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Introduction

One of the fundamental motivating problems in arithmetic geometry is to under-
stand the set V (k) of rational points on an algebraic variety V defined over a number
field k. When V = E is an elliptic curve, this set has a natural structure as a finitely
generated abelian group (the Mordell-Weil group). The problem then becomes how to
determine it in practice.

In addition to the Mordell-Weil group, there is another important arithmetic in-
variant of an elliptic curve: the Shafarevich-Tate groupX(E/k). An n-descent on an
elliptic curve is a way to obtain information on both of these groups. For each integer
n ≥ 2, there is an exact sequence relating the two:

0→ E(k)/nE(k)→ Sel(n)(E/k)→ X(E/k)[n]→ 0.

The middle term is a finite group known as the n-Selmer group. An explicit n-descent on
an elliptic curve computes the n-Selmer group and produces explicit representatives for
its elements as curves in projective space. Determination of Sel(n)(E/k) yields partial
information on the Mordell-Weil and Shafarevich-Tate groups. In addition, the models
produced can often be used to find points of large height in the Mordell-Weil group or
to study explicit counter-examples to the Hasse principle.

The main result of this thesis is an effective method for performing an explicit
second p-descent on an elliptic curve when p is a prime. We assume an algorithm which
performs an explicit p-descent on E, yielding models for the elements of Sel(p)(E/k) as
genus one normal curves of degree p in Pp−1. We then perform an explicit p-descent on
some curve C thus obtained. This is a computation of the set Sel(p)(C/k) of everywhere
locally solvable p-coverings of C which produces explicit models for its elements as
genus one normal curves of degree p2 in Pp2−1. Performing this computation for each
element in Sel(p)(E/k) one obtains information that is just as good as that obtained
by an explicit p2-descent on E.

As is typical for descents, the running time of our algorithm is dominated by the
computation of class and unit group information in a certain étale k-algebra. In our
situation this is the étale k-algebra of degree p2 corresponding to the set of flex points of
C. In addition, our algorithm requires computations in a second étale algebra of degree
at most p2(p2 − 1)/2. The most expensive operation required there is the extraction
of p-th roots of elements known to be p-th powers. When p = 2, this second algebra
is simply k. When p = 3, one can get away with an algebra of degree 12, where such
computations are entirely feasible. For larger p, however, this provides another barrier
to the practical applicability of the algorithm.

The technique of descent to study solutions of Diophantine equations goes back at
least to Fermat. In one of the first applications of computers to number theory Birch and
Swinnerton-Dyer [BSD-I, -II] studied the Mordell-Weil groups of elliptic curves over
Q using 2-descents. These computations produced empirical evidence motivating their
famous conjecture. Their method uses an explicit enumeration of certain homogeneous
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10 INTRODUCTION

spaces of the elliptic curve. While applicable (in principle) to larger n and over arbitrary
number fields, the method is quickly defeated by combinatorial explosion when one
ventures much beyond 2-descents over Q.

There is an alternative approach which is based more closely on the original proof
of the Mordell-Weil theorem [Mor, Weil]. First one computes the n-Selmer group as a
finite subgroup of a finite exponent quotient of the multiplicative group of some étale k-
algebra. One is then left with the task of constructing explicit models from the algebraic
representatives. It is only in the past two decades or so that improved computing power,
higher-level computer algebra software and better theoretical understanding have made
computations using this alternative approach feasible. The first step requires deep
arithmetic knowledge, such as S-class and -unit group information, of the constituent
fields of the algebra. The most efficient known algorithm for obtaining this information
in a number field has a running time which is exponential in the degree of the field.

Typically the algebra is related in some way to the group E[n] of n-torsion points on
E. For arbitrary n there is an algorithm involving the étale algebra R = Mapk(E[n]×
E[n], k̄) of Galois equivariant maps from E[n] × E[n] to an algebraic closure of k
[CFOSS-I, 3.2]. Typically R contains an extension of k of degree O(n4) making the
arithmetic computations infeasible in practice. In general one can reduce computation
of the n-Selmer group to the case that n is a prime power. For n = p a prime, there
is a method using the étale k-algebra A = Mapk(E[p], k̄). Generically this splits as
a product of k with some field extension of degree p2 − 1. The p-Selmer group is
then computed as a subgroup of A×/k×A×p. The situation for n = 2 is described in
[Sim] and in [Sch2, St1] where 2-descent on Jacobians of hyperelliptic curves is also
considered. For odd p, this was developed in the papers [DSS, SchSt]. For p = 2, 3,
these algorithms are practical over number fields of moderate degree and discriminant
and are part of the MAGMA computer algebra package.

