Computing the Cassels-Tate pairing on odd-degree hyperelliptic Jacobians

H. Shukla

Notations and preliminaries

Cassels-Tate pairing (CTP)

Effective computation of CTP

How to determine the splitting field of η

Extra "nice" curves Computing the Cassels-Tate pairing on odd-degree hyperelliptic Jacobians

Himanshu Shukla

Mathematisches Institut, Universität Bayreuth

Rational Points 2022

28 March, 2022

Computing the Cassels-Tate pairing on odd-degree hyperelliptic Jacobians

H. Shukla

Notations and preliminaries

Cassels-Tate pairing (CTP)

Effective computation of CTP

How to determine the splitting field of η

Extra "nice" curves

- Let k be a number field with absolute Galois group G_k , and let $C : y^2 = f(x)$ with deg(f) = 2g + 1 be a hyperelliptic curve of genus g defined over k and J be its Jacobian.
- Let Δ := {T_i := (e_i, 0) ∈ C : 1 ≤ i ≤ 2g + 1} be the set of points on C corresponding to the roots e_i of f, and T₀ be the point at ∞.
- For a place v of k, denote the completion of k at v by k_v .
- Cⁱ(G, A), Zⁱ(G, A) and Hⁱ(G, A) denote continuous *i*-cochains, cocycles and cohomology classes associate to a group G and a G-module A.
- For n ≥ 2, let III(J) and Sel⁽ⁿ⁾(J) be the Shafarevich-Tate and n-Selmer groups associated with J.

Computing the Cassels-Tate pairing on odd-degree hyperelliptic Jacobians

H. Shukla

Notations and preliminaries

Cassels-Tate pairing (CTP)

Effective computation of CTP

How to determine the splitting field of η

Extra "nice" curves

- Let k be a number field with absolute Galois group G_k , and let $C: y^2 = f(x)$ with deg(f) = 2g + 1 be a hyperelliptic curve of genus g defined over k and J be its Jacobian.
- Let Δ := {T_i := (e_i, 0) ∈ C : 1 ≤ i ≤ 2g + 1} be the set of points on C corresponding to the roots e_i of f, and T₀ be the point at ∞.
- For a place v of k, denote the completion of k at v by k_v .
- Cⁱ(G, A), Zⁱ(G, A) and Hⁱ(G, A) denote continuous *i*-cochains, cocycles and cohomology classes associate to a group G and a G-module A.
- For n ≥ 2, let III(J) and Sel⁽ⁿ⁾(J) be the Shafarevich-Tate and n-Selmer groups associated with J.

Computing the Cassels-Tate pairing on odd-degree hyperelliptic Jacobians

H. Shukla

Notations and preliminaries

Cassels-Tate pairing (CTP)

Effective computation of CTP

How to determine the splitting field of η

Extra "nice" curves

- Let k be a number field with absolute Galois group G_k , and let $C: y^2 = f(x)$ with deg(f) = 2g + 1 be a hyperelliptic curve of genus g defined over k and J be its Jacobian.
- Let Δ := {T_i := (e_i, 0) ∈ C : 1 ≤ i ≤ 2g + 1} be the set of points on C corresponding to the roots e_i of f, and T₀ be the point at ∞.

For a place v of k, denote the completion of k at v by k_v .

- Cⁱ(G, A), Zⁱ(G, A) and Hⁱ(G, A) denote continuous *i*-cochains, cocycles and cohomology classes associate to a group G and a G-module A.
- For n ≥ 2, let III(J) and Sel⁽ⁿ⁾(J) be the Shafarevich-Tate and n-Selmer groups associated with J.

Computing the Cassels-Tate pairing on odd-degree hyperelliptic Jacobians

H. Shukla

Notations and preliminaries

Cassels-Tat pairing (CTP)

Effective computation of CTP

How to determine the splitting field of η

Extra "nice" curves

- Let k be a number field with absolute Galois group G_k , and let $C: y^2 = f(x)$ with deg(f) = 2g + 1 be a hyperelliptic curve of genus g defined over k and J be its Jacobian.
- Let Δ := {T_i := (e_i, 0) ∈ C : 1 ≤ i ≤ 2g + 1} be the set of points on C corresponding to the roots e_i of f, and T₀ be the point at ∞.
- For a place v of k, denote the completion of k at v by k_v .
- Cⁱ(G, A), Zⁱ(G, A) and Hⁱ(G, A) denote continuous *i*-cochains, cocycles and cohomology classes associate to a group G and a G-module A.
- For n ≥ 2, let III(J) and Sel⁽ⁿ⁾(J) be the Shafarevich-Tate and n-Selmer groups associated with J.

Computing the Cassels-Tate pairing on odd-degree hyperelliptic Jacobians

H. Shukla

Notations and preliminaries

Cassels-Tat pairing (CTP)

Effective computation of CTP

How to determine the splitting field of η

Extra "nice" curves

- Let k be a number field with absolute Galois group G_k , and let $C: y^2 = f(x)$ with deg(f) = 2g + 1 be a hyperelliptic curve of genus g defined over k and J be its Jacobian.
- Let Δ := {T_i := (e_i, 0) ∈ C : 1 ≤ i ≤ 2g + 1} be the set of points on C corresponding to the roots e_i of f, and T₀ be the point at ∞.
- For a place v of k, denote the completion of k at v by k_v .
- Cⁱ(G, A), Zⁱ(G, A) and Hⁱ(G, A) denote continuous *i*-cochains, cocycles and cohomology classes associate to a group G and a G-module A.
- For n ≥ 2, let III(J) and Sel⁽ⁿ⁾(J) be the Shafarevich-Tate and n-Selmer groups associated with J.

Computing the Cassels-Tate pairing on odd-degree hyperelliptic Jacobians

H. Shukla

Notations and preliminaries

Cassels-Tat pairing (CTP)

Effective computation of CTP

How to determine the splitting field of η

Extra "nice' curves

- Let k be a number field with absolute Galois group G_k , and let $C: y^2 = f(x)$ with deg(f) = 2g + 1 be a hyperelliptic curve of genus g defined over k and J be its Jacobian.
- Let Δ := {T_i := (e_i, 0) ∈ C : 1 ≤ i ≤ 2g + 1} be the set of points on C corresponding to the roots e_i of f, and T₀ be the point at ∞.
- For a place v of k, denote the completion of k at v by k_v .
- Cⁱ(G, A), Zⁱ(G, A) and Hⁱ(G, A) denote continuous *i*-cochains, cocycles and cohomology classes associate to a group G and a G-module A.
- For n ≥ 2, let III(J) and Sel⁽ⁿ⁾(J) be the Shafarevich-Tate and n-Selmer groups associated with J.

A quick recall

Computing the Cassels-Tate pairing on odd-degree hyperelliptic Jacobians

H. Shukla

Notations and preliminaries

Cassels-Tat pairing (CTP)

Effective computation of CTP

How to determine the splitting field of η

Extra "nice' curves We have

$$\operatorname{Sel}^{(n)}(J) := \operatorname{\mathsf{ker}}\left(\operatorname{H}^1(G_k, J[n]) \to \prod_{v} \operatorname{H}^1(G_{k_v}, J)\right)$$

and

$$\operatorname{III}(J) := \operatorname{\mathsf{ker}}\left(\operatorname{H}^1(G_k,J) \to \prod_{v} \operatorname{H}^1(G_{k_v},J)\right).$$

For $n \ge 2$, we have the *n*-descent exact sequence: $0 \rightarrow J(k)/nJ(k) \rightarrow \operatorname{Sel}^{(n)}(J) \rightarrow \operatorname{III}(J)[n] \rightarrow 0$

A quick recall

Computing the Cassels-Tate pairing on odd-degree hyperelliptic Jacobians

H. Shukla

Notations and preliminaries

Cassels-Tat pairing (CTP)

Effective computation of CTP

How to determine the splitting field of η

Extra "nice' curves We have

$$\mathrm{Sel}^{(n)}(J) := \ker\left(\mathrm{H}^1(G_k, J[n])
ightarrow \prod_{v} \mathrm{H}^1(G_{k_v}, J)
ight)$$

and

$$\operatorname{III}(J) := \operatorname{\mathsf{ker}}\left(\operatorname{H}^1(G_k,J) \to \prod_{v} \operatorname{H}^1(G_{k_v},J)\right).$$

For $n \ge 2$, we have the *n*-descent exact sequence:

$$0
ightarrow J(k)/nJ(k)
ightarrow \mathrm{Sel}^{(n)}(J)
ightarrow \mathrm{III}(J)[n]
ightarrow 0.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Computing the Cassels-Tate pairing on odd-degree hyperelliptic Jacobians

H. Shukla

Notations and preliminaries

Cassels-Tate pairing (CTP)

Effective computation of CTP

How to determine the splitting field of η

Extra "nice" curves

The Cassels-Tate pairing:

 $\langle \cdot, \cdot \rangle_{\mathrm{CT}} : \mathrm{III}(J) imes \mathrm{III}(J)
ightarrow \mathbb{Q}/\mathbb{Z}$

- Anti-symmetric and non-degenerate (on the quotient III(J)_{nd} × III(J)_{nd}).
- Defined first by Cassels for elliptic curves and generalized by Tate to abelian varieties.
- Poonen and Stoll gave the Albanese-Albanese definition of CTP and showed that it is equivalent to the 2-other definitions (Weil-pairing and homogeneous space based definitions).
- This pairing can be pulled back to the *n*-Selmer group using the *n*-descent sequence.

Computing the Cassels-Tate pairing on odd-degree hyperelliptic Jacobians

H. Shukla

Notations and preliminaries

Cassels-Tate pairing (CTP)

Effective computation of CTP

How to determine the splitting field of η

Extra "nice" curves

The Cassels-Tate pairing:

```
\langle \cdot, \cdot 
angle_{\mathrm{CT}} : \mathrm{III}(J) 	imes \mathrm{III}(J) 
ightarrow \mathbb{Q}/\mathbb{Z}
```

- Anti-symmetric and non-degenerate (on the quotient $III(J)_{nd} \times III(J)_{nd}$).
- Defined first by Cassels for elliptic curves and generalized by Tate to abelian varieties.
- Poonen and Stoll gave the Albanese-Albanese definition of CTP and showed that it is equivalent to the 2-other definitions (Weil-pairing and homogeneous space based definitions).
- This pairing can be pulled back to the *n*-Selmer group using the *n*-descent sequence.

