
Explicit descent on elliptic curves, II

Cathy O’Neil

12th July 2005

Let E be an elliptic curve over the perfect field K. For an integer n ≥ 2,
fix an embedding f : E → Pn−1 defined over K given by the divisor n ·OE.

As Tom has explained, a typical element of H1(K, E[n]) can be viewed
as a diagram of the form f ξ : C → S where S is a Brauer-Severi variety of
dimension n−1. There is no chance therefore to find a model in Pn−1 for every
element in H1(K, E[n]). There are two basic tricks we will use: First, every
element in H1(K, E[n]) has a model in Pn2−1 (look at the obstruction maps
with respect to H1(K, E[n]) → H1(K, E[n2]) sending C → S 7→ C → Pn2−1

or, with respenct to divisor classes, (C, [D]) 7→ (C, n[D])), and second, any
element of the Selmer group always looks like C → Pn−1. In fact let us denote
the subset of H1(K, E[n]) which has S ∼= Pn−1 by HOb(K).

Our basic question then is, starting with an element of HOb, how do we
reverse the map C → Pn−1 7→ C → Pn2−1?

First, a description of what works over algebraically closed fields. Then,
given f as above, there is a notion of a dual curve embedding f∨ : E →
(Pn−1)∨. Therefore we get a map to the product Pn−1 × (Pn−1)∨. We can
compose that map with the Segre embedding to get a map:

h : E → Pn−1 × (Pn−1)∨ → Pn2−1.

We will prove that g is an embedding of E via the nearly full linear series
associated to n2 ·OE.

In fact we construct the following commutative diagram:

x - (ax : T 7→ aT (x))

E
nO- Pn−1 × P̌n−1 Segre- P(Mat(n, K))∼= Pn2−1 - P(R)

n2O

- Pn2−1

6
................
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where R = ResR/KA1, P(R) = (R \ {0})/Gm. Note that the vertical arrow
will be projection away from one coordinate of the n2-dimensional vector
space Γ = Γ(E, n2 ·O) of global sections of |n2 ·O| on E.

How do we define these functions aT , and how do we know they are
sections of Γ? We use the fact that the image of E[n] generates Mat(n,K)
as a K-vector space under the following map (defined by Tom):

E[n] - PGLn

T

GLn

6

-

MT

-

We then define the aT as the coefficient functions of the MT for the
function h:

h(x) =
∑

T∈E[n] aT (x)M−1
−T . We can solve for aT : naT = Tr(h(x)M−T ) =

Tr(XTXM−T ) = Tr(TXM−T X) = TX(X − T ).
In other words, aT vanishes on x exactly when the point x−T lies on the

hyperosculating plane of x. When T 6= O, this means: aT = 0 ⇔ n · x = T .
This implies that aT ∈ Γ whenever T 6= O, and it’s not hard (using character
theory) to see that the various aT are independent in Γ. We like to think
of the aT as ‘secondary Hessians,’ in that they are polynomials of degree n
(because the dual map can be seen as coming from the vector space of global
sections of |n · O|⊗(n−1) and because E is a normal curve) in the original
embedding f : E → Pn−1 and in that embedding aT intersects E exactly at
the n2 points Q such that n ·Q = T.

Note that when T = O, the condition that x vanishes on its own tangent
line is the empty condition, which is why we project away from the coordinate
corresponding to O.

Now for C, we can do almost the same thing:
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C - Pn−1 × P̌n−1 - P(Mat(n, K))

C - S × Š

∼=
?

- P(A)

∼=

?
∼= P(R)

x -
∑

T

aT (x)i(−T )−1

- (ax : T 7→ aT (x))

Note that Tom also explained that the image of E[n] will generate the
central simple algebra associated to C → S as follows:

E[n] - A∗/K∗

A∗

6

i
-

Therefore we can still define the aT s as coefficient functions, now not of
matrices but of these distinguished elements of the central simple algebra A.
We will again find as above that the aT are elements of the vector space of
global sections of n|D|, if C → S corresponds to the pair (C, |D|).

Now we have carefully defined two maps: one from E to P(R), and the
other from C to P(R). How are these related? We have:

E - P(R)

C
?

- P(R),

γ

?

where ∂γ = ρ ∈ R ⊗ R, γn ∈ R∗/R∗n. This means that we can use the
underlying algebra structure of R to literally ‘multiply’ every point of E to
get a point of C. Note that the map ‘multiplication by γ’ is not K-rational.
However, both ∂γ = ρ ∈ R⊗R= and γn ∈ R∗/R∗n are.

