THE VALUATION OF THE DISCRIMINANT OF A HYPERSURFACE
BJORN POONEN AND MICHAEL STOLL

ABSTRACT. Let R be a discrete valuation ring, with valuation v: R — Z>o U {o0} and
residue field k. Let H be a hypersurface Proj(R[zo,...,z,]/(f)). Let Hy be the special
fiber, and let (Hy)sing be its singular subscheme. Let A(f) be the discriminant of f. We
use Zariski’s main theorem and degeneration arguments to prove that v(A(f)) =1 if and
only if H is regular and (Hp)sing consists of a nondegenerate double point over k. We also
give lower bounds on v(A(f)) when Hy has multiple singularities or a positive-dimensional
singularity.

1. INTRODUCTION

Throughout this paper, R denotes a discrete valuation ring, with valuation v: R —
Z>o U {00}, maximal ideal m = (), and residue field k& (except in a few places where k
denotes an arbitrary field).

Let E C P% be defined by a Weierstrass equation, with generic fiber an elliptic curve. If the
discriminant of the equation has valuation 1, then FE is regular and the singular locus of its
special fiber consists of a node; this follows from Tate’s algorithm |Tat75], for example; see also
[Si194, Lemma IV.9.5(a)|]. Our first theorem (Theorem 1.1) generalizes this to hypersurfaces
of arbitrary degree and dimension (terminology will be explained later):

Theorem 1.1. Let f € R[zy,...,x,] be a homogeneous polynomial. Let A(f) be its discrim-
inant. Let H = Proj(R[xo, ..., 2z,)|/{f)). Then the following are equivalent:
(i) v(A(f)) =1;

ii) H s reqular, and (Hy)sing consists of a single nondegenerate double point in H (k).
g
For hypersurfaces with more than one singularity, we have the following:

Theorem 1.2. Let f and H be as in Theorem 1.1.

(a) If (Hy)sing consists of v closed points, v(A(f)) > r (Theorem 7.1).
(b) We have v(A(f)) > dim(Hy)sing + 1 (Theorem 11.5(a)).
(c) If dim(Hy)sing > 1, then v(A(f)) > [(deg f — 1)/2] (Theorem 11.5(b)).

To prove (c), we show that Hj, is a limit of hypersurfaces whose singular subscheme is finite
but with many points, and we combine this and an argument using restriction of scalars in
the equal characteristic case and the Greenberg functor in the mixed characteristic case.
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The paper is organized as follows. Section 2 defines the discriminant A of a projective
hypersurface f = 0 and proves some basic properties of it. Section 3 describes quadratic
forms over a discrete valuation ring, and computes their discriminants. Section 4 defines
nondegenerate and ordinary double points. Section 5 adapts the proof of the Bertini
smoothness theorem to prove that the singular locus of the general singular hypersurface over
a field consists of a single ordinary double point. Our proofs require some ingredients from
commutative algebra, provided in Section 6. Section 7 proves Theorem 1.2(a) = Theorem 7.1.
Section 8 analyzes the minimum valuation of values of a multivariable polynomial on a residue
disk, and Section 9 applies this analysis to A, viewed as a polynomial in the coefficients of f.
Finally, Section 10 proves Theorem 1.1, and Section 11 proves the rest of Theorem 1.2.

2. THE DISCRIMINANT

Fix n > 1 and d > 2. Let A be a ring. Let Alzg,...,z,]q be the set of homogeneous
polynomials of degree d. Let f € A[xo,...,x,]a. Let H = Hf = Proj(k[zo,...,z,]/(f)) C
P". Define the relative singular subscheme Hy,, as the closed subscheme of P? defined by
f=0f/0xy=---=0f/0x, =0. Its complement Hgpootn := H — Hgng is the locus of points
at which H — Spec A is smooth of relative dimension n — 1.

Let ! range over the N := ("Zd) monomials in Z[x, ..., x,]4, and let a; be independent
indeterminates in Z[{a;}], so F := >, a;z' is the generic degree d homogeneous polynomial
in xg,...,2,. Then the affine space A" := SpecZ[{a;}] may be viewed as a moduli space
for hypersurfaces (one could also remove the origin, or projectivize as in [Sail2, §2.4]).
Specializing the previous paragraph to f = F' and A = Z[{a;}] gives the universal hypersurface
H C P* x AN and its relative singular subscheme Hsing, relative to the second projection
¢ H — AV,

The first projection makes Hgng — P a rank N —n — 1 vector bundle since the equations
F =0F/0xg = --- = 0F/0x, = 0 are linear in the a; and independent above each point of
P except for the Euler relation d - F' = ) z;(0F/0x;). Thus Hgng is integral and smooth of
relative dimension N — 1 over Z. Since ¢ is proper, the image D := ¢(Hgng) C AV is a closed
integral subscheme; D is the locus parametrizing singular hypersurfaces. In fact, D C A" is
a divisor and the restriction Hgng — D of ¢ is birational (see Proposition 5.2 below); this is a
Bertini-type statement saying essentially that among hypersurfaces singular at a point, most
have singular subscheme consisting of just that point. Thus D C A¥ is the zero locus of some
polynomial A € Z[{a;}] determined up to a unit, i.e., up to sign; A is called the discriminant.
(See |GKZ08,Dem12,Sail2| for other descriptions of A.) By definition, if the a; are specialized
to elements of a field k, the resulting hypersurface in P} is singular (not smooth of dimension
n — 1) if and only if A specializes to 0 in k. It is a classical fact that the polynomial A is
homogeneous of degree (n + 1)(d — 1)™ in the N variables [EH16, Proposition 7.4].

