isogenous curve. So we look at the isogenous
curves and find that the curve 1230f1 has conjecturally trivial Shafarevich-
Tate group, which can be proven already by a 2-descent.

Now we know that X(E/Q) = Z/8Z × Z/8Z, but how do the curves
in X(E/Q) look like? Nobody has ever seen a curve of order 8 in the
Shafarevich-Tate group of an elliptic curve. By an 8-descent, we can con-
struct such a curve, and the following example illustrates the methods very
nicely.

First, we start with a 2-descent on E and get three curves, one of which
is

C2 : y2 = −3240x4 + 13121x2 − 13284.

Strictly speaking, we get a 2-covering φ2 : C2 → E.
By a second 2-descent on C2, i.e. a 4-descent, we get four curves, one of

which is

C4 :

{
Q1 := 2x1x2 + x2

3 + 10x2
4 = 0,

Q2 := x2
1 + 656x2

2 − 162x3x4 = 0.

Again, strictly speaking, we get a 2-covering φ4 : C4 → C2.
This is the starting position for us. We want to perform a third 2-descent

on C4, i.e. an 8-descent. For that we have to compute the descent map F .

7.1.2 The Descent Map

The étale algebra is A = Q[T ]/(g(T )) where g = −10T 4+13121T 2−4304016.
It is isomorphic to K1 × K2 where K1 := Q[θ1] := Q[T ]/(T 2 − 10) and
K2 := Q[θ2] := Q[T ]/(T 2 + T − 10).

The singular quadrics in the pencil are

x2
1 + 81/5θ1x1x2 + 656x2

2 + 81/10θ1x
2
3 − 162x3x4 + 81θ1x

2
4 = 0

and

x2
1 + (16θ2 + 8)x1x2 + 656x2

2 + (8θ2 + 4)x2
3 − 162x3x4 + (80θ2 + 40)x2

4 = 0

and their conjugates.
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Projection from the singularity of the first singular quadric leads to a
conic given by θ1z

2
1 + 162z1z2 + 656θ1z

2
2 + 81z2

3 = 0. Its diagonalization is
−4z2

1 + z2
2 − 1296θ1z

2
3 = 0. The negative of the first coefficient is a square,

which gives the point (−1/2 : 1 : 0) on the diagonalized conic, which maps
back to the point (−8θ1 : 1 : 0) on the original conic. The tangent line to
this point is 2z1 +16θ1z2 = 0, which lifts under the projection to the tangent
plane L1 := x1 + 8θ1x2 = 0.

Projection from the singularity of the second singular quadric leads to a
conic given by z2

1+(8θ2+4)z2
2−162z2z3+(80θ2+40)z2

3 = 0. Its diagonalization
is (32θ2 + 16)z2

1 + z2
2 − 16z2

3 = 0. The negative of the third coefficient is a
square, which gives the point (0 : 4 : 1) on the diagonalized conic, which
maps back to the point (0 : 1/2(2θ2 + 1) : 1) on the original conic. The
tangent line to this point is 2z2 + (−2θ2 − 1)z3 = 0, which lifts under the
projection to the tangent plane L2 := 2x3 + (−2θ2 − 1)x4 = 0.

The descent map is then

F : C4(Q)→ A∗/A∗2Q∗

P 7→ (L1(P ), L2(P ))

7.1.3 The Fake Selmer Set

Let L3 and L4 be the conjugates of L1 and L2, then L1L2L3L4 = 4x2
1x

2
3 −

41x2
1x

2
4 − 2560x2

2x
2
3 + 26240x2

2x
2
4 satisfies the norm condition

L1L2L3L4 = cQ2
3 mod I(C4)

for Q3 = x1x4 + 8x2x3 and c = −81.
The set of bad primes consists of S := {∞, 2, 3, 5, 41}, which are al-

ready the prime divisors of the discriminant of g. There are no common
prime divisors of the coefficients of L1 or L2, and the prime divisors of c
are already in S. The image of the projection of the singular subscheme
of Proj(Z[x1, x2, x3, x4]/(Q1, Q2, Q3)) to Spec(Z) is the ideal generated by
8501760, whose prime divisors are already contained in S.

Taking the intersection of the local images we get the fake Selmer set. It
consists of the following subset of A∗/A∗2Q∗

{(1,−10θ2 − 37), (5, 10θ2 + 37), (5,−10θ2 − 37), (1, 10θ2 + 37)}

represented by elements of K1 ×K2.

