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Subspace codes

>

v

Given: Communication network
with several senders and receivers.
(internet broadcasting, cloud storage, .. .)

From example:
For optimal transmission times, consider sending linear
combinations of messages.

Error correction in such networks?
Electrical engineers Kétter and Kschischang in 2008:

Definition of suitable error correcting codes
for network coding.

Interesting mathematical objects on its own.
Interconnections to several established fields of research.

Interpretation: g-analog (or geometrization) of classical
binary block codes.



Fixed notation
> g prime power
» V an F4-vector space of dimension v.
> L(V) lattice of all subspaces of V.
» Grassmannian [,‘(/]q = Set of all k-dim. subspaces of V.
Reminder: #[,‘(’]q = [, Gaussian binomial coefficient.

Projective geometry

» Subspace lattice £(V)
= finite projective geometry PG(V) = PG(v —1,q)
» Elements of [V] are points.

> Elements of [, ] are lines.

> Elements of [g] are planes.

> Elements of [Z] are solids.

> Elements of [VL] are hyperplanes.



Definition (Koétter, Kschischang 2008)

>

subspace distance on L(V):

d(A,B) =dim(A+ B) —dim(AN B) =

dim(A) + dim(B) — 2dim(AN B)

C C L(V) subspace code.

Its elements are the codewords or blocks of C.
d(C) =min{d(A,B) | A# Bec C}

(minimum) subspace distance of C.

Abbreviation: Cis (v, #C, d(C))4-subspace code.

Important special case C C [/],

— C constant dimension (subspace-)code,
abbreviated C (v, #C, d(C); k)q CDC.

We want: #C large, d(C) large

Let Ay(v, d; k) maximum size M of (v, M, d; k)q CDC.



Research goals

» Find lower bounds for A4(v, d; k)
by constructing good codes.
Find upper bounds for Aq(v, d; k).
Determine exact values of Aq(v, d; k).
Classify all optimal CDCs.
(Find efficient decoding algorithms.)
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Subspace codes and partial spreads
» For dim(A) = dim(B) = k we have
d(A,B) =2(k —dim(An B)).
= minimum distance d(C) = 26 of CDC C is even.
> Witht:=k -6+ 1:
C < [¢], CDC with d(C) > 25
< every t-subspace of V
is contained in at most one codeword.
> Therefore: C C [;], is (v, M, 2k; k)qg CDC
<= Each point of PG(V)
is contained in at most one codeword.

> In finite geometry, these objects are known as
partial (k — 1)-spreads.



Spreads

» Partial (k — 1)-spread covering all points of PG(V)

is called (k — 1)-spread.

Known: (k — 1)-spread exists <= k| v.

> —> For k| v we have Aq(v,2k; k) = [1]/[{], = &=

v

» Maximum size Aq(Vv, 2k; k) of partial spreads studied since
the 1970s, not known in general.

» Recent strong result (Nastase, Sissokho 2017):
Write v = tk + r with remainder r € {0,...,k — 1}. Then

qv o qk+r

Aq(v,2k; k) = 7

+1

whenever k > [{]q.



Holes
> Let S be a partial (k — 1)-spread.
> Let P be its set of holes (points not covered by S).

» Observation:
P defines an F4-linear code C of effective length #P,
C is g~ '-divisible (all Hamming weights divisible by g~ 1).
» K., Kurz 2018: Classification of the effective lengths of
A-divisible Fg-linear codes where A power of q.

» Result of Nastase and Sissokho follows as a corollary!



Improvement of the Johnson bound

» Xia, Fu 2009: Important recursive bound for CDCs
(Johnson bound)

Aq(V,d; k) < \‘(qv_ 1)AQ(V_ 1,d;k— 1)J

gk —1

» |dea: Fix a point P and consider the image in V/P.
» K., Kurz 2018: Improvement of the Johnson bound.

> |dea:

> Suitable notion of “holes” (with multiplicities!) of a CDC.
» Holes yield a divisible code, apply characterization of
effective lengths.

» Example: best known bound Ax(9, 6;4) < 1158 improved
to A2(9,6;4) < 1156.



