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ARITHMETIC OF CURVES OVER TWO DIMENSIONAL LOCAL FIELD

BELGACEM DRAOUIL

Abstract. We study the class field theory of curve defined over two dimensional local field.
The approch used here is a combination of the work of Kato-Saito, and Yoshida where the base
field is one dimensional

1. Introduction

Let k1 be a local field with finite residue field and let X be a proper smooth geometrically
irreducible curve over k1. To study the fundamental group πab

1 (X), Saito in [9], introduced the
groups SK1 (X) and V (X) and constructed the maps σ : SK1 (X) −→ πab

1 (X) and τ : V (X)
−→ πab

1 (X)géo where πab
1 (X)géo is defined by the exact sequence

0 −→ πab
1 (X)géo −→ πab

1 (X) −→ Gal(kab
1 /k1)−→0

The most important results in this context are:
1) The quotient of πab

1 (X) by the closure of the image of σ and the cokernel of τ are both
isomorphic to Ẑr where r is the rank of the curve.

2) For this integer r, there is an exact sequence

0 −→ (Q/Z)r −→ H3 (K, Q/Z (2)) −→ ⊕
v∈P

Q/Z −→ Q/Z −→0

where K = K (X) is the function field of X and P designates the set of closed points of X.
These results are obtained by Saito in [9] generalizing the previous work of Bloch where he

is reduced to the good reduction case [9, Introduction]. The method of Saito depends on class
field theory for two-dimensional local ring having finite residue field. He shows these results
for general curve except for the p -primary part in chark = p > 0 case [9, Section II-4]. The
remaining p -primary part had been proved by Yoshida in [12].

There is another direction for proving these results pointed out by Douai in [3]. It consists
to consider for all l prime to the residual characteristic, the group Co ker σ as the dual of the
group W0 of the monodromy weight filtration of H1(X, Q`/Z`)

H1(X, Q`/Z`) = W2 ⊇ W1 ⊇ W0 ⊇ 0

where X = X⊗k1 k1 and k1 is an algebraic closure of k1. This allow him to extend the precedent
results to projective smooth surfaces [3].

The aim of this paper is to use a combination of this approach and the theory of the
monodromy-weight filtration of degenerating abelian varieties on local fields explained by Yoshida
in his paper [12], to study curves over two-dimensional local fields (section 3).

Let X be a projective smooth curve defined over two dimensional local field k. Let K be
its function field and P denotes the set of closed points of X. For each v ∈ P , k (v) denotes the
residue field at v ∈ P . A finite etale covering Z → X of X is called a c.s covering, if for any
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closed point x of X, x ×X Z is isomorphic to a finite sum of x. We denote by πc.s
1 (X) the

quotient group of πab
1 (X) which classifies abelian c.s coverings of X.

To study the class field theory of the curve X, we construct the generalized reciprocity map

σ/` : SK2 (X) /` −→ πab
1 (X) /`

where SK2 (X) /` = Co ker
{

K3 (K) /`
⊕∂v−→ ⊕

v∈P
K2 (k (v)) /`

}
and τ/l : V (X)/`−→ πab

1 (X)géo /`

for all ` prime to residual characteristic. The group V (X) is defined to be the kernel of the norm
map N : SK2 (X) −→ K2(k) induced by the norm map Nk(v)/kx : K2 (k(v)) −→ K2(k) for all v

and πab
1 (X)géo by the exact sequence

0 −→ πab
1 (X)géo −→ πab

1 (X) −→ Gal(kab/k)−→0
The cokernel of σ/` is the quotient group of πab

1 (X) /` that classifies completely split coverings
of X ; that is ; πc.s

1 (X) /`.
We begin by proving the exactness of the Kato-Saito sequence (Proposition 4.3) :

0 −→ πc.s
1 (X) /` −→ H4 (K, Z/` (3))