Computing the Cassels-Tate pairing on odd-degree hyperelliptic Jacobians

H. Shukla

Notations and preliminaries

Cassels-Tate pairing (CTP)

Effective computation of CTP

How to determine the splitting field of η

Extra "nice" curves

The Cassels-Tate pairing:

```
\langle \cdot, \cdot \rangle_{\mathrm{CT}} : \mathrm{III}(J) \times \mathrm{III}(J) \to \mathbb{Q}/\mathbb{Z}
```

- Anti-symmetric and non-degenerate (on the quotient $III(J)_{nd} \times III(J)_{nd}$).
- Defined first by Cassels for elliptic curves and generalized by Tate to abelian varieties.
- Poonen and Stoll gave the Albanese-Albanese definition of CTP and showed that it is equivalent to the 2-other definitions (Weil-pairing and homogeneous space based definitions).
- This pairing can be pulled back to the *n*-Selmer group using the *n*-descent sequence.

Computing the Cassels-Tate pairing on odd-degree hyperelliptic Jacobians

H. Shukla

Notations and preliminaries

Cassels-Tate pairing (CTP)

Effective computation of CTP

How to determine the splitting field of η

Extra "nice" curves

The Cassels-Tate pairing:

```
\langle \cdot, \cdot \rangle_{\mathrm{CT}} : \mathrm{III}(J) 	imes \mathrm{III}(J) 
ightarrow \mathbb{Q}/\mathbb{Z}
```

- Anti-symmetric and non-degenerate (on the quotient $\operatorname{III}(J)_{nd} \times \operatorname{III}(J)_{nd}$).
- Defined first by Cassels for elliptic curves and generalized by Tate to abelian varieties.
- Poonen and Stoll gave the Albanese-Albanese definition of CTP and showed that it is equivalent to the 2-other definitions (Weil-pairing and homogeneous space based definitions).
- This pairing can be pulled back to the *n*-Selmer group using the *n*-descent sequence.

Computing the Cassels-Tate pairing on odd-degree hyperelliptic Jacobians

H. Shukla

Notations and preliminaries

Cassels-Tate pairing (CTP)

Effective computation of CTP

How to determine the splitting field of η

Extra "nice' curves The Cassels-Tate pairing:

```
\langle \cdot, \cdot \rangle_{\mathrm{CT}} : \mathrm{III}(J) 	imes \mathrm{III}(J) 	o \mathbb{Q}/\mathbb{Z}
```

- Anti-symmetric and non-degenerate (on the quotient $\operatorname{III}(J)_{nd} \times \operatorname{III}(J)_{nd}$).
- Defined first by Cassels for elliptic curves and generalized by Tate to abelian varieties.
- Poonen and Stoll gave the Albanese-Albanese definition of CTP and showed that it is equivalent to the 2-other definitions (Weil-pairing and homogeneous space based definitions).
- This pairing can be pulled back to the *n*-Selmer group using the *n*-descent sequence.

Computing the Cassels-Tate pairing on odd-degree hyperelliptic Jacobians

H. Shukla

Notations and preliminaries

Cassels-Tate pairing (CTP)

Effective computation of CTP

How to determine the splitting field of η

Extra "nice" curves Choose uniformizers t_P , for $P \in C$ Galois-equivariantly. There are two evaluation based Galois-equivariant pairings: • $\langle .,. \rangle_1 : \operatorname{Princ}(C) \times \operatorname{Div}^0(C) \to \mathbb{G}_m$.

$$(\operatorname{div}(f),D)\mapsto \prod_{P\in\operatorname{Supp}(D)}(ft_P^{-v_P(f)}(P))^{v_p(D)}.$$

 $\langle .,.\rangle_2 : \operatorname{Div}^0(\mathcal{C}) \times \operatorname{Princ}(\mathcal{C}) \to \mathbb{G}_m.$ $(D, \operatorname{div}(f)) \mapsto \prod_{P \in \operatorname{Supp}(D)} (-1)^{v_P(f)v_P(D)} (ft_P^{-v_P(f)}(P))^{v_P(D)}.$

These pairings agree on the diagonal $Princ(C) \times Princ(C)$ (strong Weil reciprocity), and induce cup products \cup_1 and \cup_2 .

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Computing the Cassels-Tate pairing on odd-degree hyperelliptic Jacobians

H. Shukla

Notations and preliminaries

Cassels-Tate pairing (CTP)

Effective computation of CTP

How to determine the splitting field of η

Extra "nice" curves Choose uniformizers t_P , for $P \in C$ Galois-equivariantly. There are two evaluation based Galois-equivariant pairings:

 $(.,.)_1 : \operatorname{Princ}(C) \times \operatorname{Div}^0(C) \to \mathbb{G}_m.$

 $(\operatorname{div}(f),D)\mapsto \prod_{P\in\operatorname{Supp}(D)}(ft_P^{-v_P(f)}(P))^{v_P(D)}.$

 $\langle .,. \rangle_2 : \operatorname{Div}^0(\mathcal{C}) \times \operatorname{Princ}(\mathcal{C}) \to \mathbb{G}_m.$ $(D, \operatorname{div}(f)) \mapsto \prod_{P \in \operatorname{Supp}(D)} (-1)^{v_P(f)v_P(D)} (ft_P^{-v_P(f)}(P))^{v_P(D)}$

These pairings agree on the diagonal $Princ(C) \times Princ(C)$ (strong Weil reciprocity), and induce cup products \cup_1 and \cup_2 .

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Computing the Cassels-Tate pairing on odd-degree hyperelliptic Jacobians

H. Shukla

Notations and preliminaries

Cassels-Tate pairing (CTP)

Effective computation of CTP

How to determine the splitting field of η

Extra "nice" curves Choose uniformizers t_P , for $P \in C$ Galois-equivariantly. There are two evaluation based Galois-equivariant pairings:

• $\langle ., . \rangle_1 : \operatorname{Princ}(C) \times \operatorname{Div}^0(C) \to \mathbb{G}_m.$

$$(\operatorname{div}(f), D) \mapsto \prod_{P \in \operatorname{Supp}(D)} (ft_P^{-v_P(f)}(P))^{v_p(D)}.$$

 $\langle .,.\rangle_2 : \operatorname{Div}^0(\mathcal{C}) \times \operatorname{Princ}(\mathcal{C}) \to \mathbb{G}_m.$ $(D,\operatorname{div}(f)) \mapsto \prod_{P \in \operatorname{Supp}(D)} (-1)^{\nu_P(f)} (\nu_P(D)) (ft_P^{-\nu_P(f)}(P))^{\nu_P(D)}.$

These pairings agree on the diagonal $Princ(C) \times Princ(C)$ (strong Weil reciprocity), and induce cup products \cup_1 and \cup_2 .

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Computing the Cassels-Tate pairing on odd-degree hyperelliptic Jacobians

H. Shukla

Notations and preliminaries

Cassels-Tate pairing (CTP)

Effective computation of CTP

How to determine the splitting field of η

Extra "nice" curves Choose uniformizers t_P , for $P \in C$ Galois-equivariantly. There are two evaluation based Galois-equivariant pairings:

•
$$\langle ., . \rangle_1 : \operatorname{Princ}(\mathcal{C}) \times \operatorname{Div}^0(\mathcal{C}) \to \mathbb{G}_m$$

$$(\operatorname{div}(f),D)\mapsto \prod_{P\in\operatorname{Supp}(D)}(ft_P^{-v_P(f)}(P))^{v_p(D)}.$$

•
$$\langle .,. \rangle_2 : \operatorname{Div}^0(\mathcal{C}) \times \operatorname{Princ}(\mathcal{C}) \to \mathbb{G}_m.$$

 $(D, \operatorname{div}(f)) \mapsto \prod_{P \in \operatorname{Supp}(D)} (-1)^{v_P(f)v_P(D)} (ft_P^{-v_P(f)}(P))^{v_P(D)}$

These pairings agree on the diagonal $Princ(C) \times Princ(C)$ (strong Weil reciprocity), and induce cup products \cup_1 and \cup_2 .

イロト 不得 トイヨト イヨト

-

Computing the Cassels-Tate pairing on odd-degree hyperelliptic Jacobians

H. Shukla

Notations and preliminaries

Cassels-Tate pairing (CTP)

Effective computation of CTP

How to determine the splitting field of η

Extra "nice" curves Choose uniformizers t_P , for $P \in C$ Galois-equivariantly. There are two evaluation based Galois-equivariant pairings:

•
$$\langle ., . \rangle_1 : \operatorname{Princ}(\mathcal{C}) \times \operatorname{Div}^0(\mathcal{C}) \to \mathbb{G}_m$$

$$(\operatorname{div}(f),D)\mapsto \prod_{P\in\operatorname{Supp}(D)}(ft_P^{-v_P(f)}(P))^{v_p(D)}.$$

•
$$\langle .,. \rangle_2 : \operatorname{Div}^0(\mathcal{C}) \times \operatorname{Princ}(\mathcal{C}) \to \mathbb{G}_m.$$

 $(D, \operatorname{div}(f)) \mapsto \prod_{P \in \operatorname{Supp}(D)} (-1)^{\nu_P(f)\nu_P(D)} (ft_P^{-\nu_P(f)}(P))^{\nu_P(D)}$

These pairings agree on the diagonal $Princ(C) \times Princ(C)$ (strong Weil reciprocity), and induce cup products \cup_1 and \cup_2 .

イロト 不得 トイヨト イヨト

-

Computing the Cassels-Tate pairing on odd-degree hyperelliptic Jacobians

H. Shukla

Notations and preliminaries

Cassels-Tate pairing (CTP)

Effective computation of CTP

How to determine the splitting field of η

Extra "nice" curves Let $a, a' \in H^1(G_k, J[n])$ and let $\alpha, \alpha' \in Z^1(G_k, J[n])$ represent the classes a, a'.

Lift α, α' to 1-cochains $\mathfrak{a}, \mathfrak{a}'$ with values in $\operatorname{Div}^0(\mathcal{C})$. Using cohomology on the exact sequence:

 $0 \to \operatorname{Princ}(C) \to \operatorname{Div}^0(C) \to \operatorname{Pic}^0(C) \to 0,$

we get a 3-cochain:

 $\eta := \partial \mathfrak{a} \cup_1 \mathfrak{a}' - \mathfrak{a} \cup_2 \partial \mathfrak{a}',$

and compatibility of \cup_1 , \cup_2 on the diagonal implies $\eta \in \mathbb{Z}^3(G_k, \mathbb{G}_m)$ i.e. a 3-cocycle Since $\mathrm{H}^3(G_k, \mathbb{G}_m) = 0$, i.e. there exists $\epsilon \in \mathrm{C}^2(G_k, \mathbb{G}_m)$ s.t. $\partial \epsilon = \eta$. Global bottleneck: Finding ϵ (our Nemo!)