3. QUADRATIC FORMS

Proposition 3.1. Suppose that d = 2. Let Det = det(9°F/dx;0x;) € Z[{a;}]. If n is odd,
then A = £ Det. If n is even, then A = £ Det /2.

Proof. This is well known, except perhaps the power of 2, which can be determined by

evaluating Det for a quadratic form defining a smooth quadric over Z, since A = +1 for such

a form. Use zoxy + - -+ + T,_12, if n is odd, and xoz; + -+ + 97,1 + 22 if nis even. O
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Let R be a discrete valuation ring or field. A quadratic space over R is a pair (M, q) where
M is a finite-rank free R-module (since R is a PID, we do not to say the word projective),
and ¢: M — R is such that if e1,... e, is a basis of M, then g(zie; + -+ + x,e,) is given
by a polynomial in R[z1,...,x,]s. A symmetric bilinear space over R is a pair (M, ) where
M is as before and f: M x M — R is a symmetric R-bilinear pairing. Given ¢, define
Bx,y) == q(z +y) — q(z) — q(y); in this way, every quadratic space has an associated
symmetric bilinear space.

Proposition 3.2. Let k be an algebraically closed field. A general quadratic form q €

klxi,..., 2,2 is equivalent (via a linear change of variables) to
I S if char k # 2;
T1To + X3x4 + -+ + Tp_1Tp, if char k = 2 and n is even;

T1To + T3Ty + ++ + Tp_otp_1 + 2, if chark = 2 and n is odd.

(General means that there is a dense open subset U of the coefficient space such that the
statement holds for q corresponding to a point of U.)

Proof. The associated symmetric bilinear space may be identified with the matrix M :=

First suppose that chark # 2. For the general ¢, the symmetric matrix M has rank n
(since det M # 0 defines a nonempty open subset), and after a change of variables M is
diagonal and q is x5 + - - + 2.

Next suppose that char k = 2. Then M is symplectic, so rank M is even. If n is even, then
for the general ¢, the matrix M is of rank n, and after a change of variable to put M in
standard form, ¢ is z1x5 + - - - + x,_12,. Now suppose that n is odd. For the general ¢, the
matrix M is of rank n — 1. After a change of variables, q is x 29 + -+ + Zp_o2,_1 + £?, for
some linear form ¢. By adding a multiple of x; to x5, we may assume that x; does not appear

in ¢. Similarly, we can eliminate xo,...,x,_; from ¢, so ¢ is a multiple of z,,. For the general
q, we may assume that ¢ is a nonzero multiple of x,,. By scaling, we may assume that ¢ = x,,.
Now q = 21Ty + X3T4 + *+* Tp_oTpy_1 + T2. d

Proposition 3.3. Let R be a discrete valuation ring.

(a) Each symmetric bilinear space over R is an orthogonal direct sum of spaces of rank 1
or 2.
(b) Every quadratic form f(xg,...,z,) over R is equivalent to one of the form
I J
> (ain? + by + cyl) + Y di2]
i=1 j=1
with 2I +J =n+1 and a;, b;,¢;,d; € R.
c) Let e as in . Let H = Proj(R|zg, ..., x, . L %S smooth, then v = 0.
L b m (b). Let H= Proj(R If Hy, i h, th A 0
Otherwise, v(A(f)) > dim (Hy,)sing + 1.

Proof.

(a) (We paraphrase an argument of Jean-Pierre Tignol adapted from the proof of [Ver19,
Proposition 4.10].) Let (M, /) be a nonzero symmetric bilinear space. We may assume
that 5 # 0. By dividing § by a nonzero element of R, we may assume that S(M, M) ¢ m.

We claim that there exists a free R-module N of rank 1 or 2 with a homomorphism N — M
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such that 5 induces a regular pairing on N (i.e., the composition N — M ZMY 5 NY
is an isomorphism); then N — M is injective, and M is the orthogonal direct sum of N
and N+ :=ker(M — NV), so we are done by induction on rank(M).
If there exists e € M with (e, e) € R* a unit, then let N = Re. Otherwise, choose
¢,d € M with B(c,d) € R* and let N = Re @ Rd; the induced pairing is regular since its
0 Bled)

c,d) 0 ‘
(b) Decomposing a quadratic space is equivalent to decomposing the associated symmetric

bilinear space, even if char k = 2.
(c¢) The case where Hy is smooth is true by the definition of discriminant, so suppose that

(H k)sing 7é @

First suppose char k # 2. Then f is equivalent to > _ a;z? for some a; € R, and

dim (Hp)sing = #{i : v(a;) 2 1} =1 <w(Det(f)) = 1 = v(A(f)) = 1,
by Proposition 3.1.

