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Curves of Genus 2

A curve of genus 2 over Q is given by an equation

C : y2 = f6x6 + f5x5 + f4x4 + f3x3 + f2x2 + f1x + f0

with fj ∈ Z, such that (f6, f5) 6= (0,0)

and the polynomial on the right does not have multiple roots.

A rational point on this curve C

is a pair of rational numbers (ξ, η) satisfying the equation.

In addition, there can be rational points “at infinity”,

corresponding to the square roots of f6 in Z.

We denote the set of rational points on C by C(Q).

Theorem (Mordell’s Conjecture, proved by Faltings). C(Q) is finite.



The Questions

Consider curves of genus 2 over Q:

C : y2 = f6x6 + f5x5 + f4x4 + f3x3 + f2x2 + f1x + f0

with fj ∈ Z, |fj| ≤ N .

Question.

What can we say about C(Q), the set of rational points on C,

as N grows?

• How do we determine C(Q)?

• How large is C(Q) on average?

• How large can the points get?

• How many curves have many rational points?

• How are the sizes of the points distributed?



Heuristics (1)

The condition that the point (a
b ,

c
b3

) is on C

translates into a linear condition on the coefficients fj:

a6f6 + a5bf5 + a4b2f4 + a3b3f3 + a2b4f2 + ab5f1 + b6f0 = c2

The curves satisfying this correspond to points in the intersection

of a coset of a 6-dimensional lattice in R7 with a cube of side length 2N .

We can estimate the size of this set by the volume

of the corresponding slice of the cube,

divided by the covolume of the lattice.

We obtain for the average number of points with x = a
b :

EN

(
#C(Q)x

)
∼

γ(x)√
N

as N →∞.

with γ(x) of order H(x)−3, where H(x) = max{|a|, |b|} is the height of x.



Heuristics (2)

We let

γ(H) =
∑

x∈P1(Q),H(x)≤H

γ(x) = γ −O

(
1

H

)

where γ = lim
H→∞

γ(H) < ∞.

If C(Q)H = {(x, y) ∈ C(Q) : H(x) ≤ H}, this gives

EN

(
#C(Q)H

)
∼

γ(H)√
N

as N →∞.

Corollary. lim inf
N→∞

√
N · EN

(
#C(Q)

)
≥ γ .

Conjecture. lim
N→∞

√
N · EN

(
#C(Q)

)
= γ .



Heuristics (3)

Let π : C → P1 be the x-coordinate map.

For P ∈ C(Q), we write H(P ) = H(π(P )).

The linear conditions for up to seven x-coordinates are independent,

so we expect (at least for k ≤ 7)

ProbN

(
#π(C(Q)) ≥ k

)
∼

ck

Nk/2
.

We also expect that (using γ − γ(H) ≈ β/H)

#
{
C : ∃P ∈ C(Q), H(P ) ≥ H

}
≈ β

N13/2

H
,

which leads to the

Conjecture. max
{
H(P ) : P ∈

⋃
C C(Q)} � N13/2+ε .

(Note: This is polynomial in N , in contrast to curves of genus 1.)



How To Find the Points

In order to test these heuristics, we need to find C(Q)

for all curves C (with |fj| ≤ N).

We can search for points on C;

this is feasible for heights up to 104 or maybe 105

(using ratpoints, or Points() in MAGMA; complexity of order H2).

If we do not find any points, we can try to prove that C(Q) = ∅:
• local obstruction: C(R) = ∅ or C(Qp) = ∅ for some p

• 2-cover descent: Sel(2)(C/Q) = ∅
• Mordell-Weil Sieve (see below)

Example.

For N = 3, there are 196 171 isomorphism classes of curves,

of which 137 490 have rational points, and 58 681 don’t. (Bruin-Stoll)



The Jacobian Variety

The points on an elliptic curve form a group in a natural way.

This helps tremendously when studying such curves.

The points on a curve of genus 2 do not form a group in a natural way.

However, we can embed C into a 2-dimensional variety J

whose points do form a group in a natural way.