Computing the Cassels-Tate pairing on odd-degree hyperelliptic Jacobians

H. Shukla

Notations and preliminaries

Cassels-Tate pairing (CTP)

Effective computation of CTP

How to determine the splitting field of η

Extra "nice" curves Let $a, a' \in H^1(G_k, J[n])$ and let $\alpha, \alpha' \in Z^1(G_k, J[n])$ represent the classes a, a'. Lift α, α' to 1-cochains $\mathfrak{a}, \mathfrak{a}'$ with values in $\operatorname{Div}^0(\mathcal{C})$. Using cohomology on the exact sequence:

 $0 \to \operatorname{Princ}(\mathcal{C}) \to \operatorname{Div}^0(\mathcal{C}) \to \operatorname{Pic}^0(\mathcal{C}) \to 0,$

we get a 3-cochain:

 $\eta := \partial \mathfrak{a} \cup_1 \mathfrak{a}' - \mathfrak{a} \cup_2 \partial \mathfrak{a}',$

and compatibility of \cup_1 , \cup_2 on the diagonal implies $\eta \in \mathbb{Z}^3(G_k, \mathbb{G}_m)$ i.e. a 3-cocycle Since $\mathrm{H}^3(G_k, \mathbb{G}_m) = 0$, i.e. there exists $\epsilon \in \mathrm{C}^2(G_k, \mathbb{G}_m)$ s.t. $\partial \epsilon = \eta$. Global bottleneck: Finding ϵ (our Nemo!)

Computing the Cassels-Tate pairing on odd-degree hyperelliptic Jacobians

H. Shukla

Notations and preliminaries

Cassels-Tate pairing (CTP)

Effective computation of CTP

How to determine the splittin field of η

Extra "nice" curves Let $a, a' \in H^1(G_k, J[n])$ and let $\alpha, \alpha' \in Z^1(G_k, J[n])$ represent the classes a, a'.

Lift α , α' to 1-cochains \mathfrak{a} , \mathfrak{a}' with values in $\operatorname{Div}^{0}(C)$. Using cohomology on the exact sequence:

$$0 \rightarrow \operatorname{Princ}(\mathcal{C}) \rightarrow \operatorname{Div}^{0}(\mathcal{C}) \rightarrow \operatorname{Pic}^{0}(\mathcal{C}) \rightarrow 0,$$

we get a 3-cochain:

$$\eta := \partial \mathfrak{a} \cup_1 \mathfrak{a}' - \mathfrak{a} \cup_2 \partial \mathfrak{a}',$$

and compatibility of \cup_1 , \cup_2 on the diagonal implies $\eta \in Z^3(G_k, \mathbb{G}_m)$ i.e. a 3-cocycle Since $H^3(G_k, \mathbb{G}_m) = 0$, i.e. there exists $\epsilon \in C^2(G_k, \mathbb{G}_m)$ s.t. $\partial \epsilon = \eta$. Global bottleneck: Finding ϵ (our *Nemo*!)

Computing the Cassels-Tate pairing on odd-degree hyperelliptic Jacobians

H. Shukla

Notations and preliminaries

Cassels-Tate pairing (CTP)

Effective computation of CTP

How to determine the splitting field of η

Extra "nice" curves Let $a, a' \in H^1(G_k, J[n])$ and let $\alpha, \alpha' \in Z^1(G_k, J[n])$ represent the classes a, a'.

Lift α , α' to 1-cochains \mathfrak{a} , \mathfrak{a}' with values in $\operatorname{Div}^{0}(C)$. Using cohomology on the exact sequence:

$$0 \rightarrow \operatorname{Princ}(\mathcal{C}) \rightarrow \operatorname{Div}^{0}(\mathcal{C}) \rightarrow \operatorname{Pic}^{0}(\mathcal{C}) \rightarrow 0,$$

we get a 3-cochain:

$$\eta := \partial \mathfrak{a} \cup_1 \mathfrak{a}' - \mathfrak{a} \cup_2 \partial \mathfrak{a}',$$

and compatibility of \cup_1 , \cup_2 on the diagonal implies $\eta \in \mathbb{Z}^3(G_k, \mathbb{G}_m)$ i.e. a 3-cocycle Since $\mathrm{H}^3(G_k, \mathbb{G}_m) = 0$, i.e. there exists $\epsilon \in \mathrm{C}^2(G_k, \mathbb{G}_m)$ s.t. $\partial \epsilon = \eta$. Global bottleneck: Finding ϵ (our Nemo!)

Computing the Cassels-Tate pairing on odd-degree hyperelliptic Jacobians

H. Shukla

Notations and preliminaries

Cassels-Tate pairing (CTP)

Effective computation of CTP

How to determine the splitting field of η

Extra "nice" curves Let $a, a' \in H^1(G_k, J[n])$ and let $\alpha, \alpha' \in Z^1(G_k, J[n])$ represent the classes a, a'.

Lift α , α' to 1-cochains \mathfrak{a} , \mathfrak{a}' with values in $\operatorname{Div}^{0}(C)$. Using cohomology on the exact sequence:

$$0 \rightarrow \operatorname{Princ}(\mathcal{C}) \rightarrow \operatorname{Div}^{0}(\mathcal{C}) \rightarrow \operatorname{Pic}^{0}(\mathcal{C}) \rightarrow 0,$$

we get a 3-cochain:

$$\eta := \partial \mathfrak{a} \cup_1 \mathfrak{a}' - \mathfrak{a} \cup_2 \partial \mathfrak{a}',$$

and compatibility of \cup_1 , \cup_2 on the diagonal implies $\eta \in \mathbb{Z}^3(G_k, \mathbb{G}_m)$ i.e. a 3-cocycle Since $\mathrm{H}^3(G_k, \mathbb{G}_m) = 0$, i.e. there exists $\epsilon \in \mathrm{C}^2(G_k, \mathbb{G}_m)$ s.t. $\partial \epsilon = \eta$. Global bottleneck: Finding ϵ (our Nemo!)

Computing the Cassels-Tate pairing on odd-degree hyperelliptic Jacobians

H. Shukla

Notations and preliminaries

Cassels-Tate pairing (CTP)

Effective computation of CTP

How to determine the splitting field of η

Extra "nice curves Let $a, a' \in H^1(G_k, J[n])$ and let $\alpha, \alpha' \in Z^1(G_k, J[n])$ represent the classes a, a'.

Lift α , α' to 1-cochains \mathfrak{a} , \mathfrak{a}' with values in $\operatorname{Div}^{0}(C)$. Using cohomology on the exact sequence:

$$0 \rightarrow \operatorname{Princ}(\mathcal{C}) \rightarrow \operatorname{Div}^{0}(\mathcal{C}) \rightarrow \operatorname{Pic}^{0}(\mathcal{C}) \rightarrow 0,$$

we get a 3-cochain:

$$\eta := \partial \mathfrak{a} \cup_1 \mathfrak{a}' - \mathfrak{a} \cup_2 \partial \mathfrak{a}',$$

and compatibility of \cup_1 , \cup_2 on the diagonal implies $\eta \in \mathbb{Z}^3(G_k, \mathbb{G}_m)$ i.e. a 3-cocycle Since $\mathrm{H}^3(G_k, \mathbb{G}_m) = 0$, i.e. there exists $\epsilon \in \mathrm{C}^2(G_k, \mathbb{G}_m)$ s.t. $\partial \epsilon = \eta$.

Global bottleneck: Finding ϵ (our *Nemo*!)

Computing the Cassels-Tate pairing on odd-degree hyperelliptic Jacobians

H. Shukla

Notations and preliminaries

Cassels-Tate pairing (CTP)

Effective computation of CTP

How to determine the splitting field of η

Extra "nice" curves Let v be a place of k. If $a \in \text{Sel}^{(n)}(J)$ then there is a $\beta_v \in J(\overline{k_v})$ such that $\alpha_v = \partial \beta_v$. Let $\mathfrak{b}_v \in \text{Div}^0(\mathcal{C})$ represent β . Then

$$\gamma_{\mathsf{v}} := (\mathfrak{a}_{\mathsf{v}} - \partial \mathfrak{b}_{\mathsf{v}}) \cup_1 \mathfrak{a}_{\mathsf{v}}' - \mathfrak{b}_{\mathsf{v}} \cup_2 \partial \mathfrak{a}_{\mathsf{v}}' - \epsilon_{\mathsf{v}}$$

is a 2-cocycle. We have $[\gamma_{v}] \in \operatorname{Br}(k_{v})$ and the CTP is defined as:

Definition 1

$$\langle a,a'
angle_{ ext{CT}}:=\sum_{v} ext{inv}_v([\gamma_v]).$$

ъ

Computing the Cassels-Tate pairing on odd-degree hyperelliptic Jacobians

H. Shukla

Notations and preliminaries

Cassels-Tate pairing (CTP)

Effective computation of CTP

How to determine the splitting field of η

Extra "nice" curves Let v be a place of k. If $a \in \text{Sel}^{(n)}(J)$ then there is a $\beta_v \in J(\overline{k_v})$ such that $\alpha_v = \partial \beta_v$. Let $b_v \in \text{Div}^0(C)$ represent β . Then

$$\gamma_{v} := (\mathfrak{a}_{v} - \partial \mathfrak{b}_{v}) \cup_{1} \mathfrak{a}_{v}' - \mathfrak{b}_{v} \cup_{2} \partial \mathfrak{a}_{v}' - \epsilon_{v}$$

is a 2-cocycle. We have $[\gamma_{v}] \in \mathrm{Br}\left(k_{v}
ight)$ and the CTP is defined as:

Definition 1

$$\langle a,a'
angle_{ ext{CT}}:=\sum_{
u} ext{inv}_{
u}([\gamma_{
u}]).$$

Computing the Cassels-Tate pairing on odd-degree hyperelliptic Jacobians

H. Shukla

Notations and preliminaries

Cassels-Tate pairing (CTP)

Effective computation of CTP

How to determine the splitting field of η

Extra "nice' curves Let v be a place of k. If $a \in \text{Sel}^{(n)}(J)$ then there is a $\beta_v \in J(\overline{k_v})$ such that $\alpha_v = \partial \beta_v$. Let $\mathfrak{b}_v \in \text{Div}^0(C)$ represent β . Then

$$\gamma_{\mathsf{v}} := (\mathfrak{a}_{\mathsf{v}} - \partial \mathfrak{b}_{\mathsf{v}}) \cup_1 \mathfrak{a}_{\mathsf{v}}' - \mathfrak{b}_{\mathsf{v}} \cup_2 \partial \mathfrak{a}_{\mathsf{v}}' - \epsilon_{\mathsf{v}}$$

is a 2-cocycle. We have $[\gamma_{v}]\in \mathrm{Br}\left(k_{v}
ight)$ and the CTP is defined as

Definition 1

$$\langle a,a'
angle_{ ext{CT}}:=\sum_{
u} ext{inv}_{
u}([\gamma_{
u}]).$$

Computing the Cassels-Tate pairing on odd-degree hyperelliptic Jacobians

H. Shukla

Notations and preliminaries

Cassels-Tate pairing (CTP)

Effective computation of CTP

How to determine the splitting field of η

Extra "nice' curves Let v be a place of k. If $a \in \text{Sel}^{(n)}(J)$ then there is a $\beta_v \in J(\overline{k_v})$ such that $\alpha_v = \partial \beta_v$. Let $\mathfrak{b}_v \in \text{Div}^0(\mathcal{C})$ represent β . Then

$$\gamma_{\boldsymbol{\nu}} := (\mathfrak{a}_{\boldsymbol{\nu}} - \partial \mathfrak{b}_{\boldsymbol{\nu}}) \cup_1 \mathfrak{a}_{\boldsymbol{\nu}}' - \mathfrak{b}_{\boldsymbol{\nu}} \cup_2 \partial \mathfrak{a}_{\boldsymbol{\nu}}' - \epsilon_{\boldsymbol{\nu}}$$

is a 2-cocycle.