Now suppose chark = 2. Let Iy = #{i : v(b;) = 0} and I} = #{i : v(b;) > 1}. Let
Jo=#{j 1 v(d;) =0} and J; = #{j : v(d;) > 1}. If nis odd, let J' := J. If n is even, let
J':=J —1. In both cases J' > 0 (if n is even, then J is odd). The common zero locus in
P} of the polynomials 0f/0x; and 0 f /0y, for i € I is of dimension n — 21y, and including
the condition f = 0 drops the dimension by 1 more if Jy > 1. Thus dim (Hy, )sing < n— 21,
with strict inequality if Jy > 1. On the other hand, v(4a;c; — b?) > 2 whenever v(b;) > 1,
and v(2d;) > v(2) + v(d;) for all j, so Proposition 3.1 implies

v(A(f)) > 2L+ Jv(2) + 4
= (n — 2[0) + J/’U(Q) — JO +1
Z dim (Hk)sing + J/U(Q) - JO + 1.

If Jo > 1, then the inequality above is strict and J'v(2) > (Jo — Dv(2) > Jy — 1,
so v(A(f)) > dim (Hy)sing + 1. If Jo = 0, then instead use J'v(2) > 0 to again get

matrix is invertible, being congruent mod 7 to ( B(

4. NONDEGENERATE DOUBLE POINTS AND ORDINARY DOUBLE POINTS

Definition 4.1 (|[SGA 71, VL.6]). Let k be a field. Let X be a finite-type k-scheme. A k-point
@ € X is called a nondegenerate double point (or nondegenerate quadratic point) if there
exist n > 1 and f € k[x1,...,x,] such that there is an isomorphism of complete k-algebras

Ox.q =~ kl[x1,...,2,]/(f) and an equality of ideals (0f/0x1,...,0f/0x,) = (x1,...,Ty).

Remark 4.2. The ideal equality is equivalent to saying that () is an isolated reduced point of
the singular subscheme Xgp,.

Remark 4.3. If X is an affine hypersurface in A} given by the equation h(z1,...,z,) = 0,

then a singular point () on X is a nondegenerate double point if and only if det ( 83228};]) does

not vanish at Q.
Remark 4.4. Suppose that n and f as in Definition 4.1 exist. Then f can be taken to be a
quadratic form [SGA 7, VL.6.1|. If, moreover, k is algebraically closed, then

e if char k # 2, then one can take f := 2% + ... + x2;
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e if char k = 2, then n must be even and one can take f := z12x9 + 324+ -+ - + Tp_12p-

Definition 4.5 (|[SGA 7, Definition VI.6.6]). There is also the notion of ordinary double
point, which is the same except when char k = 2 and the local dimension n of X at @ is
odd. In that case, nondegeneracy is impossible so one calls a singularity an ordinary double
point if and only if it is analytically equivalent over an algebraic closure to that defined by
T1To + -+ TpoTy 1 + T2

5. THE GENERAL SINGULAR LOCUS

Proposition 5.1. Fixn > 1 and d > 2 and an algebraically closed field k. For general
[ € klxo, ..., xn]q with Hy singular (that is, f corresponding to a general point of D(k)), the
hypersurface Hy has a unique singularity and it is an ordinary double point.

Proof. Case d = 2. Let M = (9*f/0x;0x;) € M, 11(k).

First suppose that chark # 2. For the general f, the symmetric matrix M has rank n
(rank > n is an open condition, and rank n + 1 would mean that H is smooth), and after
a change of variable it is diagonal and f is 27 + - - + 22, and (Hy)sng is the single reduced
point (1:0:---:0).

Next suppose that char k = 2. Then M is symplectic, so rank M is even. If n is even, then
for the general f, the matrix M is of rank n, and after a change of variable to put M in
standard form, fis z122+- -+ 2,12y, and (H)sing is the single reduced point (1:0:---: 0).
If n is odd, then for the general f, the matrix M is of rank n — 1, and after a change of
variable, f is z129 + - + Tp_9%n_1 + 22, and (H)sng is a nonreduced degree 2 scheme
supported at (1:0:---:0).

In all these cases, the unique point of (H)sng is an ordinary double point of Hy (and it is
even nondegenerate, except when char k = 2 and n is odd).

Case d > 3. Let (P™ x P™)" be the locus of pairs of points (P, Q) € P" x P" with P # Q.
Let I be the locus of (f, P,Q) € AN x (P" x P")’ such that H, is singular at both P and
Q. The fibers of I — (P™ x P")" are linear subspaces of codimension 2n + 2 in AV since
we may assume P = (1 : 0 : ---:0)and @ = (0 : --- : 0 : 1), in which case Hy is
singular at P and @ if and only if the coefficients of z3~'2; and 2% 'a; for i = 0,...,n all
vanish. Thus dim I = (N — (2n + 2)) + dim(P" x P*)) = N — 2, so I does not dominate the
(N — 1)-dimensional locus D C AN corresponding to f with H; singular.

Thus for general f with H singular, H; has only one singularity, which we may assume

is P:=(1:0:---:0). Proposition 3.2 applied to the degree 2 Taylor polynomial at P
of a dehomogenization of f shows that for general f, the singularity is an ordinary double
point. O

We use subscripts to denote base change: e.g., Dj := D Xgpecz Spec A and Hging 4 =
Hing Xspecz Spec A = (H 4)sing for any ring A. For an irreducible scheme X, let x(X) be
the function field of the integral scheme X,.q. Recall that ¢: H — P* x AN — AV was the
second projection. Restricting ¢ yields a proper surjective morphism ¢: Hgng — D.

