DEL PEZZO SURFACES OF DEGREE 1

ANTHONY VARILLY

1. DEL PEZZO SURFACES
Let K be a number field.

Definition 1.1. X/K is a del Pezzo surface if X is smooth, projective, geometrically integral,
dim X = 2, and — Ky is ample.

Theorem 1.2 (Segre-Manin). Let X/K be a del Pezzo surface of degree > 2 such that X
has a K-point not on any exceptional curve. Then X (K) is Zariski dense.

2. DP1s
Theorem 2.1. A dP1 is a smooth sextic in P(1,1,2,3), and conversely.

Let x,y, z, w be the variables on P(1,1,2,3). If char k # 2,3, then a dP1 can be given an
equation
w? = 2% + G(x,y)z + F(z,y)
where G and F are binary homogeneous forms of degrees 4 and 6.
We will focus on the case G = 0. Then X is smooth if and only if F' has no square factors.

Theorem 2.2. Let X/Q be a dP1 given by
w? = 23 + Az® + ByS

inPo(1,1,2,3) where A, B are nonzero integers. Assume (11): that every elliptic curve E/Q
with j(E) = 0 there exists a prime p of good ordinary reduction such that HI(E, Q)[p™] < oo
(this implies the parity conjecture for E, by work of Nekovar'). Also assume that if A/B =
3a?/b? for a,b € Z with b # 0 and (a,b) = 1, then ged(A, B) = 1. Then X(Q) is Zariski

dense.

3. ELLIPTIC FIBRATIONS

dP1s have a canonical rational point P.,, :=[0:0:1: 1]. The anticanonical map is
X --»P!
[z:y:z:w]—[z:y]
Its indeterminacy at Fean is resolved by taking X := Blp,. X: We get an elliptic surface
X — P!, whose fiber above (m : n) € P! is isomorphic to the elliptic curve E,,,: y* =
% + Am® + Bn.

Date: July 26, 2007.
'Recent work by the Dokchitser brothers should allow us to remove the words “of good ordinary reduction.”
See arxiv:math/0612054
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We hope to show that infinitely many of these curves E,, ,, have infinitely many rational
points, since then X (Q) is Zariski dense in X.

4. ROOT NUMBERS

Given a CM elliptic curve E/Q of conductor N, we know that L(FE,s) has an analytic
continuation and functional equation: A(E,s) = N*/2(27)~*T'(s)L(E, s) satisfies A(F,s) =
+A(E,2—5s). Let W(E) be the sign of the functional equation above, so W(E) = (—1)"=(2),
Hypothesis III plus work of Nekovar implies that W (E) = (—1)"*EQ for our E’s.

We need to compute W(E). It turns out that W(E) = [ . W,(E) where W,,(E) = +1
is defined in terms of e-factors of representations of the Weil-Deligne of Q,,.

Theorem 4.1 (Rohrlich, Halberstadt, Rizzo). Let E/Q be an elliptic curve in Weierstrass
form. Let cy, cg, 00 be the usual quantities. Then
(i) Woo(E) = —1.
(ii) W,(E) = +1 if p is a prime of good reduction.
(ili) Suppose that E has additive potentially good reduction atp > 3. Lete = 12/ ged(v,(A), 12).

Then
(1, ife=1;
_71 , ife=2o0re=06;
WL(E) =
p( ) —73 , Z'f€:3,'
Sk if e = 4.

(iv) Wo(E) and W3(E) can be computed from knowledge of cq, cg, A.
Proposition 4.2. Let a € Z. Let E,, be the elliptic curve y* = 23 +a. Let W(a) = W(E,).

Then
() = = W) () Wala) (-1 I1 {1(—73) o EZ? oy 3’<ilo<§né?d ’
pla

Moreover, if o and 3 satisfy va(a) = vo(B) =: 1o and v3(a) = v3(B) =: 13, and if «
B mod 272237372 then the product in brackets for W (a) and W(3) coincide.
Corollary 4.3 (Flipping). Suppose a, 3 € Z—{0} are values of Am®+ BnS with ged(A, B) =
1. Assume that

e o= [ (mod 36).

e « s squarefree.

o 3 = p*™*n with n squarefree, with p prime, p >3, p=2 (mod 3), k € Z>o.
Then W(a) = =W ().

To prove Zariski density (at least for ged(A, B) = 1), we need two families 7, and F; of
pairs of relatively prime integers (m, n) such that

(i) Am® + BnS is of the form « as in the corollary for (m,n) € F
(ii) AmS + Bn® is of the form 3 as in the corollary for (m,n) € F.
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5. SIEVING

Theorem 5.1 (Greaves, Gouvea-Mazur, Varilly). Let F(m,n) be a homogeneous binary
form in Z[x,y| with nonzero discriminant. Assume that no irreducible factor of F has degree
> 6. Fiz a modulus M and integers a,b such that ged(a,b, M) = 1. Let S be a finite set
of distinct primes py,...,p.. Let T be a finite set of nonnegative integers tq,...,t. (of the
same cardinality as S). Let N(z) be the number of (m,n) € Z* with gcd(m,n) = 1 such that
0<m,n<zandm=a (mod M) andn=0b (mod M) and F(m,n) = pi ---plra where a

r

is squarefree and vy, (o) =0 fori=1,...,r. Then N(x) = Cz*+ O(z?/(log x)'/3).
Remark 5.2. The constant C' can be 0.

For F(m,n) = Am% 4+ Bn® with ged(A, B) = 1, we have C' = 0 if and only if there exists
i such that for all 1 < m,n < p¥*' we have v,,(F(m,n)) # t.

For Fi, we take S = () and a, b arbitrary and M = 36.

For F,, we take S = {p} and T' = {2 + 6k} and M = 36. This time C can be 0: in fact,
C =0 when A/B is of the form 3a?/?.

Example 5.3. For y? = 2® + 2Tm® + 16n5, W(FE,,,,) = +1. But we have sections: e.g.,
(z,y) = (—=3m?, 4n°).
But there are others:
y? = 2® 4+ 6(3m° + n®)
where W(E,,,) = +1 and there are no sections.