We have $[\gamma_{v}] \in Br(k_{v})$ and the CTP is defined as:

Definition 1

$$\langle a,a'
angle_{ ext{CT}}:=\sum_{v} ext{inv}_v([\gamma_v]).$$

Computing the Cassels-Tate pairing on odd-degree hyperelliptic Jacobians

H. Shukla

Notations and preliminaries

Cassels-Tate pairing (CTP)

Effective computation of CTP

How to determine the splitting field of η

Extra "nice' curves Let v be a place of k. If $a \in \text{Sel}^{(n)}(J)$ then there is a $\beta_v \in J(\overline{k_v})$ such that $\alpha_v = \partial \beta_v$. Let $\mathfrak{b}_v \in \text{Div}^0(\mathcal{C})$ represent β . Then

$$\gamma_{\boldsymbol{\nu}} := (\mathfrak{a}_{\boldsymbol{\nu}} - \partial \mathfrak{b}_{\boldsymbol{\nu}}) \cup_1 \mathfrak{a}_{\boldsymbol{\nu}}' - \mathfrak{b}_{\boldsymbol{\nu}} \cup_2 \partial \mathfrak{a}_{\boldsymbol{\nu}}' - \epsilon_{\boldsymbol{\nu}}$$

is a 2-cocycle. We have $[\gamma_{\nu}] \in Br(k_{\nu})$ and the CTP is defined as:

Definition 1

$$\langle \boldsymbol{a}, \boldsymbol{a}'
angle_{\mathrm{CT}} := \sum_{\boldsymbol{v}} \mathrm{inv}_{\boldsymbol{v}}([\gamma_{\boldsymbol{v}}]).$$

Computing the Cassels-Tate pairing on odd-degree hyperelliptic Jacobians

H. Shukla

Notations and preliminaries

Cassels-Tate pairing (CTP)

Effective computation of CTP

How to determine the splitting field of η

Extra "nice curves Let v be a place of k. If $a \in \text{Sel}^{(n)}(J)$ then there is a $\beta_v \in J(\overline{k_v})$ such that $\alpha_v = \partial \beta_v$. Let $\mathfrak{b}_v \in \text{Div}^0(C)$ represent β . Then

$$\gamma_{\boldsymbol{\nu}} := (\mathfrak{a}_{\boldsymbol{\nu}} - \partial \mathfrak{b}_{\boldsymbol{\nu}}) \cup_1 \mathfrak{a}_{\boldsymbol{\nu}}' - \mathfrak{b}_{\boldsymbol{\nu}} \cup_2 \partial \mathfrak{a}_{\boldsymbol{\nu}}' - \epsilon_{\boldsymbol{\nu}}$$

is a 2-cocycle. We have $[\gamma_{\nu}] \in Br(k_{\nu})$ and the CTP is defined as:

Definition 1

$$\langle \boldsymbol{a}, \boldsymbol{a}'
angle_{\mathrm{CT}} := \sum_{\boldsymbol{v}} \mathrm{inv}_{\boldsymbol{v}}([\gamma_{\boldsymbol{v}}]).$$

Computing the Cassels-Tate pairing on odd-degree hyperelliptic Jacobians

H. Shukla

Notations and preliminaries

Cassels-Tate pairing (CTP)

Effective computation of CTP

How to determine the splitting field of η

Extra "nice' curves Let v be a place of k. If $a \in \text{Sel}^{(n)}(J)$ then there is a $\beta_v \in J(\overline{k_v})$ such that $\alpha_v = \partial \beta_v$. Let $\mathfrak{b}_v \in \text{Div}^0(C)$ represent β . Then

$$\gamma_{\boldsymbol{\nu}} := (\mathfrak{a}_{\boldsymbol{\nu}} - \partial \mathfrak{b}_{\boldsymbol{\nu}}) \cup_1 \mathfrak{a}_{\boldsymbol{\nu}}' - \mathfrak{b}_{\boldsymbol{\nu}} \cup_2 \partial \mathfrak{a}_{\boldsymbol{\nu}}' - \epsilon_{\boldsymbol{\nu}}$$

is a 2-cocycle. We have $[\gamma_{\nu}] \in Br(k_{\nu})$ and the CTP is defined as:

Definition 1

$$\langle \boldsymbol{a}, \boldsymbol{a}'
angle_{\mathrm{CT}} := \sum_{\boldsymbol{v}} \mathrm{inv}_{\boldsymbol{v}}([\gamma_{\boldsymbol{v}}]).$$

Computing the Cassels-Tate pairing on odd-degree hyperelliptic Jacobians

H. Shukla

Notations and preliminaries

Cassels-Tate pairing (CTP)

Effective computation of CTP

How to determine the splitting field of η

Extra "nice" curves

Previous works have mainly focused on elliptic curves:

- For 2-Selmer groups of genus 2 Jacobians, Jiali Yan has an algorithm (assuming some conditions).
- We handle the case of 2-Selmer groups of odd-degree hyperelliptic Jacobians completely!

Computing the Cassels-Tate pairing on odd-degree hyperelliptic Jacobians

H. Shukla

Notations and preliminaries

Cassels-Tate pairing (CTP)

Effective computation of CTP

How to determine the splitting field of η

Extra "nice" curves Previous works have mainly focused on elliptic curves:

Authors	Domain
Cassels	$\mathrm{Sel}^{(2)}(E) imes \mathrm{Sel}^{(2)}(E)$
Swinnerton-Dyer	$\operatorname{Sel}^{(2^m)}(E) \times \operatorname{Sel}^{(2)}(E)$
van Beek & Fisher	$\mathrm{Sel}^{(\phi)}(\mathcal{E}){ imes}\mathrm{Sel}^{(\phi)}(\mathcal{E})$ deg (ϕ) is odd prime
Fischer & Newton	$\mathrm{Sel}^{(3)}(E) imes \mathrm{Sel}^{(3)}(E)$

■ For 2-Selmer groups of genus 2 Jacobians, Jiali Yan has an algorithm (assuming some conditions).

◆□▶ ◆◎▶ ◆□▶ ◆□▶ ● □

• We handle the case of 2-Selmer groups of odd-degree hyperelliptic Jacobians completely!

Computing the Cassels-Tate pairing on odd-degree hyperelliptic Jacobians

H. Shukla

Notations and preliminaries

Cassels-Tate pairing (CTP)

Effective computation of CTP

How to determine the splitting field of η

Extra "nice" curves Previous works have mainly focused on elliptic curves:

Authors	Domain
Cassels	$\operatorname{Sel}^{(2)}(E) imes \operatorname{Sel}^{(2)}(E)$
Swinnerton-Dyer	$\mathrm{Sel}^{(2^m)}(E) imes \mathrm{Sel}^{(2)}(E)$
van Beek & Fisher	$\mathrm{Sel}^{(\phi)}(\mathcal{E}){ imes}\mathrm{Sel}^{(\phi)}(\mathcal{E})$ deg (ϕ) is odd prime
Fischer & Newton	$\mathrm{Sel}^{(3)}(E) imes \mathrm{Sel}^{(3)}(E)$

• For 2-Selmer groups of genus 2 Jacobians, Jiali Yan has an algorithm (assuming some conditions).

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• We handle the case of 2-Selmer groups of odd-degree hyperelliptic Jacobians completely!

Computing the Cassels-Tate pairing on odd-degree hyperelliptic Jacobians

H. Shukla

Notations and preliminaries

Cassels-Tate pairing (CTP)

Effective computation of CTP

How to determine the splitting field of η

Extra "nice" curves Previous works have mainly focused on elliptic curves:

Authors	Domain
Cassels	$\mathrm{Sel}^{(2)}(E) imes \mathrm{Sel}^{(2)}(E)$
Swinnerton-Dyer	$\mathrm{Sel}^{(2^m)}(E) imes \mathrm{Sel}^{(2)}(E)$
van Beek & Fisher	$\mathrm{Sel}^{(\phi)}(\mathcal{E}) { imes} \mathrm{Sel}^{(\phi)}(\mathcal{E})$ deg (ϕ) is odd prime
Fischer & Newton	$\operatorname{Sel}^{(3)}(E) \times \operatorname{Sel}^{(3)}(E)$

• For 2-Selmer groups of genus 2 Jacobians, Jiali Yan has an algorithm (assuming some conditions).

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• We handle the case of 2-Selmer groups of odd-degree hyperelliptic Jacobians completely!

Computing the Cassels-Tate pairing on odd-degree hyperelliptic Jacobians

H. Shukla

Notations and preliminaries

Cassels-Tat pairing (CTP)

Effective computation of CTP

How to determine the splitting field of η

Extra "nice' curves

One can compute ϵ if a splitting field of η is known!

For a cochain $x \in C^1(G_k, M)$, let fod(x) be the field of definition of x, i.e. minimal field extension L s.t. x = inf(y) for some $y \in C^i(Gal(L/k), M(L))$. Let

 $\operatorname{loc}^2(J[n]): \operatorname{H}^2(G_k, J[n]) \to \prod_{v} \operatorname{H}^2(G_k, J[n]).$

Proposition 2

f loc²(J[n]) is injective, then there is a 2-cochain ϵ s.t. $\partial \epsilon = \eta$ satisfying:

For $\sigma, \tau, \tau' \in G_k$, $\epsilon(\sigma, \tau) = \epsilon(\sigma, \tau')$ if $\tau|_{K'} = \tau'|_{K''}$, where $K' := \operatorname{fod}(\alpha')$.

•
$$\epsilon(\sigma, \tau) = 1$$
 if $\tau|_{K'} = id$.