Proposition 5.2. The morphism ¢: Hgng — D s birational. The same holds after base
change to any integral domain A, except when char A = 2 and n is odd, in which case
K(Hsing,4) is purely inseparable of degree 2 over k(Da).
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Proof. We may assume that A is a field k, and that k is algebraically closed. The result
follows from [Sail2, Proposition 2.12|, except when char k = 2 and n is odd. We will reprove
those cases and prove the missing cases.

For a general f € D(k), Proposition 5.1 implies that H; has an ordinary double point,
50 (H)sing 1s a finite connected scheme of degree 1 or 2, the latter occurring exactly when
char k = 2 and n is odd. Since (Hf)sing is the fiber of ¢ above f € D(k), the general fiber
of ¢ is described as in the previous sentence. The scheme Hging  is smooth over k, hence
irreducible, and its image under ¢ is topologically Dy, so Dy is irreducible too. The result
follows from the previous two sentences. O

Let Dgnite := {d € D : dimp~!(d) = 0}; this is the subset of points such that the
corresponding hypersurface has finitely many singular points. Let Dy := {d € D : p~!(d) —
{d} is an isomorphism}; this is the subset of points such that the singular locus of the
corresponding hypersurface is a single reduced point.

Lemma 5.3.

(a) The subsets Dy C Dgnite C D are open in D. Identify them with open subschemes of D.

(b) ¢ (Dgnite) = Danite 15 the normalization of Dgpnite. The same holds after base change to
any normal noetherian domain A, except when char A = 2 and n is odd. In the exceptional
case, ™ (Dpnite,a) is the normalization of (Dgnite.a)rea in the purely inseparable extension
K(Hsing,a) of its function field.

(c) ¢ Y(Dy) — Dy is an isomorphism of schemes over Z.

Proof.

(a) By [EGA 1V, Corollaire 13.1.5|, Dgpite is open in D. Openness of D; will follow from
the proof of (c).

(b) By Proposition 5.2, ¢! (Dgnite) — Dénite is birational. It is also quasi-finite and proper,
hence finite by Zariski’s main theorem [EGA III;, Corollaire 4.4.11]. Moreover, Hgng is
smooth over Z, hence normal. The previous three sentences imply that ¢! (Dguite) —
Dsinite is the normalization of Dgpie. The same argument works after base change to
any normal noetherian domain, except that in the exceptional case, the function field
extension in Proposition 5.2 is purely inseparable of degree 2 instead of 1.

(c) Apply the following to ¢! (Dgnite) — Dinite: If ¥: X — Y is a scheme-theoretically-
surjective finite morphism of noetherian schemes and y € Y is such that ¢~!(y) ~ {y},
then there exists an open neighborhood U C Y of y such that ¢y~}(U) — U is an
isomorphism. To prove this statement, we may assume that Y = Spec A and X = Spec B,
where A — B is injective; then U may be taken as the complement of the support of the
A-module B/A. O

Remark 5.4. In Corollary 10.2, we will identify D; with the smooth locus of D.

6. COMMUTATIVE ALGEBRA

A ring extension R' O R is called a weakly unramified extension if R’ too is a discrete
valuation ring and 7 is also a uniformizer of R'.

Lemma 6.1. Let R be a discrete valuation ring, with residue field k. For any field extension
k' Dk, there exists a weakly unramified extension R' O R with residue field k' (i.e., isomorphic

to k' as k-algebra).
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Proof. 1If k'/k is generated by one algebraic element, say a zero of a monic irreducible
polynomial f € k[z], then we may take R’ := R[z]/(f) for any monic f € R[z] reducing
to f [Ser79, 1.§6, Proposition 15]. If k’/k is generated by one transcendental element t,
then we may take the localization R’ := R|[t].r of the (regular) polynomial ring R[t] at the
codimension 1 prime (7); the residue field of R’ is Frac(R|[t]/(m)) = k(t). The general case
follows from Zorn’s lemma, using direct limits. U

Lemma 6.2. Let A be a noetherian local ring. Let A be its completion. Let B be the integral
closure of Aveq (in its fraction field). Then

#{minimal primes of A} > #{maximal ideals of B}.
Proof. Combine [SP, Tag 0C24] and [SP, Tag 0C28(1)]. O
The following is well known; see [SP, Tag 0BRA| for a generalization.

Lemma 6.3. Let B a normal domain. Let L = FracB. Let L'/L be a purely insepara-
ble extension. Let B' be the integral closure of B in B'. Then Spec B' — SpecB is a
homeomorphism. In particular, B and B’ have the same number of mazimal ideals.

Proof. We may assume that p := char L > 0. The map Spec B — Spec B’ sending p to
{z € L' : 2" € p for some e > 0} is an inverse to Spec B’ — Spec B. Thus Spec B’ — Spec B
is a continuous bijection between quasi-compact spaces, so it is a homeomorphism. The final
sentence follows since maximal ideals correspond to closed points. OJ

Lemma 6.4. Let m > 1. Suppose that char(k) = char(R). Then R/m™ ~ k[t]/(t™). If R is
complete, then R ~ k[t].

