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Diophantine m-Tuples

Definition.
A (rational) Diophantine m-tuple is an m-tuple (a1, . . . , am)

of distinct nonzero integers (rational numbers)
such that aiaj + 1 is a square for all 1 ≤ i < j ≤ m.

Diophantus:
“Find four numbers (= positive rationals) such that the product
of every two of them, increased by one, is a square!”
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Diophantine m-Tuples: Fermat

Fermat (reading Diophantus’ Arithmetica) came up
with an integral solution to Diophantus’ problem:

He takes the numbers 3, 1, 8 (which form a Diophantine triple)
and then uses a general method he invented to obtain a fourth number N

such that N + 1, 3N + 1 and 8N + 1 are all squares.
The gives the Diophantine quadruple (1, 3, 8, 120).
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Diophantine m-Tuples

Euler’s construction gives in general a rational fifth number.

No Diophantine quintuples have ever been found.

This led to the long-standing conjecture, now a

Theorem (He, Togbé, Ziegler).
Diophantine quintuples do not exist.

There are infinitely many rational Diophantine sextuples;
it is unknown whether rational Diophantine septuples exist or not.
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A Diophantine Problem

Consider a given rational Diophantine quadruple (a1, a2, a3, a4),
for example Fermat’s quadruple (1, 3, 8, 120).

Problem.
Find all rational numbers a5
such that (a1, a2, a3, a4, a5) is a rational Diophantine quintuple.

Fact.
Euler’s method generalizes to give the “regular extensions”

a5 = z± =
(a1+a2+a3+a4)(a1a2a3a4+1)+2(a1a2a3+a1a2a4+a1a3a4+a2a3a4)±2s

(a1a2a3a4−1)2
,

where s =
√
(a1a2 + 1)(a1a3 + 1)(a1a4 + 1)(a2a3 + 1)(a2a4 + 1)(a3a4 + 1)

(unless z± ∈ {0, a1, a2, a3, a4}).

Are there more possibilities in our concrete case?
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Extending Fermat’s Quadruple

For Fermat’s quadruple, we have z− = 0,
so there is only one regular extension,

which is z+ = 777 480
8 288 641

(as given by Euler).

We will show that this is the only extension.

Any extension z ∈ Q× gives rise to a bunch of rational solutions of

z + 1 = u21, 3z + 1 = u22, 8z + 1 = u23, 120z + 1 = u24 .

This describes a curve of genus 5,
so by a general result of Faltings there are only finitely many solutions.

With x = u4, this gives x2 + 119 = 120u21, x2 + 39 = 40u22, x2 + 14 = 15u23, hence

y2 = 5(x2 + 119)(x2 + 39)(x2 + 14)

with y = 600u1u2u3.
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Rational Points on a Curve of Genus 2

The curve

C : y2 = 5(x2 + 119)(x2 + 39)(x2 + 14)

has genus 2. We want to find its rational points.

The known solutions give points with x-coordinates ±1 and ±10 079
2 879

.
Searching further, we do not find any other points.

There is a general method (“Chabauty’s method”)
that can be used to solve such problems,
but it has prerequisites that are not satisfied here.

So we need to do something else.
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Two-Cover Descent

Using a method known as two-cover descent, we can show that,
up to possibly a sign change,
the x-coordinate of any rational point on C satisfies

15(1 −
√
−119)(1 −

√
−39) · (x2 + 14)(x −

√
−119)(x −

√
−39) = t2

with some t ∈ K := Q(
√
−119,

√
−39).

This equation defines an elliptic curve E over K;
we want to find its K-rational points (ξ, τ) with ξ ∈ Q.

There is a variant of Chabauty’s method that applies in this situation.
In our case, its prerequisites are satisfied.
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Elliptic Curve Chabauty

We want to find all points (ξ, τ) ∈ E(K) with ξ ∈ Q.
Since E is an elliptic curve,
the set E(K) is a finitely generated abelian group.

The condition is that rank E(K) < [K : Q] = 4.

Using standard algorithms, we can determine (generators of) E(K)

and find that rank E(K) = 2.
We can then run an implementation of the method,
which finally shows that

ξ ∈
{
1,

10079

2879

}
.

This finishes the proof.
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Further Results

We have applied this approach to quadruples from the family(
t − 1, t + 1, 4t, 4t(4t2 − 1)

)
(where ±t ̸= 0, 1, 12,

1
3,

1
4).

In this way, we could show that the regular extension is the only one for

t = 2 (see above), 3, 2
3,

3
2, 4,

3
4,

4
3, 5,

1
5,

2
5,

3
5,

5
4,

4
5 .

(For t = 3
5, there is a second “illegal” extension besides 0

given by 12
5 , which is already present. Note that

(
12
5

)2
+ 1 =

(
13
5

)2
.)
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Thank You!



Magma Code

> P<x> := PolynomialRing(Rationals());
> C := HyperellipticCurve(5*(x^2+119)*(x^2+39)*(x^2+14));
> Sel, mSel := TwoCoverDescent(C);
> A<th> := Domain(mSel);
> assert Sel eq {mSel(x0 - th) : x0 in {1,-1}};
> K := AbsoluteField(ext<Rationals() | x^2 + 119, x^2 + 39>);
> w119 := Roots(x^2 + 119, K)[1,1]; w39 := Roots(x^2 + 39, K)[1,1];
> PK<X> := PolynomialRing(K);
> E := HyperellipticCurve(15*(1-w119)*(1-w39)*(X^2+14)*(X-w119)*(X-w39));
> EE, EtoEE := EllipticCurve(E, E![1, 15*(1-w119)*(1-w39)]);
> assert Invariants(TorsionSubgroup(EE)) eq [2];
> assert #Invariants(TwoSelmerGroup(EE)) eq 3;
> bas := Saturation(ReducedBasis([EtoEE(pt) : pt in Points(E, 10079/2879)]), 7);
> assert #bas eq 3;
> MW := AbelianGroup([2,0,0]);
> MWmap := map<MW -> EE | m :-> &+[s[i]*bas[i] : i in [1..3]] where s := Eltseq(m)>;
> P1 := ProjectiveSpace(Rationals(), 1);
> pi := Expand(Inverse(EtoEE)*map<E -> P1 | [E.1, E.3]>);
> chab := Chabauty(MWmap, pi : IndexBound := 2*3*5*7);
> {pi(MWmap(pt)) : pt in chab};
{ (1 : 1), (10079/2879 : 1) }