▲□ > ▲圖 > ▲目 > ▲目 > → 目 → の < ⊙

Computing the Cassels-Tate pairing on odd-degree hyperelliptic Jacobians

H. Shukla

Notations and preliminaries

Cassels-Tate pairing (CTP)

Effective computation of CTP

How to determine the splitting field of η

Extra "nice curves One can compute ϵ if a splitting field of η is known! For a cochain $x \in C^1(G_k, M)$, let fod(x) be the field of definition of x, i.e. minimal field extension L s.t. $x = \inf(y)$ for some $y \in C^i(\operatorname{Gal}(L/k), M(L))$. Let

 $\operatorname{loc}^{2}(J[n]): \operatorname{H}^{2}(G_{k}, J[n]) \to \prod_{k} \operatorname{H}^{2}(G_{k}, J[n]).$

Proposition 2

If $loc^2(J[n])$ is injective, then there is a 2-cochain ϵ s.t. $\partial \epsilon = \eta$ satisfying:

For $\sigma, \tau, \tau' \in G_k$, $\epsilon(\sigma, \tau) = \epsilon(\sigma, \tau')$ if $\tau|_{K'} = \tau'|_{K''}$, where $K' := \operatorname{fod}(\alpha')$.

•
$$\epsilon(\sigma, \tau) = 1$$
 if $\tau|_{K'} = id$.

Computing the Cassels-Tate pairing on odd-degree hyperelliptic Jacobians

H. Shukla

Notations and preliminaries

Cassels-Tate pairing (CTP)

Effective computation of CTP

How to determine the splitting field of η

Extra "nice curves One can compute ϵ if a splitting field of η is known! For a cochain $x \in C^1(G_k, M)$, let fod(x) be the field of definition of x, i.e. minimal field extension L s.t. $x = \inf(y)$ for some $y \in C^i(\operatorname{Gal}(L/k), M(L))$. Let

$$\operatorname{loc}^2(J[n]): \operatorname{H}^2(G_k, J[n]) \to \prod_{v} \operatorname{H}^2(G_k, J[n]).$$

Proposition 2

If $loc^2(J[n])$ is injective, then there is a 2-cochain ϵ s.t. $\partial \epsilon = \eta$ satisfying:

• For $\sigma, \tau, \tau' \in G_k$, $\epsilon(\sigma, \tau) = \epsilon(\sigma, \tau')$ if $\tau|_{K'} = \tau'|_{K''}$, where $K' := \operatorname{fod}(\alpha')$.

•
$$\epsilon(\sigma, \tau) = 1$$
 if $\tau|_{K'} = id$.

Computing the Cassels-Tate pairing on odd-degree hyperelliptic Jacobians

H. Shukla

Notations and preliminaries

Cassels-Tate pairing (CTP)

Effective computation of CTP

How to determine the splitting field of η

Extra "nice curves One can compute ϵ if a splitting field of η is known! For a cochain $x \in C^1(G_k, M)$, let fod(x) be the field of definition of x, i.e. minimal field extension L s.t. $x = \inf(y)$ for some $y \in C^i(\operatorname{Gal}(L/k), M(L))$. Let

$$\operatorname{loc}^2(J[n]): \operatorname{H}^2(G_k, J[n]) \to \prod_{v} \operatorname{H}^2(G_k, J[n]).$$

Proposition 2

If $loc^2(J[n])$ is injective, then there is a 2-cochain ϵ s.t. $\partial \epsilon = \eta$ satisfying:

For $\sigma, \tau, \tau' \in G_k$, $\epsilon(\sigma, \tau) = \epsilon(\sigma, \tau')$ if $\tau|_{K'} = \tau'|_{K''}$, where $K' := \operatorname{fod}(\alpha')$.

•
$$\epsilon(\sigma, \tau) = 1$$
 if $\tau|_{K'} = id$

Computing the Cassels-Tate pairing on odd-degree hyperelliptic Jacobians

H. Shukla

Notations and preliminaries

Cassels-Tate pairing (CTP)

Effective computation of CTP

How to determine the splitting field of η

Extra "nice curves One can compute ϵ if a splitting field of η is known! For a cochain $x \in C^1(G_k, M)$, let fod(x) be the field of definition of x, i.e. minimal field extension L s.t. $x = \inf(y)$ for some $y \in C^i(\operatorname{Gal}(L/k), M(L))$. Let

$$\operatorname{loc}^2(J[n]): \operatorname{H}^2(G_k, J[n]) \to \prod_{v} \operatorname{H}^2(G_k, J[n]).$$

Proposition 2

If $loc^2(J[n])$ is injective, then there is a 2-cochain ϵ s.t. $\partial \epsilon = \eta$ satisfying:

• For $\sigma, \tau, \tau' \in G_k$, $\epsilon(\sigma, \tau) = \epsilon(\sigma, \tau')$ if $\tau|_{K'} = \tau'|_{K'}$, where $K' := \operatorname{fod}(\alpha')$.

• $\epsilon(\sigma, \tau) = 1$ if $\tau|_{K'} = id$

Computing the Cassels-Tate pairing on odd-degree hyperelliptic Jacobians

H. Shukla

Notations and preliminaries

Cassels-Tate pairing (CTP)

Effective computation of CTP

How to determine the splitting field of η

Extra "nice curves One can compute ϵ if a splitting field of η is known! For a cochain $x \in C^1(G_k, M)$, let fod(x) be the field of definition of x, i.e. minimal field extension L s.t. $x = \inf(y)$ for some $y \in C^i(\text{Gal}(L/k), M(L))$. Let

$$\operatorname{loc}^2(J[n]): \operatorname{H}^2(G_k, J[n]) \to \prod_{v} \operatorname{H}^2(G_k, J[n]).$$

Proposition 2

If $loc^2(J[n])$ is injective, then there is a 2-cochain ϵ s.t. $\partial \epsilon = \eta$ satisfying:

• For $\sigma, \tau, \tau' \in G_k$, $\epsilon(\sigma, \tau) = \epsilon(\sigma, \tau')$ if $\tau|_{K'} = \tau'|_{K'}$, where $K' := \operatorname{fod}(\alpha')$.

•
$$\epsilon(\sigma, \tau) = 1$$
 if $\tau|_{K'} = id$

Sketch of proof of proposition 2

Computing the Cassels-Tate pairing on odd-degree hyperelliptic Jacobians

H. Shukla

Notations and preliminaries

Cassels-Tate pairing (CTP)

Effective computation of CTP

How to determine the splitting field of η

Extra "nice' curves • Use cohomology on commutative diagram:

to show: if $a \in \operatorname{Sel}^{(n)}(J)$, then $\delta(a) = 0$, where $\delta : \operatorname{H}^1(G_k, J[n]) \to \operatorname{H}^2(G_k, J[n])$.

Expressing the Weil pairing in terms of $\langle \cdot, \cdot \rangle_1$ and $\langle \cdot, \cdot \rangle_2$, plus some identities of cup-product imply the proposition.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

Sketch of proof of proposition 2

Computing the Cassels-Tate pairing on odd-degree hyperelliptic Jacobians

H. Shukla

Notations and preliminaries

Cassels-Tate pairing (CTP)

Effective computation of CTP

How to determine the splitting field of η

Extra "nice' curves • Use cohomology on commutative diagram:

to show: if $a \in \operatorname{Sel}^{(n)}(J)$, then $\delta(a) = 0$, where $\delta : \operatorname{H}^1(G_k, J[n]) \to \operatorname{H}^2(G_k, J[n])$.

■ Expressing the Weil pairing in terms of ⟨·, ·⟩₁ and ⟨·, ·⟩₂, plus some identities of cup-product imply the proposition.

Splitting field of η

Computing the Cassels-Tate pairing on odd-degree hyperelliptic Jacobians

H. Shukla

Notations and preliminaries

Cassels-Tat pairing (CTP)

Effective computation of CTP

How to determine the splitting field of η

Extra "nice curves

Lemma 3

Let $K := fod(\alpha)$, $K' := fod(\alpha')$ and assume that α' takes values defined over k. If $loc^2(J[n])$ is injective, and one of the following is satisfied:

•
$$K \cap K' = k$$
.

•
$$[K':k] = 2.$$

Then η splits in KK', i.e. its field of definition.

Remark 4

The proof of the above lemma constructs ϵ explicitly.

Since $k(J[n]) \subset K \cap K'$, lemma 3 cannot be applied (at least directly) to determine a splitting field of η even for n = 2.

Splitting field of η

Computing the Cassels-Tate pairing on odd-degree hyperelliptic Jacobians

H. Shukla

Notations and preliminaries

Cassels-Tat pairing (CTP)

Effective computation of CTP

How to determine the splitting field of η

Extra "nice curves

Lemma 3

Let $K := fod(\alpha)$, $K' := fod(\alpha')$ and assume that α' takes values defined over k. If $loc^2(J[n])$ is injective, and one of the following is satisfied:

•
$$K \cap K' = k$$
.

•
$$[K':k] = 2.$$

Then η splits in KK', i.e. its field of definition.

Remark 4

The proof of the above lemma constructs $\boldsymbol{\epsilon}$ explicitly.

Since $k(J[n]) \subset K \cap K'$, lemma 3 cannot be applied (at least directly) to determine a splitting field of η even for n = 2.

Splitting field of η

Computing the Cassels-Tate pairing on odd-degree hyperelliptic Jacobians

H. Shukla

Notations and preliminaries

Cassels-Tat pairing (CTP)

Effective computation of CTP

How to determine the splitting field of η

Extra "nice curves

Lemma 3

Let $K := fod(\alpha)$, $K' := fod(\alpha')$ and assume that α' takes values defined over k. If $loc^2(J[n])$ is injective, and one of the following is satisfied:

•
$$K \cap K' = k$$
.

•
$$[K':k] = 2.$$

Then η splits in KK', i.e. its field of definition.

Remark 4

The proof of the above lemma constructs ϵ explicitly.

Since $k(J[n]) \subset K \cap K'$, lemma 3 cannot be applied (at least directly) to determine a splitting field of η even for n = 2.

Computing the Cassels-Tate pairing on odd-degree hyperelliptic Jacobians

We have:

H. Shukla

Notations and preliminaries

Cassels-Tate pairing (CTP)

Effective computation of CTP

How to determine the splitting field of η

Extra "nice' curves $H^1(G_k, J[2]) \simeq \ker \left(N: L^{ imes}/(L^{ imes})^2
ightarrow k^{ imes}/(k^{ imes})^2
ight),$

where L := k[x]/(f(x)). and $N : L^{\times} \to k^{\times}$ is the norm map.

• Let T_i be the representative of i^{th} orbit of Δ .

For $1 \le j \le 2g + 1$ choose $d'_j \in k(T_j)^{\times}$ such that $(d'_1, d'_2, \dots, d'_{2g+1})$ represents α' .

■ d'_{j} s satisfy the condition: for $1 \le n, m \le 2g + 1$, d'_{m} and d'_{n} are conjugates if T_{n} and T_{m} are.