Proof. The ring R/m™ is (trivially) a complete local ring as defined in [Coh46]. We have
char(k) = char(R/m™), so by [Coh46, Thm. 9], & embeds into R/m™. Then the surjective
homomorphism k[t] — R/m™ mapping ¢t to 7 has kernel (™). Taking inverse limits gives
R ~ k[t] if R is complete. O

7. HYPERSURFACES WITH SEVERAL SINGULARITIES
Let 0 # f € R[xo,...,x,]q and set H = Proj(R|xo, ..., x|/ {f)).
Theorem 7.1. If the space (Hy)sing consists of v closed points, then v(A(f)) > r.

Proof. The inequality is trivial if » = 0, so assume r > 0.

Let P € Dg(k) correspond to Hy, so ¢ '(P) = (Hy)smg. Since R is regular, the local
rings Oun p and @kg,}; are regular too, and hence factorial [AB59, Theorem 5|. Since
dim(Hy)sing = 0, we have P € Dsgpite (k) (notation as in Section 5). Let L = k(Dg) and
L' = k(Hsing.r). By Lemma 5.3, Dipite g is open in Dg, and ¢~ (Danite.r) — (Dfinite.R )red 18
the normalization of (Dfpite,r)red in the purely inseparable extension L'/L.

Localizing at P on the target, we obtain a morphism Spec B’ — Spec A,.q, Where A :=
ODgyssen,P = Opp,p = Oy p/(A), and B’ is the integral closure of Ayeq in L'. Define A and

B as in Lemma 6.2, so A~ 5A§,P/(A>, and B is the integral closure of A,q in L. The
maximal ideals of B’ correspond to the points of ¢~ !(Dgpie r) above P, which are the r

points of (Hy)sing. By Lemma 6.3, B too has r maximal ideals. By Lemma 6.2, A has at least
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r minimal primes. Their inverse images in 7 ax p correspond to prime factors of A in this
factorial ring, so A = p;y - - - p,q, for some py,...,p., q € ﬁAJI\{7P with each p; vanishing at P.
Evaluation at the coefficient tuple of f defines a ring homomorphism & AN p = R sending A
to A(f) and sending each p; into the maximal ideal of R, so v(A(f)) > 1+---+14+0=r. O

8. VALUATIONS OF POLYNOMIAL VALUES

Lemma 8.1. Let p: AL — A7 be a projection for some { > n. Let V. C A% be a closed
subscheme. Then {a € A : p~'(a) C V'} is closed in A7,

Proof. Since p is flat, p is open, so p(A} — V') is open; its complement is closed. [l

Definition 8.2. Let H = Spec(k[zy,...,x,]/(f)) C A} be a hypersurface and let a € k™.
Let m, be the maximal ideal of k[x1, ..., z,] corresponding to a. Then multy(a) denotes the
multiplicity of @ as a point on H, i.e.,

multy(a) = max{m € Zso : f € m]'}.

For b € R, let b be its image in k. Likewise, given b € R", define b € k. Fix a nonzero
polynomial § € R[zy,...,z,]. (Eventually 6 will be A.) From now on, we assume that k is
infinite.

Definition 8.3. Define vming: k" — Zso U {oco} by
vming(a) = min{v(5(b)) : b € R" with b = a}.

Lemma 8.4. The integer min{v(d(b)) : b € R"} equals the minimum of the valuations of the
coefficients of 6.

Proof. By dividing by a power of m, we may assume that some coefficient is a unit. The
reduction ¢ € klxy, ..., x,] is not the zero polynomial, and & is infinite, so d is nonvanishing at
some point in k™. Lift the point to b € R™. Then v(6(b)) = 0. Thus both minima equal 0. O

Corollary 8.5. For b € R", the integer vining(b) equals the minimum of the valuations of
the coefficients of 6(b+ ).

Proof. Apply Lemma 8.4 to §(b + 7). O

Proposition 8.6. The function viming on A" (k) is upper-semicontinuous with respect to the
Zariski topology.

Proof. We need to show that for m € Zs, the set {a € k"™ : vming(a) > m} is W (k) for some
closed subscheme W C A}. Let R,, = R/m™.

Case 1: R s of equal characteristic. By Lemma 6.4, R, is a k-algebra of vector space
dimension m. Applying restriction of scalars Resg,, /x to 0: A, — A}%m produces a morphism
A" — A} let V be the fiber above 0. The reduction map R,," — k™ arises from a morphism
p: A" — A} that is a projection as in Lemma 8.1. Let W be a closed subscheme whose
underlying space is the closed subset of Lemma 8.1. Then for a € k™, the following are
equivalent (note that p~!(a) is an affine space):

vming(a) > m, p~a)(k) C ng), pt(a) CV, a e Wi(k).



Case 2: R is of mized characteristic with perfect residue field k. In the previous argument,
replace Resg,, /i, with the Greenberg functor Gr™ from R,,-schemes to k-schemes; see [Gre61;
Gre63; NS08, §2.2; BGA18].