−→ ⊕
v∈P

H3 (k (v) , Z/` (2)) −→ Z/` −→0

To determinate the group πc.s
1 (X) /`, we need to consider a semi stable model of the curve X (

see Section 5 ) and the weight filtration on its special fiber. In fact, we will prove in (Proposition
5.1) that πc.s

1 (X)⊗Q` admits a quotient of type Qr
l where r is the rank of the first crane of this

filtration.
Now, to investigate the group πab

1 (X)géo , we use class field theory of two-dimensional local
field and prove the vanishing of the group H2 (k, Q/Z) (theorem 3.1 ). This yields the isomor-
phism

πab
1 (X)géo ' πab

1

(
X

)
Gk

Finally, by the Grothendick weight filtration on the group πab
1

(
X

)
Gk

and assuming the semi-

stable reduction, we obtain the structure of the group πab
1 (X)géo and information about the

map τ : V (X) −→ πab
1 (X)géo .

Our paper is organized as follows. Section 2 is devoted to some notations. Section 3 contains
the proprieties which we need concerning two-dimensional local field: duality and the vanishing
of the second cohomology group. In section 4, we construct the generalized reciprocity map and
study the Bloch-Ogus complex associated to X. In section 5, we investigate the group πc.s

1 (X) .

2. Notations

For an abelian group M , and a positive integer n ≥ 1,M/n denotes the group M/nM.
For a scheme Z, and a sheaf F over the étale site of Z, H i (Z,F) denotes the i-th étale

cohomology group. The group H1 (Z, Z/`) is identified with the group of all continues homo-
morphisms πab

1 (Z) −→ Z/`. If ` is invertible on Z/`(1) denotes the sheaf of l-th root of unity
and for any integer i, we denote Z/` (i) = ( Z/` (1))⊗i

For a field L, Ki (L) is the i-th Milnor group. It coincides with the i−th Quillen group for
i ≤ 2. For ` prime to char L, there is a Galois symbol

hi
`,L KiL/` −→ H i(L, Z/` (i))

which is an isomorphism for i = 0, 1, 2 (i = 2 is Merkur’jev-Suslin).
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3. On two-dimensional local field

A local field k is said to be n−dimensional local if there exists the following sequence of fields
ki (1 ≤ i ≤ n) such that
(i) each ki is a complete discrete valuation field having ki−1 as the residue field of the valuation
ring Oki

of ki, and
(ii) k0 is a finite field.

For such a field, and for ` prime to Char(k), the well-known isomorphism

Hn+1 (k, Z/` (n)) ' Z/`(3.1)

and for each i ∈ {0, ..., n + 1} a perfect duality

(3.2) H i(k, Z/`(j))×Hn+1−i(k, Z/`(n− j) −→ Hn+1(k, Z/`(n)) ' Z/`

hold.
The class field theory for such fields is summarized as follows: There is a map
h : K2 (k) −→ Gal(kab/k) which generalizes the classical reciprocity map for usually local

fields. This map induces an isomorphism K2 (k) /NL/kK2 (L) ' Gal(L/k) for each finite abelian
extension L of k. Furthermore, the canonical pairing

(3.3) H1 (k, Ql/Zl)×K2(k) −→ H3 (k, Ql/Zl (2)) ' Ql/Zl

induces an injective homomorphism

(3.4) H1 (k, Ql/Zl) −→ Hom(K2(k), Ql/Zl)

It is well-known that the group H2 (M, Q/Z) vanishes when M is a finite field or usually local
field. Next, we prove the same result for two-dimensional local field

Theorem 3.1. If k is a two-dimensional local field of characteristic zero, then the group
H2 (k, Q/Z) vanishes.