This variety J is called the Jacobian variety of C.

Its rational points form a group J(Q).

Weil generalised a theorem of Mordell’s on elliptic curves and showed that

J(Q) is a finitely generated abelian group.

We call J(Q) the Mordell-Weil group of J.



Determining the Mordell-Weil Group

We can use the Mordell-Weil group to get information on C(Q).

For this, we need to compute generators of J(Q);

in particular, we need to find its rank rank J(Q) = dimQ J(Q)⊗Z Q.

• 2-descent on J gives upper bound for the rank

• Search for points on J gives lower bound for the rank

• Use canonical height ĥ to saturate the known subgroup

(Algorithms are implemented in MAGMA.)

Potential Problems.

• Upper bound may not be tight

• Some generators may be too large to be found



Using the Mordell-Weil Group

Let ι : C → J be an embedding.

Then ι
(
C(Q)

)
= J(Q) ∩ ι(C).

Let r = rank J(Q).

Method 1.

We have ĥ
(
ι(P )

)
≤ logH(P ) + c.

Enumerate all points Q ∈ J(Q) with ĥ(Q) ≤ logH + c

(working with the Mordell-Weil lattice (J(Q)/torsion, ĥ))

and check for each Q if Q ∈ ι(C).

• Complexity of order
#J(Q)tors√

RegJ

πr/2(logH + c)r/2

(r/2)!
= O

(
(logH)r/2

)
• Check Q ∈ ι(C) first modulo p for many p.

• Can do H = 10100 for r = 3,4,5.



The Mordell-Weil Sieve (1)

Method 2.

Let S be a finite set of primes of good reduction for C.

Consider the following diagram.

C(Q)

��

ι // J(Q)

��

// J(Q)/nJ(Q)

β
��∏

p∈S

C(Fp)
ι //

α
22

∏
p∈S

J(Fp) //

∏
p∈S

J(Fp)/nJ(Fp)

We can compute the maps α and β.

If the image of the known rational points on C coincides with β−1(im(α)),

then any unknown point must have logH(P ) � n2.

(If β−1(im(α)) = ∅, i.e., im(α) ∩ im(β) = ∅, this proves that C(Q) = ∅.)



The Mordell-Weil Sieve (2)

A carefully optimized version of the Mordell-Weil sieve

works very well when r = 2

and allows us to reach H = 101000 (or more) in this case.

Example (Bruin-Stoll).

For the 1 492 curves C for N = 3 without rational points

that do not have a local obstruction or a 2-cover obstruction,

a Mordell-Weil sieve computation proves that C(Q) = ∅.
(For 42 curves,

we need to assume the Birch and Swinnerton-Dyer Conjecture.)



A Refinement

Taking n as a multiple of N ,

the Mordell-Weil sieve gives us a way of proving

that a given coset of NJ(Q) does not meet ι(C).

Conjecture.

If (Q + NJ(Q)) ∩ ι(C) = ∅, then there are n ∈ NZ and S such that

the Mordell-Weil sieve with these parameters proves this fact.

So if we can find an N that separates the rational points on C,

i.e., such that the composition C(Q)
ι→ J(Q) → J(Q)/NJ(Q) is injective,

then we can effectively determine C(Q) if the Conjecture holds for C:

For each coset of NJ(Q), we either find a point on C mapping into it,

or we prove that there is no such point.



Chabauty’s Method

Chabauty’s method allows us to compute a separating N when r = 1.

Let p be a prime of good reduction for C. There is a pairing

Ω1
J(Qp)× J(Qp) −→ Qp , (ω, R) 7−→

∫ R

0
ω .

Since rank J(Q) = 1 < 2 = dimQp
Ω1

J(Qp), there is a differential

0 6= ωp ∈ ΩC(Qp) ∼= Ω1
J(Qp) that kills J(Q) ⊂ J(Qp).

Theorem.

If the reduction ω̄p does not vanish on C(Fp) and p > 2,

then each residue class mod p contains at most one rational point.