Outline

Subspace codes

The case Ay(6,4;3)



The case A,(6,4;3)
» Smallest case not covered by results on partial spreads:
v=6,k=3,d=4.

> Geometrically: Set of planes in PG(F$) intersecting
pairwise at most in a point.

> Best known upper bound: Aq(6,4;3) < (g3 + 1)2.
(Johnson bound + result on partial spreads)

Computer classification for g = 2
» In binary case g = 2: Ax(6,4;3) < 81.
» Best known construction ~~ Ax(6,4;3) > 77.
» Goal: Classify all CDCs of maximum size for g = 2.
» Huge search space: There are [g]z = 1395 planes,

<‘I 395

77 > = 129-digit number.

» Intermediate classification steps needed.



9-configurations
» 9-configuration = set of 9 planes of subspace distance > 4,
passing through a common point.
» Lemma: If #C > 73 then C contains a 9-configuration.
> 9-configurations = partial line spreads in PG(F3).
» Soicher 2000: 4 isomorphism types.

17-configurations

» 17-configuration = set of 17 planes of subspace
distance > 4 containing two 9-configurations.
» Lemma: If #C > 74 then C contains a 17-configuration.
» Computer classification of 17-configurations:
» Compute all extensions of the 4 types of 9-configurations.

» Filter out isomorphic copies.
> Result: 12770 isomorphism types of 17-configurations.

» For each of the 12770 17-configurations,
compute all extensions to (6, M, 4; 3), CDCs with M > 77.



Result of the classification:
Theorem (Honold, K., Kurz 2015)
> Ay(6,4;3) =77
» 5 PGL-isomorphism types of (6,77,4;3), CDCs.

Analysis of the computer result

» The most symmetric (6,77, 4; 3),-code shows a clear
construction principle.

» This construction generalizes to all values of q.

Theorem (Honold, K., Kurz 2015)
For all g,

P®+20° +2q+1 < Ay(6,4;3) < q°® +29° + 1.

Next open case for g = 2 is 333 < Ax(7,4;3) < 381.
~» @-analog of the Fano plane.
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» Subsets of V form a distributive lattice (wrt. C).
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Subset lattice
» Let V be a v-element set.
> (/) := Set of all k-subsets of V.
v
> #(x) = (k)-

» Subsets of V form a distributive lattice (wrt. C).

Definition

D C (})isat-(v.k,\) (block) design

if

each T € (V) is contained in exactly A blocks (elements of D).
> If A =1: D Steiner system
> If A\=1,t=2and k = 3: D Steiner triple system STS(v)



Example (Fano plane PG(2,2))

V={1,2,34,5,6,7}
D= {{1 ) 275}7 {174’ 6}7 {1 ,3, 7}’ {273a 6}7
{2,4,7},{3,4,5},{5,6,7}}

Fano plane D is a 2-(7,3, 1) design, i.e an STS(7).



Idea of g-analogs in combinatorics
Replace subset lattice by subspace lattice!

Dictionary
original g-analog
subset lattice subspace lattice
v-element setV v-dim. [F; vector spaceV
v %
(k) [klq
(k) [klq
cardinality dimension
N N
U +
g=1 g proper prime power

H]F1 ” Fq



Definition (block design, stated again)

Let V be a v-element set.
D c (})isat-(v,k,\) (block) design
if each T € (V) is contained in exactly A elements of D.

g-analog of a design?

Definition (subspace design)
Let V be a v-dimensional F vector space.
DcC mq is a t-(v, k, \)q (Ssubspace) design
if each T € [V] o Is contained in exactly A elements of D.

» If A =1: D g-Steiner system
> IfA=1,t=2, k=23: D g-Steiner triple system STS4(v)
» Geometrically:

STSq4(v) is a set of planes in PG(v — 1,q)
covering each line exactly once.



Remarks
» First definition of subspace designs by P. Cameron, 1972.

“Several people have observed that the concept of a
t-design can be generalised as follows. [...]”

> 1-(v,k,1)qdesigns = (k—1)-spreadsin PG(v —1,q)
» First construction of non-trivial subspace designs with
t>2by S. Thomas in 1987.