Proof. We proceed as in the proof of theorem 4 of [11]. It is enough to prove that H2 (k, Ql/Zl)
vanishes for all l and when k contains the group µl of l-th roots of unity. For this, we prove that
multiplication by l is injective. That is, we have to show that the coboundary map

H1 (k, Ql/Zl)
δ−→ H2 (k, Z/lZ)

is injective.
By assumption on k, we have

H2 (k, Z/lZ) ' H2 (k, µl) ' Z/`

The last isomorphism is well-known for one-dimensional local field and was generalized to non
archimedian and locally compact fields by Shatz in [7]. The proof is now reduced to the fact
that δ 6= 0;

By class field theory of two dimensional local field, the cohomology group H1 (k, Ql/Zl) may
be identified with the group of continuous homomorphisms K2(k) Φ−→ Ql/Zl.

Now, δ(Φ) = 0 if and only if Φ is a l−th power, and Φ is a l−th power if and only if Φ is
trivial on µl. Thus, it is sufficient to construct an homomorphism K2(k) −→ Ql/Zl which is non
trivial on µl.
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Let i be the maximal natural number such that k contains a primitive li−th root of unity.
Then, the image ξ of a primitive li−th root of unity under the composite map

kx/kxl ' H1 (k, µl) ' H1 (k, Z/lZ) −→ H1 (k, Ql/Zl)
is not zero. Thus, the injectivity of the map

H1 (k, Ql/Zl) −→ Hom(K2(k), Ql/Zl)
gives rise to a character which is non trivial on µl. �

Remark 3.2. This proof is inspired by the proof of Proposition 7 of Kato [5]

4. Curves over two dimensional local field

Let k be a two dimensional local field of characteristic zero and X a smooth projective curve
defined over k.
We recall that we denote:
K = K (X) its function field,
P : set of closed points of X, and for v ∈ P,

k (v) : the residue field at v ∈ P
The residue field of k is one-dimensi6nal local field. It is denoted by k1

Let Hn (Z/` (3)) , n ≥ 1, the Zariskien sheaf associated to the presheaf U −→ Hn (U, Z/` (3)).
Its cohomology is calculated by the Bloch-Ogus resolution. So, we have the two exact sequences:

(4.1) H3 (K, Z/` (3)) −→ ⊕
v∈P

H2 (k (v) , Z/` (2)) −→ H1
(
XZar,H3(Z/` (3)

)
) −→ 0

(4.2) 0 −→ H0(XZar,H4(Z/`(3))) −→ H4(K, Z/`(3)) −→ ⊕
v∈P

H3(k(v, Z/`(2)))

4.1. The reciprocity map.
We introduce the group SK2 (X) /` :

SK2 (X) /` = Co ker
{

K3 (K) /`
⊕∂v−→ ⊕

v∈P
K2 (k (v)) /`

}
where ∂v : K3 (K) −→ K2 (k (v)) is the boundary map in K-Theory. It will play an important
role in class field theory for X as pointed out by Saito in the introduction of [9]. In this section,
we construct a map

σ/` : SK2 (X) /` −→ πab
1 (X) /`

which describe the class field theory of X.
By definition of SK2 (X) /`, we have the exact sequence

K3 (K) /` −→ ⊕
v∈P

K2 (k (v)) /` −→ SK2 (X) /` −→ 0

On the other hand, it is known that the following diagram is commutative:

K3 (K) /` −→ ⊕
v∈P

K2 (k (v)) /`

↓ h3 ↓ h2

H3 (K, Z/` (3)) −→ ⊕
v∈P

H2 (k (v) , Z/` (2))

where h2, h3 are the Galois symbols. This yields the existence of a morphism
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h : SK2 (X) /` −→ H1
(
XZar,H3(Z/` (2)

)
)

taking in account the exact sequence (4.1). This morphism fit in the following commutative
diagram

0 −→ K3 (K) /` −→ ⊕
v∈P

K2 (k (v)) /` → SK2(X)/` −→ 0

↓ h3 ↓ h2 ↓ h
0 −→ H3 (K, Z/` (2)) −→ ⊕

v∈P
H2 (k (v) , Z/` (2)) → H1

(
XZar,H3(Z/` (2)