Case 3: R is of mized characteristic with imperfect residue field k. Let k' be the perfect
closure of k. Use Lemma 6.1 to find a weakly unramified extension R’ D R with residue field
K'. Let W' = Spec(K'[x1, ..., x,|/{f1,..., fr)) be the closed subscheme for R’ in Case 2. By
replacing each f; by f?" for some n, we may assume that f; € k[zy, ..., x,], without changing
W'(K"). Let W = Spec(k[x1,...,z,]/{f1,-.., fr)). By Corollary 8.5, vming(a) is the same
whether we work with R or R, so {a € k" : vming(a) > m} = k"N W/'(K') = W (k). O

Let V' = Spec(R[z1, ..., x,]/(d)). From now on, assume that some coefficient of ¢ is a unit,
so that Vj, is a hypersurface in A}.

Lemma 8.7. Let a € k". Then vming(a) < multy, (a).

Proof. Without loss of generality, a = 0. Let m = multy; (0). Some degree m monomial in
d(z) has a unit coefficient, so some degree m monomial in é(7wx) has valuation m. On the
other hand, vming(0) is the minimum of the valuations of é(7x), so it is at most m. O

Proposition 8.8. Let a € k™. Then vming(a) > 2 if and only if a € (Vi)sing and a is in the
image of the reduction map V(R/m?) — V (k).

Proof. By shifting, we may assume a = 0. Write 6(z) =r + ., s;x; + .... The following
are equivalent:
e vming(0) > 2;
e the minimum of the valuations of the coefficients of 0(7x) is at least 2
(see Corollary 8.5);
e v(r) > 2 and v(s;) > 1 for all 1.

The last conditions imply that 0 € V(R/m?) and 0 € (Vi )sing. Conversely, if 0 € (Vi )sing, then
v(r) > 1 and v(s;) > 1 for all 4, and if moreover 0 is the image of some by € V(R/m?), then
we may lift b to b € (7R)"™ with v(6(b)) > 2, which is equivalent to v(r) > 2 since v(s;) > 1
for all i. O

9. MINIMAL VALUATIONS OF THE DISCRIMINANT

In this section, we assume that k is algebraically closed. Recall the definitions of A and D
from Section 2. We apply the results of the previous section with 6 := A. For a € k¥, let
fa € k[zo,...,2s]q be the polynomial with coefficients given by a, and let H, = Hy, C Py.

By Theorem 7.1, if (H,)sing consists of r isolated points, then vmina(a) > r.

Lemma 9.1. Fizx b € RV.

(a) Let V. C AY be a variety such that b € V(k). If {a € V(k) : vmina(a) > m} is Zariski
dense in V', then v(A(b)) > m.

(b) If there exists a € kY such that (Hy)sing is finite and contains v distinct points Py, ..., P,
that are also singularities of Hy, then v(A(b)) > r.

Proof.

(a) By Proposition 8.6, {a € V (k) : vinina(a) > m} = V(k) 2 b, so v(A(b)) > m.
9



(b) If b = a, then v(A(b)) > vmina(a) > r by Theorem 7.1. If b # a, let V. C AY be the
line joining b and a. Since the condition that a given point P € P" is a singular point
of a hypersurface H is linear in the coefficients of the polynomial defining H, all points
¢ € V(k) will have the property that {Py,..., P.} C (H.)sing-

By Lemma 5.3(a), “dim(H,)sing > 1”7 is a closed condition, so for all but finitely many
c € V(k), we have dim(H,)sing = 0, s0 (H,)sing is a finite set containing P, ..., P
Theorem 7.1 implies that vmina(¢) > r for all these points. The claim now follows from
part (a). O

Lemma 9.2. The reduction map D(R) — D(k) is surjective.

Proof. Let a € D(k); then H, has a singular point P € P"(k). We may assume that
P=(1:0:---:0). The condition that H, is singular at P is given by the vanishing of
certain coordinates. Lift a € kY to some b € RN so that these coordinates remain zero. [

Corollary 9.3. Let a € k™. Then vmina(a) > 2 if and only if a € (Di)sing-

Proof. By Lemma 9.2, every a € D(k) is in the image of D(R/m?). Apply Proposition 8.8 to
§=A. O

We now prove a variant of Theorem 7.1, in which the r singularities need not be isolated,
but they must be linearly independent.

Lemma 9.4. Let P, ..., P, € P"(k) be points that span a P"~' and let ag € kY be such that
H,, is singular at Py, ..., P.. Then vmina(ag) > r and multp, (ag) > 7.

Proof. We can assume the P; to be coordinate points. Since A vanishes on a € k" when H,
is singular in P;, each term in A must be divisible by one of the coordinates that describe
the vanishing of a and its first partial derivatives at P;. When the degree d is at least 3, then
these sets of coordinates are disjoint in pairs, and so

A € {(a(Py),Va(Py))---{a(P,),Va(P,)).

This implies that multp, (ap) > 7 and also that vmina(ag) > 7.

The result is still valid when d = 2. In this case, the associated reduced subscheme of
(Hap )sing 18 a linear space, so the P"~! spanned by Py, ..., P, is contained in (Hg,)sing- Then
by Proposition 3.3(c), viina(ag) > r. By Lemma 8.7, multp, (ap) > vmina(ag) > r. d

Lemma 9.4 generalizes Proposition 3.3(c) to forms of arbitrary degree.
For a subset X C P"(k), let Span X be the smallest linear subspace of P" containing X. If
X = (), use the conventions Span X ~ P~! = () and dim Span X = —1.