7.1.4 Representation as 2-coverings

Next, I want to show how one can represent the elements of the fake Selmer
set as 2-coverings of C4. let us take for example ξ := (1,−10θ2 − 37). Then

80



ξ is a possible image of the map F , say the image of the hypothetical point
P = (x1 : x2 : x3 : x4). We know ξ only up to the square of an element
y = (y1 + θ1y2, y3 + θ2y4) ∈ K1 × K2. In this particular case the equation
(5.1) F (P ) = ξy2 reads

x1 + 8θ1x2 = 1 · (y1 + θ1y2)
2

2x3 + (−2θ2 − 1)x4 = (−10θ2 − 37)(y3 + θ2y4)
2

Since we do not know x1, . . . , x4 and y1, . . . , y4, we interpret them as variables.
Multiplying out the right hand side and sorting by powers of θ1 and θ2 gives

x1 + 8x2θ1 = y2
1 + 10y2

2 + 2y1y2θ1

2x3 − x4 − 2x4θ2 = −37y2
3 − 200y3y4 − 270y2

4 − (10y2
3 + 54y3y4 + 73y2

4)θ2

where we can read off immediately

x1 = y2
1 + 10y2

2,

x2 =
1

4
y1y2,

x3 = −16y2
3 −

173

2
y3y4 −

467

4
y2

4,

x4 = 5y2
3 + 27y3y4 +

73

2
y2

4.

(7.1)

This corresponds to inverting the matrix M =

(
1 0 0 0
0 8 0 0
0 0 2 0
0 0 −1 −2

)
. In addition,

(x1 : x2 : x3 : x4) must be a point on C4, thus substituting (7.1) into Q1 and
Q2 gives two quartics

G1 :=
1
2
y3
1y2 + 5y1y

3
2 + 506y4

3 + 5468y3
3y4 +

88633
4

y2
3y

2
4 +

159631
4

y3y
3
4 +

431249
16

y4
4

and

G2 := y4
1 + 61y2

1y
2
2 + 100y4

2 + 12960y4
3 + 140049y3

3y4 +
1135053

2
y2
3y

2
4+

1022139y3y
3
4 +

2761371
4

y4
4.

Let C8 : G1 = G2 = 0 in P3, then equations (7.1) define a rational map

φ8 : C8 → C4.

C8 consists of two components, which are separated by a third quartic coming
from the norm condition. We have N(ξ) = −1 = ca2 for a = 1/9 and
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N(y) = y2
1y

2
3 − y2

1y3y4 − 10y2
1y

2
4 − 10y2

2y
2
3 + 10y2

2y3y4 + 100y2
2y

2
4. Substituting

(7.1) into Q3 gives 5y2
1y

2
3 + 27y2

1y3y4 + 73
2
y2

1y
2
4 − 32y1y2y

2
3 − 173y1y2y3y4 −

467
2
y1y2y

2
4 + 50y2

2y
2
3 + 270y2

2y3y4 + 365y2
2y

2
4 and by Section 4.2.1 the third

quadric is G±
3 := aN(y)±Q3, hence

G+
3 =

46

9
y2

1y
2
3 +

242

9
y2

1y3y4 +
637

18
y2

1y
2
4 − 32y1y2y

2
3 − 173y1y2y3y4−

467

2
y1y2y

2
4 +

440

9
y2

2y
2
3 +

2440

9
y2

2y3y4 +
3385

9
y2

2y
2
4.

Then C+
8 : G1 = G2 = G+

3 = 0 and the 2-covering map φ+
8 : C+

8 → C4 is
given by the equations (7.1).

The three quartics are

C+
8 :



324y3
1y2 + 810y1y

3
2 + 506y4

3 + 10936y3
3y4 + 88633y2

3y
2
4+

319262y3y
3
4 + 431249y4

4,

8y4
1 + 122y2

1y
2
2 + 50y4

2 + 80y4
3 + 1729y3

3y4 + 14013y2
3y

2
4+

50476y3y
3
4 + 68182y4

4,

46y2
1y

2
3 + 484y2

1y3y4 + 1274y2
1y

2
4 − 144y1y2y

2
3 − 1557y1y2y3y4−

4203y1y2y
2
4 + 110y2

2y
2
3 + 1220y2

2y3y4 + 3385y2
2y

2
4

after the change of variables (y1, y2, y3, y4) → (6y1, 3y2, y3, 2y4) to minimize
it a little bit.

Remark 7.1.1. In this example we also see the effect of E(Q)tors = Z/2Z.
The pair of 2-coverings of C4 corresponding to (1,−10θ2 − 37) and the pair
corresponding to (1, 10θ2 + 37) coincide when considered as 8-coverings of
E. Analogously for (5, 10θ2 + 37) and (5,−10θ2 − 37). Thus we get every
8-covering doubled. It would be nice to be able to remove this redundancy by
dividing out the image of the 2-torsion point T under F . However, I do not
know how to compute F (T ) explicitly.

7.2 X(E/Q)[2∞] = (Z/4Z)2

With the following example I want to demonstrate, how one can use 8-descent
to prove that there are no elements of order 8 in the Shafarevich-Tate group.
For example, if the 2-primary part X(E/Q)[2∞] of the Shafarevich-Tate
group is conjectured to be Z/4Z × Z/4Z, then we can prove that with an
8-descent.