)
) −→ 0

By Merkur’jev-Suslin, the map h2 is an isomorphism, which imply that h is surjective. On
the other hand the spectral sequence

Hp (XZar,Hq(Z/` (3))) ⇒ Hp+q(X, Z/` (3))

induces the exact sequence

0 −→ H1
(
XZar,H3(Z/` (3)

)
) e−→ H4(X, Z/` (3))(4.3)

−→ H0
(
XZar,H4(Z/` (3)

)
) −→ H2

(
XZar,H3(Z/` (3)

)
) = 0

Composing h and e, we get the map

SK2 (X) /` −→ H4(X, Z/` (3))

Finally the group H4(X, Z/` (3)) is identified to the group πab
1 (X) /` by the duality [4,II, th

2.1]

H4(X, Z/` (3))⊗H1(X, Z/`) −→ H5(X, Z/` (3)) ' H3(k, Z/` (2)) ' Z/`

Hence, we obtain the map

σ/` : SK2 (X) /` −→ πab
1 (X) /`

Remark 4.1. By the exact sequence (4.2) the group H0
(
XZar,H4(Z/` (3)

)
) coincides with the

kernel of the map

H4(K, Z/` (3)) −→ ⊕
v∈P

H3 (k (v) , Z/` (2))

and by localization in étale cohomology

⊕
v∈P

H 2 (k (v) , Z/` (2))−→ H 4 (X, Z/` (3))−→ H 4 (K, Z/` (3)) −→ ⊕
v∈P

H 3 (k (v) , Z/` (2))

and taking in account (4.3), we see that H1
(
XZar,H4(Z/` (3)

)
) is the cokernel of the Gysin

map

⊕
v∈P

H 2 (k (v) , Z/` (2))
g−→ H 4 (X, Z/` (3))

and consequently the morphism g factorize through H1
(
XZar,H4(Z/` (3)

)
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⊕
v∈P

H 2 (k (v) , Z/` (2))
g−→ H 4 (X, Z/` (3))

↘ ↗
H 1

(
XZar,H4(Z/` (3)

)
)

Then, we deduce the following commutative diagram

K3 (K) /` → ⊕
v∈P

K2(k (v))/` → SK2 (X) /` −→ 0

↓ h3 ↓ h2 ↓ h
H3 (K, Z/` (3)) → ⊕

v∈P
H2 (k (v) , Z/` (2)) → H1

(
XZar,H4(Z/` (3)

)
) −→ 0

↓ g ↙ e
πab

1 (X) /l = H4 (X, Z/` (3))

The surjectivity of the map h implies that the cokernel of

σ/` : SK2 (X) /` −→ πab
1 (X) /`

coincides with the cokernel of e which is H0
(
XZar,H4(Z/` (3)

)
). Hence Co ker σ/` is the dual

of the kernel of the map

(4.4) H1 (X, Z/`) −→
∏
v∈P

H1 (k (v) , Z/`)

4.2. The Kato-Saito exact sequence.

Definition 4.2. Let Z be a Noetherian scheme. A finite etale covering f : W → Z is called a
c.s covering if for any closed point z of Z , z ×Z W is isomorphic to a finite scheme-theoretic
sum of copies of z We denote πc.s

1 (Z) the quotient group of πab
1 (Z) which classifies abelian c.s

coverings of Z.

Hence, the group πc.s
1 (X) /` is the dual of the kernel of the map

H1 (X, Z/`) −→
∏
v∈P

H1 (k (v) , Z/`)

as in [9, section 2, definition and sentence just below]. Now, we are able to calculate the
homologies of the Bloch-Ogus complex associated to X.

Generalizing [10, Theorem 7], we obtain :

Proposition 4.3. Let X be a projective smooth curve defined over k Then for all `, we have
the following exact sequence

0 −→ πc.s
1 (X) /` −→ H4 (K, Z/` (3))

−→ ⊕
v∈P

H3 (k (v) , Z/` (2)) −→ Z/` −→0.