» subspace codes = g-analog of binary block codes,
CDCs = g-analog of binary constant weight codes.

Existence of subspace designs

» Fazeli, Lovett, Vardy 2014 (non-constructive proof):
Non-trivial subspace designs exist for all t.

» Still not too many concrete constructions are known.



Known infinite series of subspace designs with t > 2
» Thomas 1987; Suzuki 1990 and 1992:
2-(v,3,¢°+qg+1;q)forallgand v = +1 (mod 6), v > 7.
> A series by ltoh 1998.
» Braun, K., Kohnert, Laue 2017: 2-(v, k, [Z:g]qm)q

forge {3,5},v=2 (mod 4), v>6, k=3 (mod 4),
3<k<v-38.

» K., Laue, Wassermann 2018: 2-(v, k, [,‘:g]q/S)g
forv>28,2 < (v mod6) < (k mod 6) <5.

o (@°-1)(g°-1)
» Braun, K., Laue 2019: 2-(8, 4, (@G- )q for all q.

Subspace designs with t > 3

» { = 3: Only two subspace designs known.
> { > 4: no subspace design known.



Subspace designs and subspace codes

>
>

LetCC [{] andt=k—6+1.

Remember: Cis (v, #C,2§)q CDC
<each T e [‘ﬂq is contained in at most 1 element of C.

By definition: Cis t-(v, k, \)4 subspace design

<each T e [V] o I8 contained in exactly A elements of C.

Therefore:

Cis both (v, #C,26)q CDC and t-(v, k, )4 design
<= C s a Steiner system

(<= Cis adiameter perfect CDC)



Lemma
Let Dbe a t-(v,k,\)g designand i,j € {0,...,t} withi+j <t.
Thenforall /€ [{] and J € 7] with/CJ

e,

)\,’JZZ#{BED‘/QBQJ}Z)\ v .
k=il 4

In particular, #D = Ag .

Corollary: Integrality conditions
If a t-(v, k, \)q design exists, then all \;; € Z.

Sufficient to check: \; == X\jg € Z (Parameters admissible)

Corollary
STSq4(v) admissible <= v =1,3 (mod 6).



STS4(v) for small admissible v

>

>

v=3
STSq4(8) = { V} exists trivially.
v=7

g-analog of the Fano plane STS4(7).
Existence undecided for every field order q.

Most important open problem in g-analogs of designs.

v=9
existence open for every q.
v=13

STS,(13) exists (Braun, Etzion, Ostergard, Vardy,
Wassermann 2013)
Only known non-trivial g-Steiner system with t > 2!



Status of STS,(7)

> A STS4(7) is a set of planes in PG(F}) covering each line
exactly once.
> ASTSq(7) has size A\op =q®+q%+q°+q* +q°+ g +1.
> binary: 381
> ternary: 7651
> STSq4(7) exists if and only if
Ag(7,43)=®+q®+ P +q* + P +¢* +1.
» Question for its existence first stated in 1972.
» Still open for every q.
» Largest known subspace codes:

» binary: 333 (Heinlein, K., Kurz, Wassermann 2019)
> ternary: 6978 (Honold, K. 2016 + extension by D. Heinlein)



g-Pascal triangle for STS4(7) D

Mo=+++g*+ P+ +1
/\17o:q4+q2+1 )\071:q5+q3+q2+1
Aoo =1 M1 = A2 =

» Each point P is contained in A1 o = g* + g? + 1 blocks.
» ~~ derived design wrt P (“local point of view from P”)

Derp(D) = {B/P| B e Dwith PC B} C V/P

» In general: Derp(D)is (t —1)-(v — 1,k — 1, \)q4 design.
» —> Derp(STSq4(7)) is 1-(6,2,1)4 design.

= set of lines in PG(5, q) covering each point exactly once.
» In other words: Der(STSq(7)) is a line spread of PG(5, q).
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a-points
» spread S called geometric if for all distinct Ly, L, € S:
{LeS|LCLy+ Ly} is spread of the solid Ly + L.

