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Abstract

These are my notes for my talk in Bremen, describing part of joint
work with Cremona, O’Neil, Simon and Stoll.

Let E be an elliptic curve over a perfect field K. Let n ≥ 2 be an integer
and suppose char(K) - n. Taking Galois cohomology of the exact sequence

0→ E[n]→ E → E → 0

we obtain the Kummer exact sequence

E(K)→ H1(K, E[n])→ H1(K, E).

Elements of the group on the left (resp. right) may be intepreted as points
(resp. torsors). In the course of this talk we will see several different intepre-
tations of the group in the middle.

We start with an algebraic description in terms of the étale algebra

R = MapK(E[n], K).

Notice that R is a product of (finite) field extensions of K. In the case n = 3
we would “typically” have R = K × L where L/K is a field extension of
degree 8. This is much better than working with K(E[3]). We also write

R = R⊗K K = Map(E[n], K).

The Weil pairing defines a map

w : E[n]→ Map(E[n], µn) = µn(R)
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which induces

w∗ : H1(K, E[n])→ H1(K, µn(R))'R×/(R×)n.

The isomorphism on the right comes from applying Hilbert’s theorem 90 to
each constituent field of R.

For n = p a prime, Schaefer and Stoll show that w∗ is injective and
describe its image. So for K a number field, they can compute S(p)(E/K)
as a subgroup of R×/(R×)p. Their method is actually practical for K = Q
and n = 3.

To give other interpretations of H1(K, E[n]) we use the following general
principle

“H1(K, Aut(X)) parametrises twists of X”.

Definition 1 A diagram [C → S] is a morphism from a torsor C under E to
a scheme S. We say that diagrams [C1 → S1] and [C2 → S2] are isomorphic
if there is an isomorphism of torsors C1'C2 and an isomorphism of schemes
S1'S2 so that

C1
//

'
��

S2

'
��

C2
// S2

commutes.

Lemma 2 Aut[E
|n.0|→ Pn−1]'E[n].

Definition 3 A Brauer-Severi diagram [C → S] is a twist of [E
|n.0|→ Pn−1].

It follows that H1(K,E[n]) parametrises Brauer-Severi diagrams. More-
over there is an obstruction map

H1(K, E[n]) → Br(K)
[C → S] 7→ S.

Our aim may be stated as follows. Given α ∈ R×/(R×)3 representing
an element of S(3)(E/K), find an equation for the corresponding plane cubic
[C → P2]. We expect that any successful method will need to use some
explicit analogue of the Hasse Principle for Brauer-Severi varieties.

We consider central extensions of E[n] by Gm

0→ Gm → Λ→ E[n]→ 0.

2



Definition 4 Extensions Λ1 and Λ2 are isomorphic if there is a commutative
diagram

0 // Gm
// Λ1

//

'
��

E[n] // 0

0 // Gm
// Λ2

// E[n] // 0.

Lemma 5 Aut(Λ)' Hom(E[n],Gm)'E[n].

Taking Λ0 = Gm × E[n] we identify

H1(K, E[n])←→ {twists ofΛ0}

These are the commutative extensions of E[n] by Gm. So in fact we have
identified H1(K, E[n]) = Ext1

K(E[n],Gm).
By Hilbert’s theorem 90, any central extension Λ has a Galois equivariant

section φ : E[n]→ Λ. In general φ is not a group homomorphism. Any two
choices of φ differ by an element of

MapK(E[n], K
×
) = R×.

We define α ∈ R× via

φ(T )n = α(T ) for all T ∈ E[n].

This gives a map
H1(K, E[n]) → R×/(R×)n

Λ 7→ α

which turns out to be the map w∗ we met before. In particular this map is
injective when n is prime, but counterexamples to this statement are known
when n = 4.

In a variant of this construction we define

ρ ∈ (R⊗R)× = MapK(E[n]× E[n], K
×
)

via
φ(S)φ(T ) = ρ(S, T )φ(S + T ) for all S, T ∈ E[n].

This gives an injection (for every n)

H1(K, E[n]) → (R⊗R)×/∂R×

Λ 7→ ρ
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where ∂ : R× → (R⊗R)× is defined by

(∂γ)(S, T ) =
γ(S)γ(T )

γ(S + T )
.