Proof. Consider the localization sequence on X

⊕
v∈P

H2 (k (v) , Z/` (2))
g−→ H4 (X, Z/` (3)) −→ H4 (K, Z/` (3))

−→ ⊕
v∈P

H3 (k (v) , Z/` (2)) −→ H5 (X, Z/` (3)) −→ 0

We know that the cokernel of the Gysin map g coincides with πc.s
1 (X) /` and we use the iso-

morphism H5 (X, Z/` (3)) ' Z/` . �
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5. The group πc.s
1 (X)

In his paper [9], Saito don’t prove the p− primary part in the char k = p m 0 case. This case
was developed by Yoshida in [12]. His method is based on the theory of monodromy-weight
filtration of degenerating abelian varieties on local fields. In this work, we use this approach
to investigate the group πc.s

1 (X) . As mentioned by Yoshida in [12, section 2] Grothendieck’s
theory of monodromy-weight filtration on Tate module of abelian varieties are valid where the
residue field is arbitrary perfect field.

We assume the semi-stable reduction and choose a regular model X of X over SpecOk, by
which we mean a two dimensional regular scheme with a proper birational morphism

f : X −→ SpecOk such that X ⊗Ok
k ' X and if Xs designates the special fiber X ⊗Ok

k1,
then Y = (Xs)réd is a curve defined over the residue field k1 such that any irreducible component
of Y is regular and it has ordinary double points as singularity.

Let Y = Y ⊗k1 k1 , where k1 is an algebraic closure of k1 and
Y

[p] =
⊔

i/<i1<···<ip

Yi/ ∩ Yi1 ∩ · · · ∩ Yip , (Yi)i∈I = collection of irreducible components of Y .

Let
∣∣Γ∣∣ be a realization of the dual graph Γ, then the group H1

(∣∣Γ∣∣ , Ql

)
coincides with the

group W0(H1
(
Y , Ql

)
) constituted of elements of weight 0 for the filtration

H1(Y , Q`) = W1 ⊇ W0 ⊇ 0
of H1(Y , Q`) deduced from the spectral sequence

Ep,q
1 = Hq(Y [p]

, Q`) =⇒ Hp+q(Y , Q`)
For details see [2], [3] and [6]

Now, if we assume further that the irreducible components and double points of Y are defined
over k1, then the dual graph Γ of Y go down to k1 and we obtain the injection

W0(H1
(
Y , Ql

)
) ⊆ H1 (Y, Ql) ↪→ H1 (X, Ql)

Proposition 5.1. The group πc.s
1 (X)⊗ Ql admits a quotient of type Qr

l , where r is the Ql−rank

of the group H1
(∣∣Γ∣∣ , Ql

)
Proof. We know (4.4) that πc.s

1 (X)⊗ Ql is the dual of the kernel of the map

α : H1 (X, Ql) −→
∏
v∈P

H1 (k (v) , Ql)

We will prove that W0(H1
(
Y , Ql

)
) ⊆ Kerα. The group W0 = W0(H1

(
Y , Ql

)
) is calculated as

the homology of the complex

H0(Y [0]
, Q`) −→ H0(Y [1]

, Q`) −→ 0

Hence W0 = H0(Y [1]
, Q`)/ Im{H0(Y [0]

, Q`) −→ H0(Y [1]
, Q`)}. Thus, it suffices to prove the

vanishing of the composing map
H0(Y [1]

, Q`) −→ W0 ⊆ H1 (Y, Ql) ↪→ H1 (X, Ql) −→ H1 (k (v) , Ql)
for all v ∈ P.

Let zv be the 0− cycle in Y obtained by specializing v, which induces a map z
[1]
v −→ Y

[1]
.