> Pis called a-point of STS4(7)
if the derived design in P is a geometric spread.

» S. Thomas 1996: There exists a non-a-point.

» O. Heden, P. Sissokho 2016: For g = 2:
Each hyperplane contains non-a-point.

» Goal: Investigate Heden-Sissokho result for general q!



» Assume that H is hyperplane containing only a-points.
» Fix a poor solid S in H (not containing any block).
> Let F={Fe[3],| SCF}
We have #F =g+ 1.
» For F e F,let

Lr={BNnS|BcDandB+S=F}.

» Lemma

» Lrisaline spread of S.
» The sets Lg with F € F are pairwise disjoint.



Conclusion
L:=pcrLrisasetof (q+1)(g°+ 1) lines in PG(3, q)
admitting a partition into g + 1 line spreads.

Lemma

For each point P in S, the g + 1 lines in £ passing through P
span only a plane Ep.

(In other words, the lines form a pencil in Ep through P.)

Lemma
([13] . L) is a projective generalized quadrangle of order (g, q).



Classification

Classification of projective generalized quadrangles:

(F. Buekenhout, C. Lefevre 1974)

= ([ﬂq,ﬁ) is symplectic generalized quadrangle W(q).

Implication

» By property of L:
The lines of W(q) admit a partition into g + 1 line spreads.
» Equivalently: The points of the parabolic quadric Q(4, q)
admit a partition into ovoids.
» Not possible for even q.
» Payne, Thas: Finite generalized quadrangles, 3.4.1(i)

» Not possible for prime q.
» Ball, Govaerts, Storme 2006:
Each ovoid in Q(4, q) is an elliptic quadric.
» Any two of them have non-trivial intersection.



Theorem (K., submitted)

Let g be prime or even and D a STSy(7).
Then each hyperplane contains a non-a-point of D.
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Automorphisms
» Fundamental theorem of projective geometry:
For v > 3, Aut(L(V)) = PrL(V).
» Let D C L(V), define linear automorphism group as
Aut(D) = {p € PGL(V) | ¢(D) = D}

(Aut(D) = stabilizer of D in PGL(V).)

Automorphisms of STS,(7)

» Goal Investigate possible automorphisms of STS,(7).
» Here: PGL(V) = GL(V).



Automorphisms of order 3

» Case study: Automorphisms of an STS,(7) of order 3.
» Elements of order 3 in GL(v, 2) are represented by

th)
t)

with f € {0,...,v—1}, v —f even.



Example

Elements of order 3 in GL(7,2) up to conjugates:

Azq =

A7 =

11
10
11
10

—_—
o=

11
10

1




Example (GL(3,2))
Single element type of order 3: Az = (1 0 1)
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Example (GL(3,2))
Single element type of order 3: Az = (1 0 1)

» 1 fixed point
> 2 orbits of size 3



Example (GL(3,2))
Single element type of order 3: Az = (1 0 1)

» 1 fixed point
» 2 orbits of size 3 falling into:

> 1 orbit line
> 1 orbit triangle



Action of A, ; on the point set [{]

» 2f 1 fixed points
(points of the form ((0,...,0,x,...,%)))

v—f
> 231 orbit lines

(points of the form ((x,...,%,0,...,0)))
(2" - 1)@ - 1)

> 3 orbit triangles
Example
v f | fixed points orbit triangles orbit lines
3 1 1 1
7 1 1 21
7 3 7 35
7 5 31 31

1

21
5
1



Fixed planes
> LetG=(A/y)
> Let E € 3] be afixed plane (i.e. ES = E)
» Then G|k is well-defined
> #Gle € {1,3}
» #G|lg =1 = E has 7 fixed points (type 7)

E has 1 fixed point, 1 orbit line and 1 orbit triangle (type 1)



Counting fixed planes
How many fixed planes of type 1 and 77
> Type 7:
3—su)|?spaces of the f-dim space of fixed points.
B [3] ’
> Type 1:

Uniquely spanned by an orbit triangle.
(2" - 1)@~ 1)

~ Forbit triangles =

3
Example
v f|#p. #ot =#T1 #ol. #T7
3 1 1 1 1 0
7 1 1 21 21 0
7 3 7 35 5 1
7 5| 31 31 1 155



Fixed blocks
» Let D be a G-invariant STSy(v).