I documented the computations for the curves, which are referred to as
1309a1, 2045b1, and 2738c1 in John Cremona’s database. For these curves we
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are dependent on 8-descent and could not argue with properties of isogenous
curves, since there are none. However, our algorithm also works for curves
which admit isogenies such as the smallest example with X(E/Q) = Z/4Z×
Z/4Z, which is the curve referred to as 210e7.

7.2.1 The Elliptic Curve 1309a1

The elliptic curve E : y2 + y = x3− 406957x− 99924251, which is referred to
as 1309a1 in John Cremona’s database, is known to have (analytical-) rank
0 and trivial torsion subgroup. The Birch and Swinnerton-Dyer conjecture
predicts that #X(E/Q) = 16, which would mean X(E/Q) = Z/4Z×Z/4Z,
since the bound on the rank of E from the 2-Selmer rank is 2.

This is an example of an elliptic curve where 2- and 4-descent do not
suffice. Also arguments involving isogenous curves do not work, since there
are none. However, with an 8-descent we can prove the Birch and Swinnerton-
Dyer conjecture at 2 for E.

First, we start with a 2-descent on E and get three 2-coverings of E, one
of which is

C2 : y2 = −49x4 + 602x3 − 564x2 − 7896x− 8428.

By a second 2-descent on C2, i.e. a 4-descent, we get two 2-coverings of
C2, one of which is

C4 :


Q1 := 2x1x4 + x2

2 + 2x2x4 + x2
3 + x2

4 = 0,

Q2 := 20x2
1 + 54x1x2 + 30x1x3 − 42x1x4 − 7x2

2

− 10x2x3 + 16x2x4 + 9x2
3 − 8x3x4 + 27x2

4 = 0.

Now we want to perform a third 2-descent on C4, i.e. an 8-descent. The
étale algebra is A = Q[T ]/(g(T )) where g = −T 4+94T 3−1104T 2−51952T−
305388. It is isomorphic to K1 := Q[θ1] = Q[T ]/(T 4 +2T 3−8T 2−26T −18).
The singular quadrics in the pencil are 20x2

1+54x1x2+30x1x3+(22θ3
1+14θ2

1−
216θ1−294)x1x4+(11θ3

1+7θ2
1−108θ1−133)x2

2−10x2x3+(22θ3
1+14θ2

1−216θ1−
236)x2x4+(11θ3

1+7θ2
1−108θ1−117)x2

3−8x3x4+(11θ3
1+7θ2

1−108θ1−99)x2
4 = 0

and its conjugates.
Projection from the singularity leads to a conic given by 20z2

1 + 54z1z2 +
30z1z3 + (11θ3

1 + 7θ2
1 − 108θ1 − 133)z2

2 − 10z2z3 + (11θ3
1 + 7θ2

1 − 108θ1 −
117)z2

3 = 0. Its diagonalization is (880θ3
1 + 560θ2

1 − 8640θ1− 13556)z2
1 + z2

2 +
(136320θ3

1 + 39040θ2
1 − 1218560θ1 − 1277440)z2

3 = 0. With Denis Simon’s
program bnfqfsolve2 we find a point on it, which maps back to the point

(−327434629966864θ3 − 279867784717716θ2 + 2939980077503565θ+
5146136309357024 : 109893505280293θ3 + 93910429402642θ2−
986793008550830θ − 1727233694529083 : 306266215)
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on the original conic. Computing the tangent line to this point and lifting it
under the projection gives the tangent plane

L1 := (−567693255674943779θ3 − 2017407134316110321θ2−
2137572801175340600θ + 107985508900551844) x1+

(−463333885980224972θ3 + 335384749241001862θ2+

5811516661189486480θ + 7792437403088126307) x2+

1163029638512734945 x3+

(262798546436372084θ3 + 1100443093653600886θ2−
538820185164886760θ − 3764560453921021559) x4 = 0.

The third quadric in the pencil is

Q3 := 2974787x2
1 + 1424897x1x2 + 11362687x1x3 + 10342334x1x4−

1042924x2
2 + 1138781x2x3 − 15355230x2x4 + 82454564x2

3−
174019395x3x4 − 71385852x2

4 = 0.

The constant in L1L2L3L4 = cQ2
3 is

c = −6292632057862009541394165597481327549166800563779834500

with factorization

22 · 53 · 640633 · 36308934596033.

The discriminant of g is

disc(g) = −11585215152896 = 28 · 76 · 113 · 172.