For larger p these computations may still be feasible if favorable circumstances
prevail. In particular, when E is p-isogenous to some other elliptic curve E ′, the étale
algebra in question may split making the computations much easier. Alternatively, one
can combine the information from p-isogeny descents on E and E ′. Among others, we
mention here the works [Ba, CP, Fi1, Fi2, FG, Go, Sel, Ste, Top].

In the second step, one starts with representatives for the n-Selmer group in some
étale algebra and wants to construct explicit models for the corresponding coverings.
For n ≥ 3, the problem is studied in the series of papers [CFOSS-I, -II, -III], the
situation for n = 2 having been well-known for some time [Ca4, Section 15]. Starting
with an element of R×, the multiplicative group of the étale k-algebra associated to
E[n]×E[n], representing an element of the n-Selmer group, they show how to compute
a collection of homogeneous equations defining a model for the corresponding covering
as a genus one normal curve of degree n in Pn−1. When n is prime it is also shown
how the representatives for Sel(n)(E/k) in A× computed by the method mentioned
above can be converted to representatives in R×. Taken together, this gives a complete
method for performing explicit p-descents on elliptic curves.

The biggest obstacle to the practical implementation of their method is the need to
find a rational point on an everywhere locally solvable Brauer-Severi variety of dimen-
sion n− 1. For n = 2, this means finding a point on a conic. In general the problem is
equivalent to finding an explicit trivialization of a central simple k-algebra known to
be k-isomorphic to a matrix algebra. For n = 3 and k = Q, the authors of [CFOSS-I]
have developed a practical method which is part of the 3-descent implementation in
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MAGMA.

To our knowledge, the only existing practical methods for computing the n-Selmer
group of a general elliptic curve when n is a higher prime power are for n = 4 [MSS,
Wom] and n = 8 [Sta]. Rather than performing a direct 2m-descent, these proceed by
performing 2-descents in a tower of coverings. For example, the output of an explicit
2-descent on E is a finite collection of double covers of P1 ramified in four points. A
second 2-descent computes the collection of everywhere locally solvable 2-coverings of
one (or all) of these. The running time is dominated by the computation of arithmetic
information in the étale algebra corresponding to the ramification points of the double
cover of P1. This is typically a field of degree 4, making the algorithm far more efficient
than a direct 4-descent on E. The output of a second 2-descent is a finite collection
of quadric intersections in P3. These become the input for Stamminger’s method for
third 2-descent.

The method for second 2-descent described in this thesis is a (very) slight modifica-
tion of the method above. While no more efficient, it does admit a cleaner cohomological
interpretation which better integrates with our method for second p-descents for odd
p. The primary reason for including it here is in the hope that the reader already famil-
iar with second 2-descents will find the presentation for odd p more easily digestible.
It does not appear that higher p-descents for odd p have been treated before in any
systematic way.

Our algorithm is practical for p = 3 and k = Q and has been implemented by the
author in MAGMA. Using this we are now able to exhibit explicit examples of elements
of order 9 in the Shafarevich-Tate group of an elliptic curve. Alternatively, if the 3-
primary part of the Shafarevich-Tate group has exponent 3, then the algorithm can be
used to prove this unconditionally. For larger p the algorithm is decidedly less efficient
although still approachable for p = 5. In an example we use a second 5-descent to
prove that X(E/Q)[5∞] = X(E/Q)[5] 6= 0 for an elliptic curve E which admits a 5-
isogeny over Q. Combining our second 3-descent with the existing algorithms for higher
2-descents and some very deep results of Coates, Rubin, Wiles, et. al. we verify the full
Birch and Swinnerton-Dyer conjecture for an elliptic curve over Q with Shafarevich-
Tate group of order 144.

1. Organization

Chapter I. This chapter contains the necessary background information for our
investigations. For the most part the material is, if not classical (e.g. to be found in
Silverman’s book [Sil]), then at least well-known to the experts. The only possible
exceptions being proposition 3.1, which is more general than the typical formulations
found in the literature, and some details appearing in sections 5 and 6.