This implies that N = #J(Fp) is separating.



Chabauty + MW Sieve

We can easily compute ω̄p.

Heuristically (at least if J is simple),

we expect to find many p satisfying the condition.

In practice, such p are easily found;

the Mordell-Weil sieve computation then determines C(Q) very quickly.

Note.

If r = 0, then C(Q) = ι−1
(
J(Q)tors

)
is easily computed.



Summary: Finding Points

For the 137 490 curves with rational points (N = 3):

• r = 0 (14 010 curves): C(Q) is determined.

• r = 1 (46 575 curves): C(Q) is determined.

• r = 2 (52 227 curves): C(Q)H is determined for H = 101000.

• r = 3 (22 343 curves): C(Q)H is determined for H = 10100.

• r = 4 ( 2 318 curves): C(Q)H is determined for H = 10100.

• r = 5 ( 17 curves): C(Q)H is determined for H = 10100.

(Caveat: In some cases when r is less than the Selmer rank,

the rank is not yet proved to be correct.)

In addition, all points up to H = 214 − 1 = 16383 were computed

on all curves with N ≤ 10. (This was done using ratpoints.)



Some Records (1)

Maximal Number of Points (H(P ) ≤ 16383 for N ≥ 4)

size of curves N 1 2 3 4 5 6 7–10

max. #C(Q) 18 24 26 36 38 44 52

Example. y2 = x6 − 2x5 + x4 − 5x3 − 5x2 + 7x + 4

has 52 points, with x-coordinates
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.



Some Records (2)

Maximal Height of Points (H(P ) ≤ 10100)

size of curves N = 1 N = 2 N = 3

max. H(P ) 145 10711 209040

max. H(P )/N13/2 145.00 118.34 165.55

The record point on y2 = x6 − 3x4 − x3 + 3x2 + 3

has x = − 58189
209040
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Height Distribution of Points

• We count points P with 2n ≤ H(P ) < 2n+1.

• We expect this number to be proportional to 2−n.

• We observe a reasonably good fit, but for N ≥ 4,

there are “too many” large points. Explanation?
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Number of x-Coordinates

• We count curves C with #π
(
C(Q)

)
≥ k.

• We expect this number to be proportional to N−k/2

(at least for k ≤ 7).

• We observe that the numbers drop much more slowly than expected:

Given that there are n point pairs already,

there is a ≈ 50% chance for another pair.

• This needs to be investigated!



A Pre-Conjecture

Generalizing to larger N , this leads to the following

Expectation. max
{
#π(C(Q))

}
≈ c log(2N + 1).

Here is a table for N ≤ 10.

size of curves N 1 2 3 4 5 6 7 8 9 10

max. #π(C(Q))
log(2N+1) 8.2 7.5 6.7 8.2 7.9 8.6 9.6 9.2 8.8 8.6

A few examples of curves with many points:

Author N #π(C(Q)) #π(C(Q))
log(2N+1)

Stahlke 282 63 9.94

Stahlke 249094440 183 9.14

Keller and Kulesz 22999624761 294 11.97



A Couple of Remarks

Remark 1.

By work of Caporaso, Harris, and Mazur,

Lang’s conjecture on rational points on varieties of general type implies

that #C(Q) is uniformly bounded for curves C/Q of fixed genus.

Remark 2.

One can easily construct families of genus 2 curves with

• at least 14 point pairs and no extra automorphisms,

• at least 16 point pairs and an extra involution,

• at least 24 point pairs and a large automorphism group,

whereas the indpendence assumption for many points would predict that

there are only finitely many curves in total with more than 14 point pairs.



Summary

• For “small” curves C, we can decide if C(Q) is empty or not,

and we can find all points up to very large height.

• We can use heuristic coniderations that lead to expectations

regarding the number and size of rational points.

• In a massive computation, we found all rational points

of height ≤ 16383 on all curves of size ≤ 10.

• The experimental data confirm some of the expectations,

but are in disagreement with others.

• It is an interesting challenge to explain the discrepancies!