The primes dividing the norms of the coefficients of L1 are 5, 64063, and
3630893459603. Thus the set S of bad primes contains

{∞, 2, 5, 7, 11, 17, 64063, 3630893459603}

and the primes p such that P8 := Proj(Z[x1, . . . , x4]/(Q1, Q2, Q3)) is singular
mod p. Theoretically, we can compute these primes as the prime divisors
of the image of the projection of the singular subscheme of P8 to Spec(Z),
which is the ideal in Z generated by the 143 digit number

n := 75159089103525444849915608075230855073526033044987421582864

35168814308487932598175699881640740495922365158373377662844

30158166736216370370173750.

However, in practice, we do not want to factor this number, especially, since
the Bad Primes Hypothesis, see Section 4.3, says that we will not need it.
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7.2.2 Verification of the Bad Primes Hypothesis for
this example

With a trick we can avoid factoring this number and prove the Bad Primes
Hypothesis for this particular example. For that, we take a different point
on the conic to get another tangent plane

L′1 = 9307992474361737366413518450504332 x1+

(−4158798521045889515995207369318025θ3
1−

2030775754525517424026749651906603θ2
1+

32664012310589324654637327822198631θ1+

61558499476696659628173494903549206) x2+

(1566228185149088034394987147070779θ3
1−

3271697338720061102947431344773027θ2
1−

9399431118990778085143283383303325θ1+

10072085949969677685351150373055026) x3+

(5496733963643713233107946717495906θ3
1+

6351861831150467970028005168396447θ2
1−

55024974987172814572137348711016743θ1−
88706035846619387824366088271941562) x4 = 0.

We can apply the whole procedure to this L′1, too, and compute the set
of bad primes corresponding to L′1 up to the point where we would have
to factor again a large number. Instead of factoring it, we take the lowest
common multiple of all the numbers involving bad primes – the unfactored
version of the bad primes so to say – and get

s := 26799257723244138696378357567267061361265316055577922453641

01685552727137069420716228801483552756510299740049226931147

31961967613423329127428828456043254864252783972232509940517

03094165150346233364168702575194597263678180542264919208134

06332991479313749664411756122075508849582895585936196224780

53804569642336140616925522093549898909525305000736724492133

670086298136517606324936

Now we have an even larger number, which we cannot factor. So why did
we do that? The reason is, that we easily can compute the greatest common
divisor of n and s, which we expect to be very small, hence easy to factor.
And we only need the greatest common divisor, since the set of bad primes S
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and S ′ coming from L1 and L′1 respectively almost coincide. More precisely,
by Lemma 3.3.1 we have L1/L

′
1 = γ modulo squares for some γ ∈ K1. Hence

S and S ′ coincide up to prime divisors of the Norm of γ, which is in this
example

γ = −5281326327037647789584132568323037044167262755866278θ3
1−

18780123649755990807927682651623316631539407357991972θ2
1−

19915233562059578821369929534670137484664043018179600θ1+

990601659077279637788663075017675360032404708127808

and N(γ) ∈ Z. The prime divisors of n that contribute to S are at most
the ones dividing the greatest common divisor of n and sN(γ), which is
3925156600750. Now this number can easily be factored and all its prime
factors are already contained in the set S which we got in the beginning.

Thus we showed that in this example the Bad Primes Hypothesis is true.

7.2.3 The Fake Selmer Set

Only four elements of A(S, 2)/Q(S, 2) fulfill the norm condition N(ξ) = c
mod squares. These four are killed by the local solvability condition at the
prime 7, hence Sel

(2)
fake(C4/Q) is empty.

The same procedure can be applied to the other five 4-coverings of E,
which would show that the 2-primary part of X(E/Q) is Z/4Z× Z/4Z.

7.3 Searching Points

In this example I want to sketch how 8-descent might be used for finding
large points on elliptic curves in future. let us consider the elliptic curve
E : y2 = x3 + 7823. By analytical methods one can show that this curve has
rank one, but for a long time the generator was not known. In 2002 Stoll
could find that point by a 4-descent [25]. At that time already a method for
minimizing the intersection of two quadrics had been developed by Cremona
and Womack, but still the coefficients were too large for searching points.
What was missing was a method of reduction, which Stoll could find.

Nowadays by a 4-descent on E we get a 4-covering with such small coef-
ficients

C4 :

{
Q1 := 4x1x3 + 2x1x4 + x2

2 + 4x2x4 − 2x2
3 − 3x2

4 = 0,

Q2 := 4x2
1 + 4x1x2 − 2x1x4 − x2

2 − 2x2x4 − 2x2
3 − 4x3x4 − 3x2

4 = 0,
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where we can find the point (−681 : 539 : 116 : 125), which is considerably
smaller than the corresponding point on the elliptic curve(

2263582143321421502100209233517777
143560497706190989485475151904721

, 186398152584623305624837551485596770028144776655756
1720094998106353355821008525938727950159777043481

)
.