> F; := set of fixed blocks of D of type 1
JF7 = set of fixed blocks of D of type 7

Double count X ={(L,B) | L orbit line, B € F1,L < B}.
1. #X =#F; - 1
2. » Let L be an orbit line.
» D Steiner system — 3Junique B € D with L < B.
> Forallge G: B9 > L9 =1L.
» Uniqueness of B = B is fixed block.
» B contains orbit line L = B of type 1.

So: #X = #(orbit lines) - 1.

v _ 4
=  #JF7 = #orbit lines = —3
(2" — 1)1 - 1)
21

Similarly: #F7 =



Example
v | #Ep. #ol.=#F #ot =#T1 #T7 #F

7 1 1 21 21 0 0
7 3| 7 5 35 1 1
7 5| 31 1 31 155 155/7

Conclusion
> +#F7 must be integral
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Example
v f|#p. #ol.=#F #ot =#T1 #T7 #F

7 1 1 21 21 0 0
7 3| 7 5 35 1 1
7 5| 31 1 31 155 155/7

Conclusion

> +#F7 must be integral
= The group (A7 5) is not possible!

» For f = 3, the T7-plane is contained in D.



Example
v f|#p. #ol.=#F #ot =#T1 #T7 #F

7 1 1 21 21 0 0
7 3| 7 5 35 1 1
7 5| 31 1 31 155 155/7

Conclusion

> +#F7 must be integral
= The group (A7 5) is not possible!

» For f = 3, the T7-plane is contained in D.
» For f =1, all 21 T1-planes are contained in D.



Thecasev=7,f=3

R=N

> #F7 =1. Let Bbe this block and P € [7] . — P fixed.



Thecasev=7,f=3
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» Through P:
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Thecasev=7,f=3

> #F7 =1. Let Bbe this block and P € [7] . — P fixed.
» Through P: The block B and Ay — 1 = 20 others.

» Orbit lengths 1 or 3 = > 2 fixed blocks among them!
» In total: At least 14 fixed blocks different from B.



Thecasev=7,f=3

#F7 = 1. Let Bbe this block and P € [7] . — P fixed.
Through P: The block B and Ay — 1 = 20 others.

Orbit lengths 1 or 3 = > 2 fixed blocks among them!
In total: At least 14 fixed blocks different from B.

But #F; = 5. Contradiction!

vVvyYvYyVvVvyy



Thecasev=7,f=1

>
| 2

We didn’t find a theoretic argument to exclude G = (A7 1).
We know: D contains the set S of 21 T1-blocks.

They all pass through P = ((0,0,0,0,0,0, 1)).

In V/P = PG(5,2), they form a Desarguesian line spread.
Problem: Out of 3720 orbits of length 3, select 120

such that together with S, they form an STS,(7).

Huge search space!

Normalizer N(G) of order 362880 acts on the search
space.

Orderly generation (wrt N(G)) to reduce the number of
cases.

Parallel computation on the Bayreuth Linux cluster.
Finally: There is no G-invariant STSx(7).



Theorem (Braun, K., Naki¢ 2016 and K., Kurz,
Wassermann 2018)

The automorphism group of a binary q-analog of the Fano
plane is

> ftrivial or
» of order 2 and conjugate to

0 1
10

—
- O
o =

- O
O =




Implications of our results on the existence of a STS,(7)

» Won't be very symmetric.
» Many “natural” approaches for the construction won’t work.
» Still: Vast part of the search space remains untouched.

» Further theoretical insight is needed
to reduce the complexity to a computationally feasible level.

» Problem is still wide open!



Things | didn’t talk about
» rank metric codes, MRD codes, lifted MRD codes

+ connections to finite semifields, translation planes ...

» mixed dimension subspace codes
vector space partitions
» and others

v

Thank you!

Slides can be found at
https://mathe2.uni-bayreuth.de/michaelk/


https://mathe2.uni-bayreuth.de/michaelk/
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