In section 1 we briefly motivate the desire to perform descent on elliptic curves. In
the following section the n-Selmer and Tate-Shafarevich groups of an elliptic curve over
a number field are defined using Galois cohomology and the standard proof of finiteness
of the n-Selmer group is given. The general philosophy of using a Galois equivariant
family of functions on a curve to study its Picard group is espoused in section 3. To
allow for greater flexibility in dealing with such families we introduce the notions of
a derived GK-set and its corresponding induced norm map. In the following section
we review the method described in [SchSt] for computing the p-Selmer group of an
elliptic curve.
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In the remaining two sections, the geometric interpretation in terms of n-coverings
is considered. Most of this is based in one way or another on the material in [CFOSS-I,
Sections 1-3]. To set the stage for second descents, we have extended many of the no-
tions appearing there for elliptic curves to the case of genus one curves. Section 5
consists mainly of a theoretical description of these objects, whereas in section 6 we fo-
cus on period-index issues and concrete realizations of these abstract objects as curves
in projective space.

Chapter II. Here we develop the theoretical basis for the algorithm and the coho-
mological interpretation of second p-descents. For the most part we work with a fixed
genus one normal curve C of degree p defined over an arbitrary perfect field of char-
acteristic not equal to p. The main object of study is the set of isomorphism classes of
p-coverings of C with trivial obstruction (in a sense analogous to that of [CFOSS-I]).
The primary tool is the descent map, which gives a concrete algebraic realization of
this rather abstractly defined set.

In section 1 we outline a naive attempt at second p-descent. For p = 2 this reduces
to the method of second 2-descent described in [MSS, Wom, BS, Sta]. It allows one
to compute the 2-Selmer set of C up to sign, which is enough to recover everything we
are after. For p ≥ 3 the ambiguity becomes more pronounced and this naive method is
ultimately unsuccessful. This motivates the following sections, where this naive method
is refined and the ambiguity is eliminated. In section 2 we identify the domain of the
descent map as a principal homogeneous space for a certain subgroup of H1(K,E[p]).
We give both a cohomological description of this subgroup and explicit representations
of its members as elements of the multiplicative group of a certain étale K-algebra
H. The descent map is then defined in section 3 as a map taking values in a certain
quotient of H×. Ultimately we will see that the descent map may be interpreted as
an affine map (loosely speaking a linear map followed by a translation), so that the
material of section 2 can be understood as a study of its ‘linear part’. In sections 4 and
5 we show that the descent map is injective and determine its image. All of this is tied
together by the ‘main diagram’ presented in section 6. Then in section 7, we construct
an explicit inverse to the descent map. In particular, we show how to obtain explicit
models for elements in the image of the descent map as genus one normal curves of
degree p2 in Pp2−1.

Chapter III. Here we specialize to the case that the base field is a number field.
Armed with the material of the preceding chapter, computation of the Selmer set is al-
most routine. The descent map gives a bijection from Sel(p)(C/k) onto its image, which
we call the algebraic p-Selmer set. This gives an algebraic presentation of the p-Selmer
set which is amenable to machine computation. As with many descent algorithms, the
first step is to reduce computation of the finite set of coverings that are locally solvable
at all primes outside a certain finite set of primes S to S-class and -unit group compu-
tations. One can then deal with each of the remaining primes individually. These two
steps are the topics of sections 1 and 2. The complete algorithm is then outlined in
section 3. We then conclude with a small selection of examples in section 4 and a short
discussion of possibilities for future work in section 5.
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2. Notation

If G is an abelian group (written additively or otherwise) and n ≥ 1, we use G[n] to
denote the subgroup of G consisting of elements which are killed by n. For a commu-
tative ring R we use R× to denote the multiplicative group of invertible elements. For
n indivisible by the characteristic of R, the n-torsion subgroup of R× will be denoted
µn(R) rather than R×[n].

The symbol K will always denote a perfect field and p will always denote a prime
number not equal to the characteristic ofK. We always assume we have a fixed algebraic
closure K̄ of K and any algebraic extension of K we write down is taken to be a subfield
of K̄. We write GK for the absolute Galois group of K. We usually abbreviate µn(K̄)
to µn. Since we restrict to perfect fields, the term local field will be used to mean the
completion of a number field at some prime.

In the special case that K = k is a number field, we make the following additional
conventions. For each non-archimedean prime v of k, we fix some extension w of v to
k̄. This amounts to choosing a decomposition group Gv ⊂ Gk (via the rule σ ∈ Gv ⇔
wσ = w). If k̄v denotes the union of the completions of the finite subextensions of k̄ with
respect to w, then it is an algebraic closure of kv with Galois group Gv. Note however
that k̄v is not a completion of k̄ with respect to w. For a non-archimedean prime v we
use kunr

v to denote the maximal unramified extension of kv. This is an infinite Galois

extension with group isomorphic to Ẑ, the profinite completion of the integers. The
group Iv = Gal(k̄v|kunr

v ) ⊂ Gv is called the inertia group at v.