The hope would be that another descent would further decrease the size of
the point. So let us see what happens in a third 2-descent on C4. The étale
algebra is A = Q[T ]/(g(T )) where g = 30T 4 + 12T 3 + 48T 2 − 116T − 18. It
is isomorphic to K1 where K1 = Q[T ]/(15T 4 + 6T 3 + 24T 2 − 58T − 9). The
singular quadrics in the pencil are 4x2

1+4x1x2+4θ1x1x3+(2θ1−2)x1x4+(θ1−
1)x2

2+(4θ1−2)x2x4+(−2θ1−2)x2
3−4x3x4+(−3θ1−3)x2

4 and their conjugates.
Projection from the singularity leads to a conic, whose diagonalization is
(θ1 − 2)z2

1 + z2
2 + (−θ3

1 − θ2
1 + 2θ1 + 4)z2

3 , on which we find a point with
PARI/GP, which gives the tangent plane

L1 := (119007464879650009199158453503198810θ3
1−

10447766198757960393863255837724336θ2
1+

105830717941159207323452731728268512θ1−
642132239542681995498267662234672324)x1+

(−36822797063247130166883475438616475θ3
1−

15546627349806734645091028038924645θ2
1−

59813938709536841571562855798873287θ1+

144525463721993358988021050264665985)x2+

15305824112929783500700360114155038x3+

(−107092408714851400907985427139557260θ3
1−

77968241297489433506285819045239689θ2
1−

222673380399635009234741999908819785θ1+

319064911672182946221143886843892598)x4 = 0

to the singular quadric.
The fake Selmer set consists of one element and the corresponding curves

C+
8 and C−

8 are given by

−30354579064323945279103147011987448811405868928655209073584972466879717786

750621051643191959509221199996607184716117197257867424177051701 x4
1−

74026521278365504445821390054117181809595945671464335832561539986150056898

7170073386307256377370724058363357435157835420841965126641274427/5 x3
1x2−

. . .
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where all the equations for C±
8 and φ±8 : C±

8 → C4 would fill 15 pages. Thus
this is not yet useful for searching points on C±

8 . However, we can have a
look at the preimage of the point (−681 : 539 : 116 : 125) of C4(Q) under φ+

8

and φ−8 . Under φ+
8 it does not have a preimage in C+

8 (Q), and under φ−8 it
has the preimage

(−40985242083886589123010215324996749209563 :

15639696777308000017162343540481421033935 :

2536817224356280257939440534362402874103 :

10007084434492659884411645351813419277520)

in C−
8 (Q). The philosophy of descent tells us that there should be a much

nicer model of C−
8 such that this point is even smaller than (−681 : 539 :

116 : 125). So there should be much space for minimization and reduction,
however, there is not yet a theory for minimizing such curves.
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Chapter 8

Directions for Further Work

8.1 Improving the Implementation

There are some parts of the implementation that could be improved. First,
it would be nice to have a Magma program for finding a point on a conic
over a number field, which is as strong as Denis Simon’s program.

Next, local solvability at ∞ should also be tested. I guess that one can
adopt part of Nils Bruin’s code for this. For local solvability at a finite
prime p, I do not yet test the intersection of the tangent planes with C4 for
possible p-adic points. Using this, one might speed up the program. Another
suggestion for speeding up the program is to store the local points already
when doing 4-descent. Then one would not have to recompute them in the
8-descent.

Another point is that the whole routine depends on the choice of the
tangent planes. It would be worth to have a method to find nice ones. Some
experiments with different tangent planes corresponding to different points
on the conic might be helpful.

8.2 Bad Primes Hypothesis

The set S of bad primes for an 8-descent depends on the choice of the tangent
planes and often involves very large primes. The worst primes come from the
last defining condition of S. However, in practice one can often avoid these
primes, so I guess that they are superfluous. That is what I call the Bad
Primes Hypothesis. It would be nice to have a proof for that. Or, at least it
would be interesting to study how one can improve the conditions on S.
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8.3 Minimization

When 4-descent [15] came up there was no theory for minimizing and reduc-
ing the intersection of two quadrics. So the curves obtained by a 4-descent
had large coefficients and were not so useful for searching points on them.
It took a few years until Michael Stoll could use a 4-descendent to find the
generator of the elliptic curve E : y2 = x3 + 7823.

Minimizing the model of a genus 1 curve means to adjust the equations so
that the invariants are small preferably the same as for the Jacobian. This of
course begs the questions: What are the invariants, and how do we compute
them? On these two questions Tom Fisher has done some work in a very
general setting. He seems to be able to define the right invariants and knows
a method to compute them. Even if this can be done, it is not clear how one
should then go about minimizing. However, I expect this to be solved in the
near future and then it makes sense to try to find points on 8-descendents.