We write H for the image of H1(K, E[n]) in (R⊗R)×/∂R×. It may be char-
acterised by properties derived from the requirements that Λ is commutative
and associative. In practice we convert α ∈ R× (as computed by Schaefer
and Stoll) to ρ ∈ (R⊗R)× via ρ = n

√
∂α.

Lemma 6 Let
0→ Gm → Λ→ E[n]→ 0

be any central extension of E[n] by Gm. Then there is a unique K-algebra
F with [F : K] = n2 such that
(i) there exists ι : Λ→ (F⊗K K)× a Galois equivariant group homomorphism
that preserves scalars,
(ii) the image of ι spans F as a K-vector space.

If we interpret H1(K, E[n]) as commutative extensions of E[n] by Gm

then F will be a commutative K-algebra. This algebra is closely related to
another interpretation of H1(K, E[n]):

H1(K, E[n])←→ {E[n]-torsors E[n]× Φ→ Φ}.

For example the points of inflection of a plane cubic [C → P2] naturally form
an E[3]-torsor.

Lemma 7 F is the étale algebra of Φ.

We give the idea of the proof. We start by taking F to be the étale

algebra of Φ. Since E[n] acts on Φ it also acts on F
×

= Map(Φ, K
×
). The

eigenvectors for this action form a group

Λ =

{
α ∈ F

×
∣∣∣∣ there exists T ∈ E[n] such that

α(S + P ) = en(S, T )α(P ) for all S ∈ E[n], P ∈ Φ

}
.

We obtain a commutative extension

0 → Gm → Λ → E[n] → 0
α 7→ T.
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By construction F is the algebra determined by Λ. (Of course one still has
to check that Λ is the right commutative extension.)

In practice F is constructed as follows. The group law

E[n]× E[n]→ E[n]

induces a comultiplication

∆ : R→ R⊗R.

Viewing R⊗R as an R-algebra via ∆ there is a trace map

Tr : R⊗R→ R.

It turns out that F = (R, +, ∗ρ) where the new multiplication ∗ρ : R⊗R→ R
is given by

α ∗ρ β = Tr(ρ.α⊗ β).

Thus computing the field of definition of a point of inflection on our plane
cubic is much easier than finding an equation for the plane cubic itself. For
the latter we have to contend with the obstruction map.

By considering the action of E[n] on the base diagram

[E
|n.0|−→ Pn−1]

we obtain a character χE : E[n] → PGLn. Let ΘE be the inverse image of
im(χE) in GLn. Then we have a commutative diagram with exact rows

0 // Gm
// ΘE

//

��

E[n] //

χE

��

0

0 // Gm
// GLn

// PGLn
// 0.

Now ΘE assumes the role played by Λ0 earlier. We identify

H1(K, E[n])←→ {twists of ΘE}

We call these twists theta groups. (They are characterised among all central
extension by the fact the commutator is given by the Weil pairing.) Using
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theta groups we identify H1(K, E[n]) with a certain coset εH of H in (R ⊗
R)×/∂R×. Here ε ∈ (R⊗R)× describes the extension ΘE itself.

Given a theta group Θ we construct a K-algebra A as in Lemma 6, i.e.
[A : K] = n2 with Θ ↪→ (A⊗K)×, etc. In the case of ΘE the above diagram
identifies A' Mat(n,K). So in general A is a central simple algebra. This
gives another interpretation of the obstruction map

H1(K,E[n]) → Br(K)
Θ 7→ A.

Our algorithm has the following main steps:

1. Start with ρ ∈ S(n)(E/K) ⊂ (R⊗R)×/∂R×.

2. Compute structure constants for A = (R, +, ∗ερ).

3. Find an isomorphism A' Mat(n,K).

4. Recover equations for C → Pn−1.

5. Minimise and reduce the equations.

In fact after Step 3 we can compute M ∈ GLn(R) describing the action
of E[n] on [C → Pn−1]. In the case n = 3 this is usually enough to determine
an equation for C via ad hoc methods. (We can compute the pencil of cubics
preserved by M and typically only one curve in the pencil will have Jacobian
E.) Cathy’s talk will describe another approach to Step 4.
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