In some sense this means γ is nearly rational, and only differs from an
actual rational element of R by an E[n]-action.
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The Algorithm

So the story is as follows: Say we had actual equations for E → P(R).
Then we can modify those equations by point-wise multiplication by γ to get
equations for C inside P(R).

Then we project away from the O-coordinate. In the case that C → S ∼=
Pn−1 (equivalently when we can explicitly compute an isomorphism A ∼=
Mat(n,K)) we can then project onto the first factor in the above diagram to
recover a model for C.

A final ingredient to find the equations for E is to compute the map r,
coming from the connecting map in cohomology:

E(K)/nE(K) - H1(K, E[n])

P

H
?

r

-

⊂(R⊗R)∗/∂R

∂aQ

-

Theorem. r(P ) = ∂aQ, where nQ = P .

I will not prove this theorem, but I want to mention that we can modify
the map r by a scalar (namely divide by a choice of a ‘primary Hessian’ aO)
and we have the following explicit definition of r:

r(P )(T1, T2) =
aT1

(Q)aT2
(Q)

aT1+T2
(Q)aO(Q)

We can now deduce the equations (i.e. a huge bunch of quadrics) defining
E by the following formula:

{z ∈ P(R)|r(P ) = ∂z for some P ∈ E}
Note that this formula is tautological: a point P of E maps to a point in

P(R) via r, so a point in P(R) lies on E exactly when it’s in the image of
r. However, the formula can be explicitly written out for any two elements
T1, T2 ∈ E[n](K) :

r(P )(T1, T2) = ∂z(T1, T2) =
z(T1)z(T2)

z(T1 + T2)
.

We now fix T = T1 + T2 in order to remove the dependency on r and to
get quadrics in terms of the z(T )’s. We will use:
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Claim: P 7→ r(P )(T1, T2) has poles at P = 0 and P = T1 + T2 = T .
Proof. By the explicit formula for r above and the fact that aT and aO are
Hessians.

Note that the vector space of functions on E with two fixed poles has
dimension 2, by Riemann-Roch. Therefore, fix two sets of T s whose sum is
fixed: T11 + T12 = T and T21 + T22 = T.

Then we have in particular that r(P )(T11, T12)z(T ) = z(T11)z(T12) and
r(P )(T21, T22)z(T ) = z(T21)z(T22). However by the above Claim, for any
other pair T1, T2 whose sum is T, there exist scalars (which we can easily
solve for) α and β such that r(P )(T1, T2) = αr(P )(T11, T12)+βr(P )(T21, T22).

Finally we deduce αz(T11)z(T12) + βz(T21)z(T22) = z(T1)z(T2).
Hey, look, a quadric! A counting argument will show that we get all

of the quadrics defining E inside P(R). Note that it’s actually a tricky
point that, once we project away from the O coordinate, that the resulting
curve is still defined by quadrics (namely, the quadrics that don’t involve the
coordinate z(O)). This fact was supplied by the algebraic geometer Michnea
Popa. Also, note that in the algorithm itself, Michael finds the quadrics in
a slightly different (but equivalent) way. Indeed, the above quadrics won’t
be K-rational but will generate a K-rational vector space of quadrics, which
we then know will descend to a K-rational basis. In Michael’s algorithm, he
goes immediately to the K-rational basis. In fact, he goes straight to the
equations for C. From the point of view of explaining, it seems to make more
sense to do it this way.

In any case, we now have a bunch of quadrics defining E and we now
modify our approach slightly to find equations for C, namely using a modified
formula:

C → P(R) is the set {z ∈ P(R)|r(P ) = ρ∂z = ∂(γz) for some P ∈ E}.
Remember, this formula determines the image of C because of the rela-

tionship between the two models.
Finally, I’d like to end with a suggested way of looking at what we’ve

done. I’d like to think of the various choices for C as points on some scheme.
As we’ve seen, we can basically represent C by the element γ, which is
not quite rational. However, it is defined ‘up to E[n] action,’ or in other
words it corresponds to an honest point of the scheme P(R)/E[n]. I claim
we should think then of this scheme P(R)/E[n] as a kind of arithmetic pa-
rameter space. Indeed it is an example of what I call a sampling space for
the functor H1(K, E[n]), which I will discuss in the next half hour. For now,
note that the following diagram commutes, which gives us the impression
that this is a natural choice.
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x - ax

E - P(R)

E/E[n]
?

E

∼=
?

- P(R)/E[n]
?

E(K)/nE(K)

??
- H1(K, E[n])

??

=H ⊂ R⊗R/∂R

The diagrams were drawn with Paul Taylor’s commutative diagrams package.
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