8.4 9- and 16-Descent

Since 3-descent is now feasible one could try to do a second 3-descent, i.e. a
9-descent. This could be done by similar methods as the ones described in
this thesis. One would have to replace the tangent planes to C4 by tangent
lines through the flex points of the plane cubic model of the 3-descendent. It
would be interesting to work out the details to be able, to do some examples.

Also for 16-descent there is a perspective. One possibility is to try to do
a fourth 2-descent on an 8-covering C8 → E. For that, one could try to find
hyperplanes that are tangent to C8. Another possibility could be to try to do
a whole 4-descent on C4 at once. By that I mean a method to construct 4-
coverings of C4 without first constructing 2-coverings of C4. The idea for that
is to take the hyperosculating points on C4, see Section 2.4 and take tangent
planes at them to get a descent map. The advantage of this method is that it
is very easy to construct the descent map, in contrast to our 8-descent, where
we have to find a point on a conic over a number field. However, the étale
algebra A corresponding to the hyperosculating points is generically a number
field of degree 16. The descent map would then be C4(Q) → A∗/A∗4Q∗

defined by the tangent plane to the generic hyperosculating point. Recall
that the tangent plane meets the hyperosculating point four times, that is
why we divide by fourth powers of A∗. For computing the fake Selmer set
in A∗/A∗4Q∗ one needs to be able to compute A(S, 4). I have no experience
how difficult this will get in practice; it would be interesting to see this.
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8.5 The Big Goal

The long term perspective could be to find a proof for the finiteness of the
Shafarevich-Tate group. I guess that the methods of higher and higher de-
scent can contribute to that goal. So far we can do higher descent only at the
prime 2, and only a second and a third 2-descent. So even for the 2-primary
part of the Shafarevich-Tate group our knowledge of elements of higher or-
der is very limited. It would be very helpful to see examples of even higher
descent to study the general structure of further descents. A remarkable ob-
servation is that the coefficients of the 2k-coverings get smaller and smaller,
at least in the case k = 1 or 2. For 8-descendents there is no method of
minimization yet, however I expect them to follow this trend as soon as one
can minimize them. I guess that making this observation precise could be an
important tool for proving the finiteness of the Shafarevich-Tate group.
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Appendix A

Further Programs

// The following attachments are needed for LocalImageOfC2.
Attach("utils.m");
Attach("local_quartic1.m");
// The following attachment is needed for
// speeding up LocalTwoSelmerMap at large primes.
Attach("Mymynumfld.m");

AddAttribute(Crv, "EtaleAlgebra");

/*******************************************************************
MyIntegralModel just multiplies through with the common denominator.
********************************************************************/

function MyIntegralModel(X)
// X a scheme over a number field.
// We make it integral by just multiplying through
// with the lcm of the denominators of the coefficients.
pols := DefiningPolynomials(X);
K := BaseField(X);
if Type(K) eq FldNum then
OK := Integers(K);
// The ideal c*OK is a fractional ideal. We take its denominator.
d := [LCM([Denominator(c*OK) : c in Coefficients(f)]) : f in pols];

elif Type(K) eq FldRat then
n := [GCD([Numerator(c) : c in Coefficients(f)]) : f in pols];
d := [LCM([Denominator(c) : c in Coefficients(f)]) : f in pols];
d := [d[i]/n[i] : i in [1..#pols]];

else
error "Base field must be a number field or the rationals.";

end if;
return Scheme(Ambient(X), [pols[i]*d[i] : i in [1..#pols]]);

end function;

function MySize(X)
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// X is a scheme defined by one polynomial.
OK := Integers(BaseField(X));
c := ChangeUniverse(Coefficients(DefiningPolynomial(X)),OK);
idl := ideal<OK|c>;
return Norm(idl);

end function;

/***********************************************************************
We divide by one of the coefficients and look whether the integral model
is nicer than the other ones.
***********************************************************************/

function ImprovedIntegralModel(X)
P3 := Ambient(X);
L := DefiningPolynomial(X);
coeffs := Coefficients(L);
_,j := Min([MySize(MyIntegralModel(Scheme(P3,L/c))) : c in coeffs]);
return MyIntegralModel(Scheme(P3,L/coeffs[j]));

end function;