Galois Cohomology. In this thesis we make constant use of Galois cohomology.
For definitions and basic results we refer the reader to [Ser3, Chapter II]. We always
consider GK as a profinite group with the profinite topology. A GK-set is a discrete
topological space with a continuous action of GK . A GK-module is a commutative
group object in the category of GK-sets, i.e. a discrete abelian group M with a con-
tinuous action of GK acting by automorphisms. The i-th Galois cohomology group
with coefficients in M will be denoted by Hi(GK ,M) or simply Hi(K,M). The group
H0(K,M) is the subgroup of elements of M invariant under the action of GK . We will
often denote this also by MGK .

If L is any field extension of K, the base change K → L induces a canonical ho-
momorphism resL/K : Hi(K,M)→ Hi(L,M), which we refer to as the restriction map.

There is also an injective inflation map, infL/K : H1(Gal(L|K),MGL) → H1(K,M),
whose image is the kernel of resL/K . When K = k is a number field and L = kv is

some completion, the restriction map is given, upon identification of Hi(kv,M) with
Hi(Gv,M), by restricting a cocycle defined on Gk to the subgroup Gv ⊂ Gk. In par-
ticular, the Galois cohomology groups do not depend on the choice of decomposition
group.

If kv is the completion of k at some non-archimedean prime v and M is a Gkv -
module, the unramified subgroup of H1(kv,M) is defined to be the kernel of the restric-
tion map reskunr

v /kv : H1(kv,M) → H1(Iv,M). By exactness of the inflation-restriction

sequence this is isomorphic to H1(Gal(kunr
v |kv),M Iv). If M is a Gk-module, we say that

an element of H1(k,M) is unramified at v if its image under reskv/k lands in the un-
ramified subgroup. For any set of primes S containing all archimedean primes if the
exponent of M is even1, we use H1(k,M ;S) to denote the subgroup of elements that
are unramified at all primes not in S.

1If the exponent of M is odd and v is an archimedean prime, then the group Hi(kv,M) is trivial.



14 INTRODUCTION

Divisors. Let C be a smooth, projective and absolutely irreducible curve defined
over K. For a commutative K-algebra A, we write C ⊗K A for the scheme C ×Spec(K)

Spec(A). When A = K̄, we also write C̄ = C ⊗K K̄. We use κ(C̄) and κ(C) to denote
the function field of C̄ and its GK-invariant subfield, respectively. We use Div(C̄) to
denote the free abelian group on the set of K̄-points of C. Its elements are called
divisors and will often be written as integral linear combinations of points. If we wish
to make it clear that we are considering a point as a divisor, we will use square brackets.
So [P ] ∈ Div(C̄) is the divisor corresponding to P ∈ C(K̄). The action of GK on points
extends to an action on divisors. We use Div(C) for theGK-invariant subgroup and refer
to its elements as K-rational divisors. A closed point of the K-scheme C corresponds
to a Galois orbit of points in C(K̄). As such a closed point may be interpreted as an
element of Div(C). In fact, Div(C) is the free abelian group on such closed points. We
denote the divisor of a function f ∈ κ(C̄)× by div(f).

Two divisors are said to be linearly equivalent if their difference is equal to div(f)
for some rational function f ∈ κ(C̄)×. The group of principal divisors is Princ(C̄) =
{div(f) : f ∈ κ(C̄)×}. It follows from Hilbert’s Theorem 90 that the GK-invariant
subgroup, Princ(C) = Princ(C̄)GK , is the group of divisors that are divisors of functions
in κ(C)×. We use Pic(C̄) to denote the group of divisors modulo principal divisors. Its
GK-invariant subgroup is denoted PicK(C). This is not, generally speaking, the same
as the group Pic(C) := Div(C)/Princ(C); not every K-rational divisor class can be
represented by a K-rational divisor (for an example see [Ca3]). There is however an
injective map Pic(C)→ PicK(C). In most of our applications this map is also surjective,
so we will often (but not always) assume this is the case.