First, note that loc²(*J*[2]) is injective (consequence of Poitou-Tate duality).

Computing the Cassels-Tate pairing on odd-degree hyperelliptic Jacobians

We have:

H. Shukla

Notations and preliminaries

Cassels-Tate pairing (CTP)

Effective computation of CTP

How to determine the splitting field of η

Extra "nice' curves $H^1(G_k, J[2]) \simeq \ker \left(N: L^{\times}/(L^{\times})^2 \to k^{\times}/(k^{\times})^2\right),$

where L := k[x]/(f(x)). and $N : L^{\times} \to k^{\times}$ is the norm map. • Let T_i be the representative of i^{th} orbit of Δ .

For $1 \le j \le 2g + 1$ choose $d'_j \in k(T_j)^{\times}$ such that $(d'_1, d'_2, \dots, d'_{2g+1})$ represents α' .

■ d'_{js} satisfy the condition: for $1 \le n, m \le 2g + 1$, d'_{m} and d'_{n} are conjugates if T_{n} and T_{m} are.

First, note that $loc^2(J[2])$ is injective (consequence of Poitou-Tate duality).

Computing the Cassels-Tate pairing on odd-degree hyperelliptic Jacobians

We have:

H. Shukla

Notations and preliminaries

Cassels-Tat pairing (CTP)

Effective computation of CTP

How to determine the splitting field of η

Extra "nice' curves $H^1(G_k, J[2]) \simeq \ker \left(N: L^{\times}/(L^{\times})^2 \to k^{\times}/(k^{\times})^2\right),$

where L := k[x]/(f(x)). and $N : L^{\times} \to k^{\times}$ is the norm map.

- Let T_i be the representative of i^{th} orbit of Δ .
- For $1 \le j \le 2g + 1$ choose $d'_j \in k(T_j)^{\times}$ such that $(d'_1, d'_2, \ldots, d'_{2g+1})$ represents α' .

d'_js satisfy the condition: for 1 ≤ n, m ≤ 2g + 1, *d*'_m and *d*'_n are conjugates if *T_n* and *T_m* are.
 Tirst, note that loc²(*J*[2]) is injective (consequence of Poitou-Tate duality).

Computing the Cassels-Tate pairing on odd-degree hyperelliptic Jacobians

We have:

H. Shukla

Notations and preliminaries

Cassels-Tat pairing (CTP)

Effective computation of CTP

How to determine the splitting field of η

Extra "nice" curves $H^1(G_k, J[2]) \simeq \ker \left(N: L^{\times}/(L^{\times})^2 \to k^{\times}/(k^{\times})^2\right),$

where L := k[x]/(f(x)). and $N : L^{\times} \to k^{\times}$ is the norm map.

- Let T_i be the representative of i^{th} orbit of Δ .
- For $1 \le j \le 2g + 1$ choose $d'_j \in k(T_j)^{\times}$ such that $(d'_1, d'_2, \ldots, d'_{2g+1})$ represents α' .
- d'_j 's satisfy the condition: for $1 \le n, m \le 2g + 1$, d'_m and d'_n are conjugates if T_n and T_m are.

First, note that $loc^2(J[2])$ is injective (consequence of Poitou-Tate duality).

Computing the Cassels-Tate pairing on odd-degree hyperelliptic Jacobians

H. Shukla

Notations and preliminaries

Cassels-Tat pairing (CTP)

Effective computation of CTP

How to determine the splitting field of η

Extra "nice' curves

$$H^1(G_k, J[2]) \simeq \ker \left(N: L^{\times}/(L^{\times})^2 \to k^{\times}/(k^{\times})^2\right),$$

where L := k[x]/(f(x)). and $N : L^{\times} \to k^{\times}$ is the norm map.

We have:

- Let T_i be the representative of i^{th} orbit of Δ .
- For $1 \le j \le 2g + 1$ choose $d'_j \in k(T_j)^{\times}$ such that $(d'_1, d'_2, \ldots, d'_{2g+1})$ represents α' .
- d'_{j} s satisfy the condition: for $1 \le n, m \le 2g + 1$, d'_{m} and d'_{n} are conjugates if T_{n} and T_{m} are.

First, note that $loc^2(J[2])$ is injective (consequence of Poitou-Tate duality).

H. Shukla

Notations and preliminaries

Cassels-Tat pairing (CTP)

Effective computation of CTP

How to determine the splitting field of η

Extra "nice" curves • We choose (we can) \mathfrak{a}' to be $\sum_{\text{orbits}} \operatorname{cor}_{G_k(T_i)}^{G_k} \mathfrak{t}'_i$, where $\mathfrak{t}'_i \in \operatorname{C}^1(G_{k(T_i)}, \langle (T_i) - (T_0) \rangle)$ is given by: $\mathfrak{t}'_i(\sigma) := \begin{cases} 0 & \sigma(\sqrt{d_i'}) = \sqrt{d_i'} \\ (T_i) - (T_0) & \sigma(\sqrt{d_i'}) = -\sqrt{d_i'}, \end{cases}$

The identity x ∪ cor(y) = cor(res(x) ∪ y) implies that it is enough to trivialize 3-cocycles

 $\eta_i := \partial \operatorname{res}(\mathfrak{a}) \cup_1 \mathfrak{t}'_i - \operatorname{res}(\mathfrak{a}) \cup_2 \partial \mathfrak{t}'_i \in \operatorname{Z}^3(G_{k(T_i)}, \mathbb{G}_m).$

Now $[k(T_i)(\sqrt{d'_i}) : k(T_i)] = 2$ and values of t'_i are defined over $k(T_i)$. Use lemma 3 to find ϵ_i s s.t. $\partial \epsilon_i = \eta_i$!

H. Shukla

Notations and preliminaries

Cassels-Tat pairing (CTP)

Effective computation of CTP

How to determine the splitting field of η

Extra "nice" curves • We choose (we can) \mathfrak{a}' to be $\sum_{\text{orbits}} \operatorname{cor}_{G_k(\tau_i)}^{G_k} \mathfrak{t}'_i$, where $\mathfrak{t}'_i \in \operatorname{C}^1(G_{k(\tau_i)}, \langle (\tau_i) - (\tau_0) \rangle)$ is given by: $\mathfrak{t}'_i(\sigma) := \begin{cases} 0 & \sigma(\sqrt{d_i'}) = \sqrt{d_i'} \\ (\tau_i) - (\tau_0) & \sigma(\sqrt{d_i'}) = -\sqrt{d_i'}, \end{cases}$

The identity x ∪ cor(y) = cor(res(x) ∪ y) implies that it is enough to trivialize 3-cocycles

 $\eta_i := \partial \operatorname{res}(\mathfrak{a}) \cup_1 \mathfrak{t}'_i - \operatorname{res}(\mathfrak{a}) \cup_2 \partial \mathfrak{t}'_i \in \operatorname{Z}^3(G_{k(T_i)}, \mathbb{G}_m).$

Now $[k(T_i)(\sqrt{d'_i}): k(T_i)] = 2$ and values of t'_i are defined over $k(T_i)$. Use lemma 3 to find ϵ_i s s.t. $\partial \epsilon_i = \eta_i$!

H. Shukla

Notations and preliminaries

Cassels-Tat pairing (CTP)

Effective computation of CTP

How to determine the splitting field of η

Extra "nice" curves • We choose (we can) \mathfrak{a}' to be $\sum_{\text{orbits}} \operatorname{cor}_{G_k(T_i)}^{G_k} \mathfrak{t}'_i$, where $\mathfrak{t}'_i \in \operatorname{C}^1(G_{k(T_i)}, \langle (T_i) - (T_0) \rangle)$ is given by: $\mathfrak{t}'_i(\sigma) := \begin{cases} 0 & \sigma(\sqrt{d'_i}) = \sqrt{d'_i} \\ (T_i) - (T_0) & \sigma(\sqrt{d'_i}) = -\sqrt{d'_i}, \end{cases}$

■ The identity x ∪ cor(y) = cor(res(x) ∪ y) implies that it is enough to trivialize 3-cocycles

 $\eta_i := \partial \operatorname{res}(\mathfrak{a}) \cup_1 \mathfrak{t}'_i - \operatorname{res}(\mathfrak{a}) \cup_2 \partial \mathfrak{t}'_i \in \operatorname{Z}^3(G_{k(\mathcal{T}_i)}, \mathbb{G}_m).$

Now $[k(T_i)(\sqrt{d'_i}): k(T_i)] = 2$ and values of t'_i are defined over $k(T_i)$. Use lemma 3 to find ϵ_i s s.t. $\partial \epsilon_i = \eta_i$!

H. Shukla

Notations and preliminaries

Cassels-Tat pairing (CTP)

Effective computation of CTP

How to determine the splitting field of η

Extra "nice" curves

- We choose (we can) \mathfrak{a}' to be $\sum_{\text{orbits}} \operatorname{cor}_{G_k(T_i)}^{G_k} \mathfrak{t}'_i$, where $\mathfrak{t}'_i \in \operatorname{C}^1(G_{k(T_i)}, \langle (T_i) - (T_0) \rangle)$ is given by: $\mathfrak{t}'_i(\sigma) := \begin{cases} 0 & \sigma(\sqrt{d'_i}) = \sqrt{d'_i} \\ (T_i) - (T_0) & \sigma(\sqrt{d'_i}) = -\sqrt{d'_i}, \end{cases}$
- The identity x ∪ cor(y) = cor(res(x) ∪ y) implies that it is enough to trivialize 3-cocycles

 $\eta_i := \partial \mathrm{res}(\mathfrak{a}) \cup_1 \mathfrak{t}'_i - \mathrm{res}(\mathfrak{a}) \cup_2 \partial \mathfrak{t}'_i \in \mathrm{Z}^3(\mathcal{G}_{k(\mathcal{T}_i)}, \mathbb{G}_m).$

Now $[k(T_i)(\sqrt{d'_i}): k(T_i)] = 2$ and values of t'_i are defined over $k(T_i)$. Use lemma 3 to find ϵ_i s s.t. $\partial \epsilon_i = \eta_i$!

