THE ARITHMETIC OF DEL PEZZO SURFACES

DAMIANO TESTA

Let X be a smooth projective variety over a field k. Classify X according to dimension.

1. DIMENSION 1

Suppose dim X = 1. Work over \overline{k} . There is one discrete invariant, namely the genus g. If g = 0, the canonical divisor and its multiples have no nonzero sections If g = 1, the canonical divisor is trivial, as are its multiples; there is a lot to say. If g = 2, the canonical divisor is ample, and its multiples acquire more and more sections; also X(k) is finite.

Proposition 1.1. For a genus 0 curve, the following are equivalent:

(1) $X \simeq \mathbb{P}^1_k$

(2) $X(k) \neq \emptyset$

- (3) There exists $\mathcal{L} \in \operatorname{Pic} X$ of degree 1.
- (4) There exists $\mathcal{L} \in \operatorname{Pic} X$ of odd degree.

Proof. (1) \implies (2) \implies (3) \implies (4). Now suppose (4): we are given \mathcal{L} with deg $\mathcal{L} = 2n+1$. The canonical bundle ω_X has degree -2. Then $\mathcal{L} \otimes \omega_X^n$ has degree 1. By Riemann-Roch, it has two independent sections; it gives a morphism $X \to \mathbb{P}^{2-1} = \mathbb{P}^1$ of degree 1, so it is an isomorphism.

2. Dimension 2

For m > 0, the line bundle $\omega_X^{\otimes m}$ defines a rational map $\phi_m \colon X \dashrightarrow \mathbb{P}\left(H^0(X, \omega_X^{\otimes m})\right)$ if it has at least one nonzero global section. The Kodaira dimension is the eventual value (as mbecomes large and sufficiently divisible) of the dimension of $\phi_m(X)$; if there are no global sections of any $\omega_X^{\otimes m}$, the Kodaira dimension is said to be negative.

Kodaira dimension 0: e.g., K3 surfaces, abelian varieties.

Kodaira dimension 1: some elliptic surfaces.

Kodaira dimension 2: surface of general type.

We work over k. If Kodaira dimension is negative, then X is ruled: any point of X is contained in a rational curve. Moreover there is a rational map $X \dashrightarrow C$ whose fibers are genus 0 curves. If moreover, C is of genus 0, then X is a rational surface, which means that is birational to \mathbb{P}^2 .

We now study rational varieties over a perfect field k.

Theorem 2.1 (Iskovskikh). Given a rational variety X of dimension 2 over a perfect field k, at least one of the following happens:

(a) X is birational to a conic bundle over a conic.

(b) X is k-birational to a del Pezzo surface.

Date: July 24, 2007.

(Conic means a twist of \mathbb{P}^1 .)

Definition 2.2. X is a *del Pezzo surface* if ω_X^{\vee} is ample.

Over \overline{k} , every del Pezzo surface is $\mathbb{P}^1 \times \mathbb{P}^1$ or the blow-up of \mathbb{P}^2 at δ points in general position, where $0 \leq \delta \leq 8$. The degree of the del Pezzo surface is deg $X = (K_X)^2$, which equals $9 - \delta$ for the blow-up of \mathbb{P}^2 at δ points.

When does the existence of one rational point on X imply that X is isomorphic to \mathbb{P}^2 , or has a Zariski dense set of rational points.

Theorem 2.3 (Segre-Manin). Suppose that X is a del Pezzo surface (always over a perfect field k), and $p \in X(k)$ is a general point (the "general" hypothesis is needed currently only when deg X = 2). If deg $f \leq 2$ implies that X(k) is Zariski dense.

"General" means "not on any exceptional curve". (But the theorem might be true for all p on all del Pezzo surfaces.)

Exceptional curves (also called (-1)-curves) are curves that can be blown down: numerically, they are curves C such that $C^2 = -1$ and $K \cdot C = -1$. The first condition implies that C does not move, and second implies that C cannot be broken down into pieces.

Example 2.4. Let X be \mathbb{P}^2 blown up at 5 general points. Above each point, we get an exceptional curve. There is also an exceptional curve above the line through any pair of the 5 points, and above the conic through the 5 points.

Every del Pezzo surface has only finitely many exceptional curves, and their structure is independent of the location of the points blown up, provided that they are general.

$\deg X$	property	# of (-1) -curves	dual graph	automorphism group
9	$\mathbb{P}^2 \text{ (over } \overline{k})$	0	empty	
8	$\operatorname{Bl}_p(\mathbb{P}^2)$ (over \overline{k})	1	one point	
7	$\operatorname{Bl}_{\{p_1,p_2\}}(\mathbb{P}^2) \text{ (over } \overline{k})$	3	chain	$A_1 = \mathbb{Z}/2\mathbb{Z}$
6	$\operatorname{Bl}_{\{p_1,p_2,p_3\}}(\mathbb{P}^2) \text{ (over } \overline{k})$	6	hexagon	$A_2 \times A_1 = D_6 = D_3 \times \mathbb{Z}/2\mathbb{Z}$
	last to be a toric variety	$A_4 = S_5$		
5	$\overline{\mathcal{M}}_{0,5}$	10	Petersen graph	E_6
4	complete intersection of 2 quadrics in \mathbb{P}^4	16	Clebsch graph	D_5
3	cubic surface in \mathbb{P}^3	27		E_6
2	double cover of \mathbb{P}^2 branched over a smooth quartic	56		E_7
1	rational elliptic surfaces	240		E_8

In the last two column, we give the dual graph of the (-1)-curves, and the automorphism group of this configuration, which is often a Weyl group, in which case we label it with the corresponding root system name.