Since the degree of the divisor associated to a rational function is 0, there is a
well-defined notion of degree for divisor classes in Pic(C̄). We denote the set of divisor
classes of degree i ∈ Z by Pici(C̄). We use similar notation for the other groups defined
above. The group Pic0

K(C) may identified with the group of K-rational points on the
Jacobian of C.

Etale K-algebras and GK-Sets. If K ⊂ L is an extension of fields and A is a
K-algebra, then A ⊗K L is an L-algebra which we will denote simply by AL. In the
particular case L = K̄, the notation Ā will also be used to denote A⊗K K̄. If φ : A→ B
is a morphism of K-algebras, the induced map AL → BL will also be denoted by φ.

If Ω is a finite GK-set, define Ā(Ω) = Map(Ω, K̄) to be the K̄-algebra of maps from
Ω to K̄. There is a natural action of GK on Ā(Ω) defined by

φσ : x 7→
(
φ(xσ

−1

)
)σ

.

As a K̄-algebra Ā(Ω) is isomorphic to
∏#Ω

i=1 K̄, but the action of GK is twisted by
the action on Ω. The GK invariant subspace of Ā(Ω) is the space of GK-equivariant
maps MapK(Ω, K̄) := Map(Ω, K̄)GK . This is an étaleK-algebra; it splits as a product of
finite extensions of K corresponding to the orbits in Ω. This defines an anti-equivalence
between the categories of finite GK-sets and étale K-algebras (see for example [Le1]).
We can also recover Map(Ω, K̄) by tensoring with K̄.

In this thesis we frequently find ourselves working with objects defined over such
algebras, e.g. varieties, points, functions, etc. From a scheme-theoretic point of view
this presents no difficulty. It will, however, be convenient to interpret these objects as
Galois equivariant maps. For example suppose C is a K-variety and A = MapK(Ω, K̄).
Then C⊗KA is a scheme over A. We can interpret a rational function f ∈ κ(C⊗KA)×

as a Galois equivariant map Ω→ κ(C̄)× or equivalently as a Galois equivariant family
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of rational functions fω ∈ κ(C̄)× indexed by ω ∈ Ω. The Galois equivariance means
that (fω)σ = fωσ for all σ ∈ GK . The divisor of f can be interpreted as a Galois
equivariant map Ω→ Div(C̄), and so on.

We mention here the generalization of Hilbert’s Theorem 90 to étale algebras which
states that H1(K, Ā×) = 0. To prove it one uses Shapiro’s lemma to reduce to the usual
Theorem 90 for fields. Using this with the Kummer sequence (as one does for fields)
one is lead to an isomorphism H1(K,µn(Ā)) ' A×/A×n.

Internal referencing. Certain items (e.g. theorems, sections, definitions, etc.) are
numbered within each chapter. A reference to an item appearing in the same chapter
will give this number. A reference to an item appearing in a different chapter will give
in addition the chapter number as a Roman numeral. For example, Theorem 2.2 of
chapter 1 will be referred to as 2.2 (in chapter I) or I.2.2 (in chapters II and III).





CHAPTER I

Motivation and Background

1. What is descent good for?

Let E be an elliptic curve over a number field k. The celebrated Mordell-Weil
theorem tells us that E(k) is a finitely generated abelian group, the Mordell-Weil
group. This finite description opens up the tantalizing problem of making the proof
effective: How can we compute a set of generators explicitly?

From the structure theory of finitely generated Z-modules we have that

E(k) ' Zr × E(k)tors ,

where r ≥ 0 is the rank of E(k) and E(k)tors is the torsion part of E(k). It follows from
the theorem that E(k)tors is finite. Moreover, there are effective methods for computing
it, which at least over Q are usually quite efficient (see for example [Sil, VIII.7]). This
reduces the problem of computing E(k) to finding generators of the free part. To do
this it is enough to determine the rank and find sufficiently many independent points
of infinite order (see [Sik2]).

The naive strategy for doing this is to just look for points, checking along the way
if they are of infinite order and independent from the ones already found. The problem
is of course knowing when to stop; there is currently no proven method for determining
the rank of an arbitrary elliptic curve over a number field. We should remark that the
conjecture of Birch and Swinnerton-Dyer does suggest a solution to this problem and
that parts of it have been proven for elliptic curves of tiny rank over Q, and that this
is already a tremendous achievement (e.g. [Maz, Theorem 3]).

If one is able to compute the rank, then this gives an effective procedure for com-
puting a set of generators. Unfortunately even if one knows ‘when to stop searching’,
this is hardly efficient. The difficulty stems from the fact that the generators may
have extremely large height. So a naive search is unlikely to find them in a reasonable
amount of time. An explicit n-descent on an elliptic curve is a computation that can
be helpful in addressing both of these problems.