H. Shukla

Notations and preliminaries

Cassels-Tat pairing (CTP)

Effective computation of CTP

How to determine the splitting field of η

Extra "nice" curves

- We choose (we can) \mathfrak{a}' to be $\sum_{\text{orbits}} \operatorname{cor}_{G_k(T_i)}^{G_k} \mathfrak{t}'_i$, where $\mathfrak{t}'_i \in \operatorname{C}^1(G_{k(T_i)}, \langle (T_i) - (T_0) \rangle)$ is given by: $\mathfrak{t}'_i(\sigma) := \begin{cases} 0 & \sigma(\sqrt{d'_i}) = \sqrt{d'_i} \\ (T_i) - (T_0) & \sigma(\sqrt{d'_i}) = -\sqrt{d'_i}, \end{cases}$
- The identity x ∪ cor(y) = cor(res(x) ∪ y) implies that it is enough to trivialize 3-cocycles

$$\eta_i := \partial \operatorname{res}(\mathfrak{a}) \cup_1 \mathfrak{t}'_i - \operatorname{res}(\mathfrak{a}) \cup_2 \partial \mathfrak{t}'_i \in \operatorname{Z}^3(G_{k(T_i)}, \mathbb{G}_m).$$

Now $[k(T_i)(\sqrt{d'_i}): k(T_i)] = 2$ and values of t'_i are defined over $k(T_i)$. Use lemma 3 to find ϵ_i s s.t. $\frac{\partial \epsilon_i}{\partial \epsilon_i} = \eta_i!$

Computing the Cassels-Tate pairing on odd-degree hyperelliptic Jacobians

H. Shukla

Notations and preliminaries

Cassels-Tate pairing (CTP)

Effective computation of CTP

How to determine the splitting field of η

Extra "nice' curves

A similar trick for the local part gives

heorem 5

Cassels-Tate pairing on 2-Selmer groups of odd-degree hyperelliptic Jacobians takes the following form:

$$(-1)^{2\langle a,a'\rangle_{\mathrm{CT}}} = \prod_{v} \prod_{\mathcal{G}_{k_v} \text{-orbits}} (\delta_{v,i}, d'_i)_{k_v(\mathcal{T}_i)}$$

where $\delta_{v,i} \in k_v(T_i)^{\times}$ and $(\cdot, \cdot)_{k_v(T_i)}$ is the Hilbert's symbol.

Remark 6

Dbtaining δ_{v,i} once we have the trivializers ε_i of η_i reduces to
Finding the local point witnessing local triviality of α.
Solving a Hilbert 90 problem.

イロト イヨト イヨト

Form of the CTP

Computing the Cassels-Tate pairing on odd-degree hyperelliptic Jacobians

H. Shukla

Notations and preliminaries

Cassels-Tate pairing (CTP)

Effective computation of CTP

How to determine the splitting field of η

Extra "nice curves

A similar trick for the local part gives

Theorem 5

Cassels-Tate pairing on 2-Selmer groups of odd-degree hyperelliptic Jacobians takes the following form:

$$(-1)^{2\langle \boldsymbol{a}, \boldsymbol{a}' \rangle_{\mathrm{CT}}} = \prod_{\boldsymbol{v}} \prod_{\boldsymbol{G}_{\boldsymbol{k}\boldsymbol{v}} \text{-orbits}} (\delta_{\boldsymbol{v}, i}, d_i')_{\boldsymbol{k}_{\boldsymbol{v}}(\boldsymbol{T}_i)},$$

where $\delta_{v,i} \in k_v(T_i)^{\times}$ and $(\cdot, \cdot)_{k_v(T_i)}$ is the Hilbert's symbol.

Remark 6

Dbtaining δ_{v,i} once we have the trivializers ε_i of η_i reduces to
Finding the local point witnessing local triviality of α.
Solving a Hilbert 90 problem.

イロン 不得 とくほ とくほ とうほ

Computing the Cassels-Tate pairing on odd-degree hyperelliptic Jacobians

H. Shukla

Notations and preliminaries

Cassels-Tate pairing (CTP)

Effective computation of CTP

How to determine the splitting field of η

Extra "nice' curves

A similar trick for the local part gives

Theorem 5

Cassels-Tate pairing on 2-Selmer groups of odd-degree hyperelliptic Jacobians takes the following form:

$$(-1)^{2\langle \boldsymbol{a}, \boldsymbol{a}' \rangle_{\mathrm{CT}}} = \prod_{\boldsymbol{v}} \prod_{\boldsymbol{G}_{\boldsymbol{k}\boldsymbol{v}} \text{-orbits}} (\delta_{\boldsymbol{v}, i}, d_i')_{\boldsymbol{k}_{\boldsymbol{v}}(\boldsymbol{T}_i)},$$

where $\delta_{\mathbf{v},i} \in k_{\mathbf{v}}(\mathcal{T}_i)^{\times}$ and $(\cdot, \cdot)_{k_{\mathbf{v}}(\mathcal{T}_i)}$ is the Hilbert's symbol.

Remark 6

Obtaining δ_{v,i} once we have the trivializers ε_i of η_i reduces to
Finding the local point witnessing local triviality of α.
Solving a Hilbert 90 problem.

◆□▶ ◆□▶ ▲ヨ▶ ▲ヨ▶ ヨー シペマ

Computing the Cassels-Tate pairing on odd-degree hyperelliptic Jacobians

H. Shukla

Notations and preliminaries

Cassels-Tate pairing (CTP)

Effective computation of CTP

How to determine the splitting field of η

Extra "nice curves

A similar trick for the local part gives

Theorem 5

Cassels-Tate pairing on 2-Selmer groups of odd-degree hyperelliptic Jacobians takes the following form:

$$(-1)^{2\langle \boldsymbol{a}, \boldsymbol{a}' \rangle_{\mathrm{CT}}} = \prod_{\boldsymbol{v}} \prod_{\boldsymbol{G}_{\boldsymbol{k}\boldsymbol{v}} \text{-orbits}} (\delta_{\boldsymbol{v}, i}, d_i')_{\boldsymbol{k}_{\boldsymbol{v}}(\boldsymbol{T}_i)},$$

where $\delta_{\mathbf{v},i} \in k_{\mathbf{v}}(\mathcal{T}_i)^{\times}$ and $(\cdot, \cdot)_{k_{\mathbf{v}}(\mathcal{T}_i)}$ is the Hilbert's symbol.

Remark 6

Obtaining δ_{v,i} once we have the trivializers ε_i of η_i reduces to
Finding the local point witnessing local triviality of α.
Solving a Hilbert 90 problem.

◆□▶ ◆□▶ ▲ヨ▶ ▲ヨ▶ ヨー シペマ

Computing the Cassels-Tate pairing on odd-degree hyperelliptic Jacobians

H. Shukla

Notations and preliminaries

Cassels-Tate pairing (CTP)

Effective computation of CTP

How to determine the splitting field of η

Extra "nice" curves

A similar trick for the local part gives

Theorem 5

Cassels-Tate pairing on 2-Selmer groups of odd-degree hyperelliptic Jacobians takes the following form:

$$(-1)^{2\langle \boldsymbol{a}, \boldsymbol{a}' \rangle_{\mathrm{CT}}} = \prod_{\boldsymbol{v}} \prod_{\boldsymbol{G}_{\boldsymbol{k}\boldsymbol{v}} \text{-orbits}} (\delta_{\boldsymbol{v}, i}, d_i')_{\boldsymbol{k}_{\boldsymbol{v}}(\boldsymbol{T}_i)},$$

where $\delta_{\mathbf{v},i} \in k_{\mathbf{v}}(T_i)^{\times}$ and $(\cdot, \cdot)_{k_{\mathbf{v}}(T_i)}$ is the Hilbert's symbol.

Remark 6

Obtaining δ_{v,i} once we have the trivializers ε_i of η_i reduces to
Finding the local point witnessing local triviality of α.
Solving a Hilbert 90 problem.

◆□▶ ◆□▶ ▲ヨ▶ ▲ヨ▶ ヨー シペマ

Computing the Cassels-Tate pairing on odd-degree hyperelliptic Jacobians

H. Shukla

Notations and preliminaries

Cassels-Tate pairing (CTP)

Effective computation of CTP

How to determine the splitting field of η

Extra "nice curves

• Constructing ϵ in the proof of lemma 3 requires:

- Trivializing some explicitly given 2-cocycles that represent trivial class in Br(k) (hard part).
- Solving some Hilbert 90 problems explicitly (easy part).
- Gluing the above information carefully
- If C is an elliptic curve then the formula obtained by Cassels has exactly the same form as in theorem 5.
- If f splits over k and g = 2, then the above form reduces to the form of the formula obtained by Jiali Yan in her PhD thesis.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨー

Computing the Cassels-Tate pairing on odd-degree hyperelliptic Jacobians

H. Shukla

Notations and preliminaries

Cassels-Tate pairing (CTP)

Effective computation of CTP

How to determine the splitting field of η

Extra "nice curves

• Constructing ϵ in the proof of lemma 3 requires:

- Trivializing some explicitly given 2-cocycles that represent trivial class in Br (k) (hard part).
- Solving some Hilbert 90 problems explicitly (easy part).
- Gluing the above information carefully.
- If C is an elliptic curve then the formula obtained by Cassels has exactly the same form as in theorem 5.
- If f splits over k and g = 2, then the above form reduces to the form of the formula obtained by Jiali Yan in her PhD thesis.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

Computing the Cassels-Tate pairing on odd-degree hyperelliptic Jacobians

H. Shukla

Notations and preliminaries

Cassels-Tate pairing (CTP)

Effective computation of CTP

How to determine the splitting field of η

Extra "nice curves

• Constructing ϵ in the proof of lemma 3 requires:

- Trivializing some explicitly given 2-cocycles that represent trivial class in Br (k) (hard part).
- Solving some Hilbert 90 problems explicitly (easy part).
 - Gluing the above information carefully.

If C is an elliptic curve then the formula obtained by Cassels has exactly the same form as in theorem 5.

If f splits over k and g = 2, then the above form reduces to the form of the formula obtained by Jiali Yan in her PhD thesis.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

Computing the Cassels-Tate pairing on odd-degree hyperelliptic Jacobians

H. Shukla

Notations and preliminaries

Cassels-Tate pairing (CTP)

Effective computation of CTP

How to determine the splitting field of η

Extra "nice curves

• Constructing ϵ in the proof of lemma 3 requires:

- Trivializing some explicitly given 2-cocycles that represent trivial class in Br (k) (hard part).
- Solving some Hilbert 90 problems explicitly (easy part).
- Gluing the above information carefully.
- If C is an elliptic curve then the formula obtained by Cassels has exactly the same form as in theorem 5.
- If f splits over k and g = 2, then the above form reduces to the form of the formula obtained by Jiali Yan in her PhD thesis.

Computing the Cassels-Tate pairing on odd-degree hyperelliptic Jacobians

H. Shukla

Notations and preliminaries

Cassels-Tate pairing (CTP)

Effective computation of CTP

How to determine the splitting field of η

Extra "nice curves • Constructing ϵ in the proof of lemma 3 requires:

- Trivializing some explicitly given 2-cocycles that represent trivial class in Br (k) (hard part).
- Solving some Hilbert 90 problems explicitly (easy part).
- Gluing the above information carefully.
- If C is an elliptic curve then the formula obtained by Cassels has exactly the same form as in theorem 5.

