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Fermat (reading Diophantus’ Arithmetica) came up
with an integral solution to Diophantus’ problem:

OBSERVATIO D. P. F,

INaem'MtM tres pumeriquilibet vt quifit bimoruin mutua multiplicatione adfcita,
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conditione vt qui fit [ub tribus innentis figillatim in quartym adfciza v.ﬂiia?eﬁt geta-
dratus, ponatur inuenicndns effe .1 N.ergo 3 N+ item 1 Nt 1, item8 N~ 1,
aquantur gwdmz‘a' ¢ oritur triplicata zqualitas gmqsfolatza tnnentioni noftrde-
betur. Vide que adnotanimus ad queftionem 24. libri 6.

He takes the numbers 3, 1, 8 (which form a Diophantine triple)

and then uses a general method he invented to obtain a fourth number N
such that N+ 1, 3N+ 1 and 8N + 1 are all squares.

The gives the Diophantine quadruple (1,3,8,120).
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Euler explicitly asks for (integral) Diophantine quadruples:

Problema.

Inuenire quatuor numeros integros tales, wt producta
ex binis wnitate aulla fiant quadraia.

and gives a solution extending every Diophantine pair to two quadruples:
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Euler then goes a step further:

Problema s.
§. 8. [Tnuenire adeo quingue numeros buius indolis,
wr produlla ex binis wnitate aucla fiant quadraia.

and gives a solution method leading to this example:

777480

quae fractio reducitar ad hanc 757, atque hinc decem
: , conditiones praefcriptac fequenti modo adimplentur:
Sumgmus m—1 etn =3, eritque /= 2, vnde qua- 1% ab—41— 2 2°. a¢c—+ 1= 3%
tuor numeri priores erunt a =1, b—=3; ¢=8; d=120 o —11°: ° b 2
3.ad+1_11, 4. 0¢4 1= 5%

hinc ergo colligimus: i
P=132; g 1475; r— 4324 Ot 5 3880, 5% bd+-1=19%; 6. ¢d~41=31%
eXxX quibm. VaIOribuIS deducimus 7% 241 — ((33-;;3:; 8% by 1= {;;;332;
Jp — tastiahilion sl 9% ex i o=l ol dimalap o R

(2879 )2

Exemplum I.
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Euler’'s construction gives in general a rational fifth number.
No Diophantine quintuples have ever been found.

This led to the long-standing conjecture, now a

Theorem (He, Togbé, Ziegler).
Diophantine quintuples do not exist.

e Volker Ziegler, Alain Togbe und Bo He. There is no Diophantine Quintuple.

Transactions of the American Microscopical Society, 2019.

There are infinitely many rational Diophantine sextuples;
it is unknown whether rational Diophantine septuples exist or not.
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A Diophantine Problem

Consider a given rational Diophantine quadruple (ay, ay, az, as),
for example Fermat's quadruple (1,3,8,120).

Problem.
Find all rational numbers asg
such that (ay, ay, a3, ag,a5) is a rational Diophantine quintuple.

Fact.
Euler's method generalizes to give the “regular extensions”

(a1+ar+az+ag)(ajapazag+1)+2(ajapaz+ajayastajazas+arazag)£2s
(ajazazas—1)?

(15:Z:|:: )

where s = /(aja; + 1)(ajaz + 1)(ajas + 1)(azaz + 1)(azas + Nazas + 1)
(unless z+ € {0, aj, ay, az, as}).

Are there more possibilities in our concrete case?
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Extending Fermat’'s Quadruple

For Fermat’'s quadruple, we have z =0,

so there is only one regular extension,

SR, __ 777480 :
which is z, = o=~ (as given by Euler).

We will show that this is the only extension.

Any extension z € Q* gives rise to a bunch of rational solutions of

z+1=u%, 3z+1=u%, 82+1:u%, 120z+1=uﬁ.

T his describes a curve of genus 5,
SO by a general result of Faltings there are only finitely many solutions.

With x = uy, this gives x* + 119 = 120u?, x* + 39 = 40uj, x* + 14 = 15u3, hence
y? = 5(x% + 119)(x% + 39)(x* + 14)

with y = 600ujuyus.
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Rational Points on a Curve of Genus 2

The curve
C:y? =5(x% + 119)(x* + 39)(x* + 14)

has genus 2. We want to find its rational points.

10079

The known solutions give points with x-coordinates +1 and iW'

Searching further, we do not find any other points.

There is a general method (“Chabauty’s method")
that can be used to solve such problems,
but it has prerequisites that are not satisfied here.

So we need to do something else.
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wo-Cover Descent

Using a method known as two-cover descent, we can show that,
up to possibly a sign change,
the x-coordinate of any rational point on C satisfies

15(1 — vV/—=119)(1 — v/=39) - (x% + 14)(x — V/—119)(x — V/—39) = t*
with some t € K := Q(v/—=119, /—39).

This equation defines an elliptic curve E over K;
we want to find its K-rational points (&,t) with & € Q.

There is a variant of Chabauty’s method that applies in this situation.
In our case, its prerequisites are satisfied.
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We want to find all points (&,7) € E(K) with & € Q.
Since E is an elliptic curve,
the set E(K) is a finitely generated abelian group.

The condition is that rank E(K) < [K: Q] = 4.

Using standard algorithms, we can determine (generators of) E(K)
and find that rank E(K) = 2.

We can then run an implementation of the method,

which finally shows that

ce {1 o0

This finishes the proof.
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Further Results

We have applied this approach to quadruples from the family
(t— 1,t+1,4t,4t(4t2—1))

(where £t #0, 1,%, %, le).

In this way, we could show that the regular extension is the only one for

2 3 4 2 3 5 4
t =2 (see above), 3, 3, 5, 4, 3 T 3 O 3, I RE
(For t = g there is a second “illegal” extension besides 0

2 2
given by . which is already present. Note that (%) + 1= (?) )
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Magma Code

P<x> := PolynomialRing(Rationals());

C := HyperellipticCurve (5% (x~2+119)*(x~2+39)*(x~2+14));

Sel, mSel := TwoCoverDescent(C);
A<th> := Domain(mSel);

assert Sel eq {mSel(x0 - th) : x0 in {1,-1}};

K := AbsoluteField(ext<Rationals() | x~2
wl1l9 := Roots(x~2 + 119, K)[1,1]; w39 :=
PK<X> := PolynomialRing(K) ;

+ 119, x~2 + 39>);
Roots(x~2 + 39, K)[1,1];

E := HyperellipticCurve(15*(1-w119)*(1-w39)*(X~2+14)*(X-w119)*(X-w39));
EE, EtoEE := EllipticCurve(E, E![1, 15*%(1-w119)*(1-w39)]);

assert Invariants(TorsionSubgroup(EE)) eq [2];

assert #Invariants(TwoSelmerGroup(EE)) eq 3;

bas := Saturation(ReducedBasis([EtoEE(pt)
assert #bas eq 3;
MW := AbelianGroup([2,0,0]);

: pt in Points(E, 10079/2879)1), 7);

MWmap := map<MW -> EE | m :-> &+[s[il*bas[i] : i in [1..3]] where s := Eltseq(m)>;

P1 := ProjectiveSpace(Rationals(), 1);

pi := Expand(Inverse(EtoEE)*map<E -> P1 |
chab := Chabauty(MWmap, pi : IndexBound
{pi(MWmap(pt)) : pt in chab}l};

(1 : 1), (10079/2879 : 1) }

[E.1, E.3]>);

1= 2%3%5x%7) ;