Corollary 9.5. Let b € RY. Then v(A(b)) > dim Span((Hj)sing(k)) + 1.

Proof. Let r = dim Span((Hj)sing(k)) + 1. Choose Py, ..., P, € (Hp)sing(k) that span a P"~1.
Now apply Lemma 9.4. O

We will obtain better lower bounds in Section 11.

Corollary 9.6. Let b € RN such that v(A(b)) = 1. Then (Hj)sing consists of a single point.

Proof. Since A(b) = A(b) = 0, Hy has at least one singularity. If (Hj)sne contained at least

two points, then v(A(b)) > vmina(b) > 2 by Lemma 9.4, contradicting the assumption. [

See Corollary 10.1 below for a more precise statement.
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10. WHEN THE DISCRIMINANT HAS VALUATION 1
We now characterize when v(A(f)) = 1. Recall the statement from the introduction:

Theorem 1.1. Let f € R[zy,...,x,] be a homogeneous polynomial. Let A(f) be its discrim-
inant. Let H = Proj(R|xo,...,2,|/{f)). Then the following are equivalent:
(i) v(A(f) =1,

(i) H is regular, and (Hy)sing consists of a single nondegenerate double point in H (k).

Proof. Case 1: chark =2 and n is odd. By [Sail2, Theorem 4.2|, if the sign of A is chosen
appropriately, then A = A% + 4B for some polynomials A, B, so v(A(f)) # 1. On the other
hand, by Remark 4.4, Hj cannot have a nondegenerate double point. Thus (i) and (ii) both
fail.

Case 2: chark # 2 or n is even. The surjection R[{a;}] — R sending the ¢; to the
corresponding coefficients o of f defines an R-morphism ¢: Spec R — AY. Then H — Spec R
is the pullback by ¢ of Hr — AR. Let P = 1(Speck) € AV (k).

(i)=(ii): Suppose that v(A(f)) = 1. By Corollary 9.6, (Hj)sing consists of a single point.
The surjection R[{a;}] - R maps A to A(f), so the a; — a; and A are local parameters
for AN at P. Thus Dr = Spec(R[{a;}]/(A)) is regular at P, so Dg is normal at P. Then
Lemma 5.3(b) implies that the fiber (Hy)sing = ¢~ '(P) consists of a single reduced k-point Q.
By Remark 4.2, () is a nondegenerate double point of Hj.

Choose an A’ C P, containing Q); let f, be the corresponding dehomogenization of f. The
point (Hy)sing is cut out in A%, by fo and its partial derivatives; these n + 1 functions are
therefore local parameters for P at @, so the local ring O g = Opr, o/(fo) is regular too.
On the other hand, H — {@} is smooth over Spec R. Thus H is regular everywhere.

(ii)=(i): Now suppose that H is regular and (Hj)smng consists of a nondegenerate double
point Q € H(k). Let fy be as above, so fy and its partial derivatives lie in the maximal
ideal mpn o C Opn . Since @ is a nondegenerate double point, the partial derivatives form
a basis for mpn ¢/ mﬂ%g’Q, so they are independent in mpn o/ mIQP% o+ On the other hand, the
image of fy in mpn o /ml%)?2 © Is nonzero (since O q = Opn o/(fo) is regular) and in fact
independent of the partial derivatives (since it maps to 0 in mps o /m]%Z7Q). Thus fp and its
partial derivatives form a basis of mpr g /m%% o> S0 by Nakayama’s lemma, they generate
mpn @, SO Hging ~ Speck.

Pulling back (Hg)sing = Dr — A by ¢ gives Hgng — Spec(R/{A(f))) — Spec R. Since
(Hp)sing 1s a single reduced k-point, P € D;(k). By Lemma 5.3(a), Dy g is open in Dg, so
Spec(R/(A(f))) is contained in Dy g. By Lemma 5.3(c), (Hg)sing = Dg is an isomorphism
above Dy g, s0 Hgng >~ Spec(R/(A(f))). By the previous paragraph, Hgn, =~ Speck, so
W(A(f) = 1. 0

Corollary 10.1. Assume that k is algebraically closed. For a € k™ (and for every choice
of R with residue field k), the following statements are equivalent.

(a) vmina(a) = 1.

(b) a is a smooth point on Dy.

(c) (Ha)sing consists of a single nondegenerate double point.

(d) a € Di(k).

Proof.
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(a)<(b): The following are equivalent: vmina(a) > 0; A(a) = 0 in k; a € D(k). By
Corollary 9.3, viina (a) > 2 if and only if a € Dge(k).

(a)=(c): Use Theorem 1.1.

(c)=(a): Let a € kY be such that (H,)sng consists of a single nondegenerate double
point Q. Lift a to b € RY. Then H, is regular at every point of its special fiber except
possibly . By adding a multiple of 7 to b if necessary, we may assume that H, is regular
also at (). The regular locus of Hj is open and contains the special fiber, so H,, is regular.
Theorem 1.1 applied to Hp, implies that v(A(b)) = 1. On the other hand, if ¥’ is any lift of a,
then v(A(V')) > 1 since H, is singular. Thus vmina(a) = 1.

(c)<(d): Use Remark 4.2 and the definition of D;. O

Corollary 10.2. The subscheme Dy is the smooth locus of D — SpecZ.