If f splits over k and g = 2, then the above form reduces to the form of the formula obtained by Jiali Yan in her PhD thesis.

Computing the Cassels-Tate pairing on odd-degree hyperelliptic Jacobians

H. Shukla

Notations and preliminaries

Cassels-Tate pairing (CTP)

Effective computation of CTP

How to determine the splitting field of η

Extra "nice' curves • Constructing ϵ in the proof of lemma 3 requires:

- Trivializing some explicitly given 2-cocycles that represent trivial class in Br (k) (hard part).
- Solving some Hilbert 90 problems explicitly (easy part).
- Gluing the above information carefully.
- If C is an elliptic curve then the formula obtained by Cassels has exactly the same form as in theorem 5.
- If f splits over k and g = 2, then the above form reduces to the form of the formula obtained by Jiali Yan in her PhD thesis.

Computing the Cassels-Tate pairing on odd-degree hyperelliptic Jacobians

H. Shukla

Notations and preliminaries

Cassels-Tate pairing (CTP)

Effective computation of CTP

How to determine the splitting field of η

Extra "nice" curves

Definition 7

Recall e_i s are the roots of f.

An $\alpha = (d_1, \ldots, d_{2g+1}) \in \text{Sel}^{(2)}(J)$ with $d_i \in k(e_i)^{\times}$ is said to be good if for each j, the conics

 $\mathcal{C}_{ij} \circ d_i u^a + d_j v^a + e_i + e_j = 0$ has a solution over $k(e_i,e_j)$

■ A curve *C* is good if the subgroup generated by good elements is at most of index 2.

If α is good, then we can explicitly write ϵ_i such that $\partial \epsilon_i = \eta_i$. For a fixed *i*, the values of ϵ_i are combinations of p_{ij} s where $p_{ij} := \sqrt{d_i}u^* + \sqrt{d_j}v^*$, and u^*, v^* satisfies C_{ij} .

Frivializing quaternion algebras corresponding to *C_{ij}* is probably simpler!

Computing the Cassels-Tate pairing on odd-degree hyperelliptic Jacobians

H. Shukla

Notations and preliminaries

Cassels-Tate pairing (CTP)

Effective computation of CTP

How to determine the splitting field of η

Extra "nice" curves

Definition 7

Recall e_i s are the roots of f.

 An α = (d₁,..., d_{2g+1}) ∈ Sel⁽²⁾(J) with d_i ∈ k(e_i)[×] is said to be good if for each j, the conics
 C_{ij} : d_iu² - d_jv² + e_i - e_j = 0 has a solution over k(e_i, e_j).
 A curve C is good if the subgroup generated by good elements is at most of index 2.

If α is good, then we can explicitly write ϵ_i such that $\partial \epsilon_i = \eta_i$. For a fixed *i*, the values of ϵ_i are combinations of p_{ij} s where $p_{ij} := \sqrt{d_i}u^* + \sqrt{d_j}v^*$, and u^* , v^* satisfies C_{ij} . Trivializing quaternion algebras corresponding to C_{ij} is probably simpler!

Computing the Cassels-Tate pairing on odd-degree hyperelliptic Jacobians

H. Shukla

Notations and preliminaries

Cassels-Tate pairing (CTP)

Effective computation of CTP

How to determine the splitting field of η

Extra "nice" curves

Definition 7

Recall e_i s are the roots of f.

- An $\alpha = (d_1, \ldots, d_{2g+1}) \in \operatorname{Sel}^{(2)}(J)$ with $d_i \in k(e_i)^{\times}$ is said to be good if for each j, the conics $C_{ij} : d_i u^2 - d_j v^2 + e_i - e_j = 0$ has a solution over $k(e_i, e_j)$.
- A curve C is good if the subgroup generated by good elements is at most of index 2.

If α is good, then we can explicitly write ϵ_i such that $\partial \epsilon_i = \eta_i$. For a fixed *i*, the values of ϵ_i are combinations of p_{ij} s where $p_{ij} := \sqrt{d_i}u^* + \sqrt{d_j}v^*$, and u^*, v^* satisfies C_{ij} . Trivializing quaternion algebras corresponding to C_{ij} is probably simpler!

Computing the Cassels-Tate pairing on odd-degree hyperelliptic Jacobians

H. Shukla

Notations and preliminaries

Cassels-Tate pairing (CTP)

Effective computation of CTP

How to determine the splitting field of η

Extra "nice" curves

Definition 7

Recall e_i s are the roots of f.

- An $\alpha = (d_1, \ldots, d_{2g+1}) \in \operatorname{Sel}^{(2)}(J)$ with $d_i \in k(e_i)^{\times}$ is said to be good if for each j, the conics $C_{ij} : d_i u^2 - d_j v^2 + e_i - e_j = 0$ has a solution over $k(e_i, e_j)$.
- A curve C is good if the subgroup generated by good elements is at most of index 2.

If α is good, then we can explicitly write ϵ_i such that $\partial \epsilon_i = \eta_i$.

For a fixed *i*, the values of ϵ_i are combinations of p_{ij} s where $p_{ij} := \sqrt{d_i}u^* + \sqrt{d_j}v^*$, and u^*, v^* satisfies C_{ij} . Trivializing quaternion algebras corresponding to C_{ij} is probably simpler!

Computing the Cassels-Tate pairing on odd-degree hyperelliptic Jacobians

H. Shukla

Notations and preliminaries

Cassels-Tate pairing (CTP)

Effective computation of CTP

How to determine the splitting field of η

Extra "nice" curves

Definition 7

Recall e_i s are the roots of f.

- An $\alpha = (d_1, \ldots, d_{2g+1}) \in \operatorname{Sel}^{(2)}(J)$ with $d_i \in k(e_i)^{\times}$ is said to be good if for each j, the conics $C_{ij} : d_i u^2 - d_j v^2 + e_i - e_j = 0$ has a solution over $k(e_i, e_j)$.
- A curve C is good if the subgroup generated by good elements is at most of index 2.

If α is good, then we can explicitly write ϵ_i such that $\partial \epsilon_i = \eta_i$. For a fixed *i*, the values of ϵ_i are combinations of p_{ij} s where $p_{ij} := \sqrt{d_i}u^* + \sqrt{d_j}v^*$, and u^*, v^* satisfies C_{ij} . Trivializing quaternion algebras corresponding to C_{ij} is probably simpler!

Computing the Cassels-Tate pairing on odd-degree hyperelliptic Jacobians

H. Shukla

Notations and preliminaries

Cassels-Tate pairing (CTP)

Effective computation of CTP

How to determine the splitting field of η

Extra "nice" curves

Definition 7

Recall e_i s are the roots of f.

- An $\alpha = (d_1, \ldots, d_{2g+1}) \in \operatorname{Sel}^{(2)}(J)$ with $d_i \in k(e_i)^{\times}$ is said to be good if for each j, the conics $C_{ij} : d_i u^2 - d_j v^2 + e_i - e_j = 0$ has a solution over $k(e_i, e_j)$.
- A curve C is good if the subgroup generated by good elements is at most of index 2.

If α is good, then we can explicitly write ϵ_i such that $\partial \epsilon_i = \eta_i$. For a fixed *i*, the values of ϵ_i are combinations of p_{ij} s where $p_{ij} := \sqrt{d_i}u^* + \sqrt{d_j}v^*$, and u^*, v^* satisfies C_{ij} . Trivializing quaternion algebras corresponding to C_{ij} is probably simpler!

Some statistics on good curves

Computing the Cassels-Tate pairing on odd-degree hyperelliptic Jacobians

H. Shukla

Notations and preliminaries

Cassels-Tate pairing (CTP)

Effective computation of CTP

How to determine the splitting field of η

Extra "nice" curves • Hope: Most of the curves are good.

- $\operatorname{rk}_{\mathbb{F}_2}\operatorname{Sel}^{(2)}(J) \ge 2$, $r_{an}(J) = 0$: 1207 curves on LMFDB, all good.
- $\operatorname{rk}_{\mathbb{F}_2}\operatorname{Sel}^{(2)}(J) \ge 2$, $r_{an}(J) = 1$: 538 curves on LMFDB, all good.
- $\operatorname{rk}_{\mathbb{F}_2}\operatorname{Sel}^{(2)}(J) \ge 4$, $r_{an}(J) \ge 2$: 4 curves on LMFDB, all good.
- $x^5 + A$, 0 < A < 1000, and A is prime: 168 curves, all good.

Some statistics on good curves

Computing the Cassels-Tate pairing on odd-degree hyperelliptic Jacobians

H. Shukla

Notations and preliminaries

Cassels-Tate pairing (CTP)

Effective computation of CTP

How to determine the splitting field of η

Extra "nice" curves

• Hope: Most of the curves are good.

- $\operatorname{rk}_{\mathbb{F}_2}\operatorname{Sel}^{(2)}(J) \ge 2$, $r_{an}(J) = 0$: 1207 curves on LMFDB, all good.
- $\operatorname{rk}_{\mathbb{F}_2}\operatorname{Sel}^{(2)}(J) \ge 2$, $r_{an}(J) = 1$: 538 curves on LMFDB, all good.
- $\operatorname{rk}_{\mathbb{F}_2}\operatorname{Sel}^{(2)}(J) \ge 4$, $r_{an}(J) \ge 2$: 4 curves on LMFDB, all good.
- $x^5 + A$, 0 < A < 1000, and A is prime: 168 curves, all good.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

Some statistics on good curves

Computing the Cassels-Tate pairing on odd-degree hyperelliptic Jacobians

H. Shukla

Notations and preliminaries

Cassels-Tate pairing (CTP)

Effective computation of CTP

How to determine the splitting field of η

Extra "nice" curves

- Hope: Most of the curves are good.
- $\operatorname{rk}_{\mathbb{F}_2}\operatorname{Sel}^{(2)}(J) \ge 2$, $r_{an}(J) = 0$: 1207 curves on LMFDB, all good.
- $\operatorname{rk}_{\mathbb{F}_2}\operatorname{Sel}^{(2)}(J) \ge 2$, $r_{an}(J) = 1$: 538 curves on LMFDB, all good.
- rk_{𝔅2}Sel⁽²⁾(*J*) ≥ 4, *r_{an}*(*J*) ≥ 2: 4 curves on LMFDB, all good.
- x⁵ + A, 0 < A < 1000, and A is prime: 168 curves, all good.</p>

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

H. Shukla

Notations and preliminaries

Cassels-Tate pairing (CTP)

Effective computation of CTP

How to determine the splitting field of η

Extra "nice" curves

Questions?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

H. Shukla

Notations and preliminaries

Cassels-Tate pairing (CTP)

Effective computation of CTP

How to determine the splitting field of η

Extra "nice" curves

Thank You!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = のへで