/********************************************************
Diagonalization of a conic (only in the generic case):
*********************************************************/

function diag(C)
// C is a conic.
P2<[z]> := AmbientSpace(C);
q := DefiningPolynomial(C);
a := MonomialCoefficient(q,z[1]^2);
b := MonomialCoefficient(q,z[1]*z[2]);
c := MonomialCoefficient(q,z[1]*z[3]);
d := MonomialCoefficient(q,z[2]^2);
e := MonomialCoefficient(q,z[2]*z[3]);
f := MonomialCoefficient(q,z[3]^2);
assert a*d*f ne 0;
assert (4*a*d - b^2) ne 0;
assert (4*a*d*f - a*e^2 - b^2*f + b*c*e - c^2*d) ne 0;
fdiag := (4*a*d - b^2)*z[1]^2 + z[2]^2 +
4*a*(4*a*d*f - a*e^2 - b^2*f + b*c*e - c^2*d)*z[3]^2;
// The map between the conics:
Cdiag := Scheme(P2,fdiag);
phi := map< C -> Cdiag |
[2*a*z[1] + b*z[2] + c*z[3],
(4*a*d - b^2)*z[2] + (2*a*e - b*c)*z[3], z[3]]>;
return phi;

end function;
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/*********************************************************************
Finding a point on a conic by diagonalizing it and using NormEquation.
The trivial cases are done before. The parameter Point can be set to a
point on C, which we computed in advance, e.g. with PARI.
***********************************************************************/

function PointOnConic(C : Point := Point)
P2<[z]> := Ambient(C);
q := DefiningPolynomial(C);
a := MonomialCoefficient(q,z[1]^2);
b := MonomialCoefficient(q,z[1]*z[2]);
c := MonomialCoefficient(q,z[1]*z[3]);
d := MonomialCoefficient(q,z[2]^2);
e := MonomialCoefficient(q,z[2]*z[3]);
f := MonomialCoefficient(q,z[3]^2);
// First we check whether the parameter Point is on C:
if Point ne [] and Point in C then
pt := Point;

// If there is no trivial point on C, we diagonalize it.
// First the trivial points:
elif a eq 0 then
bool, pt := [1,0,0] in C; assert bool;

elif d eq 0 then
bool, pt := [0,1,0] in C; assert bool;

elif f eq 0 then
bool, pt := [0,0,1] in C; assert bool;

elif (4*a*d - b^2) eq 0 then
bool, pt := [b,-2*a,0] in C; assert bool;

elif (4*a*d*f - a*e^2 - b^2*f + b*c*e - c^2*d) eq 0 then
bool, pt := [2*c*d-b*e,2*a*e-b*c,b^2-4*a*d] in C; assert bool;

else
// Now the nontrivial point (using diagonalization):
diagmap := diag(C);
Cdiag := Codomain(diagmap);
vprintf EightDescent, 1 : "Its diagonalization is %o.\n",
DefiningPolynomial(Cdiag);
// Next, we check whether the parameter Point is on Cdiag:
if Point ne [] then
bool, ptdiag := Point in Cdiag;
if not bool then // PARI output.
K := BaseField(C);
g := DefiningPolynomial(K);
lc := LeadingCoefficient(g);
// PARI needs monic polynomials for number fields.
if lc ne 1 then
g1<y> := MinimalPolynomial((K.1+1)*lc);
K1<y> := NumberField(g1);
m := hom<K->K1|(y/lc)-1>;

else // lc eq 1
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g1<y> := MinimalPolynomial(K.1);
K1<y> := NumberField(g1);
m := hom<K->K1|K1.1>; // identity.

end if;
bool, ptdiag := [Reverse(x) @@ m : x in Point] in Cdiag;
error if not bool, "Runtime error in PointOnConic:
\nOptional parameter Point is not on the diagonalized conic.";

end if;
else
ptdiag := PointOnDiagonalizedConic(Cdiag);
vprintf EightDescent, 1 :
"which gives the point %o on the diagonalized conic, ", ptdiag;

end if;
pt := Points(ptdiag @@ diagmap)[1];
vprintf EightDescent, 1 :
"which maps back to the point %o on the original conic.\n", pt;

end if;
return C!pt;

end function;

/**********************************************************************
Transforming a diagonal conic into the data that Denis Simon’s PARI file
ell.gp (available at his web page) needs. The output is written to the
file conic.gp.
************************************************************************/

function InputForPARI(C)
// C is a conic over a number field
// with defining polynomial a*x[1]^2 + x[2]^2 + b*x[3]^2.
K := BaseField(C);
g := DefiningPolynomial(K);
lc := LeadingCoefficient(g);
// PARI needs monic polynomials for number fields.
if lc ne 1 then
g1<y> := MinimalPolynomial((K.1+1)*lc);
K1<y> := NumberField(g1);
m := hom<K->K1|(y/lc)-1>;

else // lc eq 1
g1<y> := MinimalPolynomial(K.1);
K1<y> := NumberField(g1);
m := hom<K->K1|K1.1>; // identity.