Proof. This can be checked on geometric points, and every field k is the residue field of some
discrete valuation ring R. Apply Corollary 10.1(b)<(d). O

11. HYPERSURFACES WITH A POSITIVE-DIMENSIONAL SINGULARITY

In Lemma 11.1, Corollary 11.3, and Lemma 11.4, we assume that n > 2, » > 1, and
Py, ..., P, are distinct points in P"(k). Let & = Opp. For each P € P"(k), let mp C & be
the ideal sheaf of P.

Lemma 11.1. Ifd > 2r — 1, then 0(d) — [[,(€/m%,)(d) induces a surjection on global
sections.

Proof. Surjectivity of a linear map is unchanged by field extension, so we may assume that k
is infinite. Then we can choose, for each 1 < i < r, a linear form ¢; vanishing at P; but not
at P; for any j # i. We can also choose a homogeneous polynomial h of degree d— (2r —1) not
vanishing at any P;. For each s, as g ranges over linear forms, the image of g in (€//m%,)(1)
ranges over all its sections, so the images of gh]];_, 3 in J[;(0/m3,)(d) exhaust the sth
factor of [,(€//m%,)(d). O

Remark 11.2. The result of Lemma 11.1 is sharp when the points P, ..., P, are on a line: in
this case, no d < 2r — 1 will have the stated property.

Recall the definitions of N and H; from Section 2. Let Z C A" be the subvariety whose
points correspond to f such that (Hj)gne contains Py,. .., P,.

Corollary 11.3. If d > 2r — 1, then Z is an affine space of dimension N —r(n + 1).
Proof. The set Z(k) is the kernel of the surjection in Lemma 11.1. O

Lemma 11.4. Assume that k is algebraically closed. If r < (d — 1)/2, then there exists
f € klzo,...,xp|a such that (Hf)sng = {P1,..., P} as a set.

Proof. Let P ={P,...,P.}. Let

I={(f;Prt1) € Zx (P" = P): Py € (Hp)sing}-
The fiber of I — P" — P above P, consists of the f for which (H{)sing D {P1,..., Prt1}, so
its dimension is N — (r+1)(n+1) by Corollary 11.3, which also implies dim Z = N —r(n+1).

Thus dim [ = dim(P" — P)+ N — (r+ 1)(n + 1) = dim Z — 1. Therefore there exists a point

in Z outside the image of I; this defines f. O
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Theorem 11.5. Let n,d > 2. Let f € Rxg,...,v,]q. Let H = Hyp. Assume that
dlm (Hk)sing Z 1.

(a)
(b)
(c)
(d)

v(A(f)) > dim (Hp)sing + 1 > 2.

v(A(f) = [(d=1)/2].
If n =2, then v(A(f)) > 2d —3 if d # 4 and v(A(f)) >4 if d = 4.
If (Hg)sing contains a line, then v(A(f)) > d — 1.

Proof. Using Lemma 6.1, we may reduce to the case in which k is algebraically closed.

(a)
(b)

(c)

This follows from Corollary 9.5.
Let r = |(d — 1)/2]. Choose distinct points P, ..., P, € (Hg)sing. By Lemma 11.4, there
exists h € k[zo, ..., x,|q such that (Hp)sing = {P1,..., P} as a set. By Lemma 9.1(b),
v(A(f)) > r as claimed.
In the case n = 2 of plane curves, f = g2h for some g of some degree m with 1 < m < d/2
and h of degree d — 2m. In Lemma 9.1(a) we take V' to be the variety consisting of all
forms factoring as g1g2h with deg g1 = deg go = m and degh = d — 2m; then f € V (k).
Let V' C V be the dense open subvariety defined by the additional conditions that
g1, g2, h define smooth curves intersecting transversely. By Bézout’s theorem, if a € V'(k),
then #(H,)sing = m? + 2m(d — 2m), so vmina (a) > m? + 2m(d — 2m) by Theorem 7.1.
Lemma 9.1(a) then shows that v(A(f)) > m?*+2m(d —2m). The bound in the statement
is obtained by taking the minimum over m in [1,d/2]. For d # 4, the minimum is obtained
for m = 1; when d = 4, m = 2 gives the smaller value.
Let L be a line contained in (Hj)sing. We will construct an auxiliary polynomial h €
k[zo,...,xn]a such that (Hp)sng is finite and contains d — 1 points on L. We may
assume that L is 29 = 23 = --- = z,, = 0. Choose distinct ¢q,...,cq—1 € k. Let
g € kl[zs,...,x,)q such that H, C P"? is smooth; if n = 2, then g = 0. Let h =
d-1

T Hi:l (l’l — Cil’g) + g(l’g, C. ,{En).

Suppose that Q € (Hp)sing. At @, we have 0h/0xy = 0 so Hf:_ll(xl — ¢;xg) = 05 also
h =0, so g = 05 also, dg/0z; = 0 for i = 3,...,n, but H, is smooth. Thus z3 = --- =
x, =0 at @, and @ is a singular point on the union of lines x4 Hf;ll (1 — ¢iwp) = 0 in
P2, hence (0:0: 1) or (1: ¢ :0) for some i. Thus (Hp)sing is finite and contains d — 1
points on L. Lemma 9.1(b) gives v(A(f)) > d — 1. O
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