Consequently, the map H0(Y [1]
, Q`) −→ H1 (k (v) , Ql) factors as follows
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H0(Y [1]
, Q`) −→ H1 (k (v) , Ql)

↘ ↗
H0(z[1]

v , Q`)

But the trace z
[1]
v of Y

[1] on zv is empty. This implies the vanishing of H0(z[1]
v , Q`). �

Let V (X) be the kernel of the norm map N : SK2 (X) −→ K2(k) induced by the norm map
Nk(v)/kx : K2 (k(v)) −→ K2(k) for all v . Then, we obtain a map τ/l : V (X)/` −→ πab

1 (X)géo /`
and a commutative diagram

V (X)/` −→ SK2 (X) /` → K2(k)/`
↓ τ/l ↓ σ/` ↓ h/l

πab
1 (X)géo /` −→ πab

1 (X) /` → Gal(kab/k)/l

where the map h/l : K2 (k) /l −→ Gal(kab/k)/l is the one obtained by class field theory of
k (section 3). From this diagram we see that the group Co ker τ/l is isomorphic to the group
Co ker σ/`. Next, we investigate the map τ/l.

We start by the following result which is a consequence of the structure of the two-dimensional
local field k

Lemma 5.2. There is an isomorphism

πab
1 (X)géo ' πab

1

(
X

)
Gk

,

where πab
1

(
X

)
Gk

is the group of coinvariants under Gk = Gal(kab/k).

Proof. As in the proof of Lemma 4.3 of [12], this is an immediate consequence of (Theorem

3.1). �

Finally, we are able to deduce the structure of the group πab
1 (X)géo

Theorem 5.3. The group πab
1 (X)géo ⊗Ql is isomorphic to Q̂l

r
and the map

τ : V (X) −→ πab
1 (X)géo is a surjection onto (πab

1 (X)géo)tor.

Proof. By the preceding lemma, we have the isomorphism πab
1 (X)géo ' πab

1

(
X

)
Gk

. On the other
hand the group πab

1

(
X

)
Gk
⊗Q` admits the filtration [12,Lemma 4.1 and section 2]

W0(πab
1

(
X

)
Gk
⊗Ql) = πab

1

(
X

)
Gk
⊗Ql ⊇ W−1(πab

1

(
X

)
Gk
⊗Ql) ⊇ W−2(πab

1

(
X

)
Gk
⊗Ql)

But; by assumption; the curve X admits a semi-stable reduction, then the group
Gr0(πab

1

(
X

)
Gk
⊗Ql) = W0(πab

1

(
X

)
Gk
⊗Ql)/W−1(πab

1

(
X

)
Gk
⊗Ql) has the following structure

0 −→ Gr0(πab
1

(
X

)
Gk
⊗Ql)tor −→ Gr0(πab

1

(
X

)
Gk
⊗Ql) −→ Q̂l

r′

−→ 0

where r′ is the k− rank of X. This is confirmed by Yoshida [12, section 2], independently of the
finitness of the residue field of k considered in his paper. The integer r′ is equal to the integer
r = H1

(∣∣Γ∣∣ , Ql

)
= H1 (|Γ| , Ql) by assuming that the irreducible components and double points

of Y are defined over k1.
On the other hand, the exact sequence

0 −→ W−1(πab
1

(
X

)
Gk

) −→ πab
1

(
X

)
Gk
−→ Gr0(πab

1

(
X

)
Gk

) −→ 0
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and (Proposition 5.1) allow us to conclude that the group W−1(πab
1

(
X

)
Gk

) is finite and the map

τ : V (X) −→ πab
1 (X)géo is a surjection onto (πab

1 (X)géo)tor as established by Yoshida in [12] for
curve over usually local fields. �

Remark 5.4. If we apply the same method of Saito to study curves over two-dimensional local
fields, we need class field theory of two-dimensional local ring having one-dimensional local field
as residue field. This is done by myself in [1]. Hence, one can follow Saito ’s method to obtain
the same results.
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