end if;
C1 := BaseChange(C,m);
q := DefiningPolynomial(C1);
a := MonomialCoefficient(q,C1.1^2);
b := MonomialCoefficient(q,C1.3^2);
SetOutputFile("conic.gp" : Overwrite := true);
printf "\\r ell.gp\n";
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printf "\\p 300 \n";
printf "allocatemem(100 000 000) \n";
printf "{g = %o}\n",g1;
// Braces {..} are needed if the output is longer than one line.
printf "{a = Mod(%o , g)}\n",a;
printf "{b = Mod(%o , g)}\n",b;
printf "s = bnfqfsolve2(bnfinit(g), -a, -b)\n";
printf "[Vec(lift(s[2])),Vec(lift(s[1])),[0,0,0,1]] \n";
printf "Str(%%,\";\")\n";
printf "\\w solution.m \n";
UnsetOutputFile();
//print "Look into file conic.gp";
// Remark: One could also use the function bnfqfsolve,
// but then the third coefficient of the output is not 1.
// Advantage: evtl. nicer solution.
// Disadvantage: might take much longer.
return m;

end function;

/**********************************************************************
DifferentTangentPlane computes a different tangent plane to the
singular quadric using parameterization of the points on the conic.
**********************************************************************/

function DifferentTangentPlane(Qsing1, L1 : PointOnP1:=[])
// Qsing1 a singular quadric in the pencil with tangent plane L1.
// We parametrize the conic, take a different point on it, and
// compute the corresponding tangent plane.
K := BaseField(Qsing1);
C, pr := ConicOfSingularQuadric(Qsing1); // recomputed (does not matter).
pt := Points(pr(Scheme(Qsing1,L1)))[1]; // The original point.
param := Parametrization(Curve(C),pt);
if PointOnP1 eq [] then
PointOnP1 := [Random(K,10),1];

end if;
newpt := param(PointOnP1);
line := TangentLine(newpt);
t11 := line @@ pr;
return DefiningPolynomial(ImprovedIntegralModel(t11));

end function;

/************************************************************************
BadPrimes
*************************************************************************/

function BadPrimesUnfactored(C4,L,Q3)
// Discriminant(g) is taken extra.
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c := TheConstant(C4,L,Q3);
badc := Numerator(c)*Denominator(c);
// Bad primes (unfactored) from coeffs:
badcoeffs := LCM([GCD([Integers()!Norm(c) : c in Coefficients(Li)]) :
Li in L]);
// Bad primes from P8:
P8 := ChangeRing(Scheme(C4,Q3),Integers());
badP8 := ProjectionToSpecZ(SingularSubscheme(P8));
vprintf EightDescent,4: "badP8 = %o.\n", badP8;
bad := LCM([badc,badcoeffs,badP8]);
return bad;

end function;

/**********************************************************************
The local image
***********************************************************************/

/**************************************
At very bad primes or small primes:
***************************************/

function MakeIntegral(pt)
// pt is a p-adic point on a projective scheme.
// We just scale it and
// return an integral point (as sequence) with j-th coordinate = 1.
min, j := Min([Valuation(pt[i]) : i in [1..#Eltseq(pt)]]);
integralpt := [pt[i]/pt[j] : i in [1..#Eltseq(pt)]];
assert integralpt in Scheme(pt); // over Zp:
integralpt := ChangeUniverse(integralpt,Integers(Parent(pt[1])));
return integralpt, j;

end function;

function InverseOfProjection(C4)
C,pr := Projection(C4);
phi := map<C4->C|DefiningEquations(pr)>;
bool, inv := IsInvertible(phi);
error if not bool, "Projection from (1:0:0:0) does not induce a
birational map between C4 and its projection to the plane.
We would have to project from a different point.";
return inv;

end function;

// Local solvability test by projecting to P2 and taking the preimage.

function IsLocallySolvableByProjectionToPlaneCurve(C4,p)
C := Curve(Projection(C4));
bool, pt := IsLocallySolvable(C,p : Smooth);
pt := LiftPoint(pt,50 : Strict:=false);
inv := InverseOfProjection(C4);
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liftedpt := [Evaluate(f, Eltseq(pt)) : f in DefiningEquations(inv)];
// same as inv(pt) (but over local field).
return liftedpt in C4;

end function;

function ImageOfOnePointAtVeryBadOrSmallPrime(C4,F,p)
bool, pt := IsLocallySolvableByProjectionToPlaneCurve(C4,p);
// might get smashed by the way we take the preimage
// under the projection.
if not bool then
vprint EightDescent,1:
"ATTENTION: IsLocallySolvableByProjectionToPlaneCurve did not work.";
bool, pt := IsLocallySolvable(C4,p);
pt := LiftPoint(pt, 50 : Strict := false);

end if;
pti := MakeIntegral(pt);
prec := Min([Precision(pti[i]) : i in [1..#pti]]);
v := Valuation(Integers()!Norm(F(pti)),p);
if (p eq 2) and (v le prec-10) then
return F(pti), pti;

elif (p ne 2) and (v lt prec) then
return F(pti), pti;

else
error "ERROR: Lifted ",p,"-adic point to precision ", prec,
", which was not enough.";
// TODO: automatically enlarging precision.

end if;
end function;
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