Bounding the rank. The proof of the Mordell-Weil theorem breaks into two
steps. First one proves that for some (any) n ≥ 2, the group E(k)/nE(k) is finite.
Then, using the theory of heights, one shows that this implies the finite generation of
E(k). Given a set of points which generate E(k)/nE(k), this second step is effective
(see [Sik2]). The first step, however, is not. The best effective result of the proof is the
finiteness of the n-Selmer group. The proof will be reviewed in the next section where
we also derive the exact sequence,

0→ E(k)/nE(k)→ Sel(n)(E/k)→ X(E/k)[n]→ 0 .

From this we see that the n-Selmer group contains an isomorphic copy of E(k)/nE(k).
Our inability to determine the subgroup corresponding to E(k)/nE(k) is related to the
failure of the Hasse principle for genus one curves. Given a curve defined over k with

17
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points over every completion of k there is, in general, no known effective procedure for
deciding if the curve has a k-rational point.

In any event, the size of the n-Selmer group provides an upper bound for the
Mordell-Weil rank. More precisely, the rank r of the Mordell Weil group satisfies

nr =
# Sel(n)(E/k)

#X(E/k)[n] ·#(E(k)tors/nE(k)tors)

As mentioned above there are effective methods for determining the torsion subgroup,
so #(E(k)tors/nE(k)tors) is ‘known’. Thus the only obstacle to computing a sharp
upper-bound is the n-torsion in the Shafarevich-Tate group. The aforementioned BSD
conjecture predicts thatX(E/k) is finite. So it should be possible to avoid the ob-
struction with a suitable choice of n. For this reason it is desirable to have efficient
methods for performing n-descents for different values of n.

One can also compare the upper-bound obtained from an n-descent with the lower-
bound obtained from a point search. If the two coincide then surelyX(E/k)[n] = 0.
Alternatively, comparing the bounds obtained from multiple descents, one may be able
to prove thatX(E/k)[n] 6= 0 for some n. The nontrivial elements here correspond to
genus one curves which violate the Hasse principle. It is thus of interest to be able to
produce explicit models for these curves.

Cassels constructed an alternating bilinear pairing onX(E/k) whose kernel is the
divisible subgroup [Ca1, Ca2]. IfX(E/k) is indeed finite, then this implies that its
order is a perfect square [Sil, Exer. 10.20]. This allows for an interesting hypothetical
scenario: Assume p is prime (for simplicity) and that lower- and upper-bounds rps and
rp are obtained by a point search and a p-descent, respectively. Then

dimFp X(E/k)[p] ≤ rp − rps .

Conjecturally the dimension here is even1. If rp − rps is odd, then confidence in BSD
justifies letting your computer search a bit longer.

This discussion applies, for example, to the curves

Eq : y2 = x3 + qx .

If q is a prime congruent to 3, 5, 13, or 15 mod 16 one can show that the F2-dimension
of the 2-Selmer group is 2 [Sil, X.6.2]. One dimension is accounted for by the nontrivial
2-torsion point (0, 0) ∈ Eq(Q) (there are no elements of order 4), so

rank(Eq(Q)) + dimF2 X(Eq/Q)[2] = 1 .

Assuming finiteness, the rank must be one. These curves also illustrate how descent
can be used in conjunction with the parts of BSD that have been proven. If the L-series
of an elliptic curve over Q vanishes at s = 1 to order o ≤ 1, then the rank is equal to
o and the Shafarevich-Tate group is finite (see, for example, [Maz, Theorem 3]). For
all primes q ≡ 3, 5, 13, 15 mod 16 and less than 100000, MAGMA will happily report
that the analytic rank of Eq(Q) is one2. What this actually means is that the value
of the L-series at s = 1 is very close to zero3, but that the value of the derivative

1For this one also needs to know that the kernel of the pairing on the p-torsion subgroup consists
precisely of those elements divisible by p. See [Fi3, Section 5]

2Presumably someone has (at least attempted to) come up with a proof that the L-series of the
elliptic curves in this family have simple zeros at s = 1, but we were unable to find any references.
Bremner and Cassels have found generators for the Mordell-Weil group of Eq for all primes q ≡ 5 mod 8
less than 1000 [BC]

3Tom Fisher has pointed out that results on parity show that the value is in fact 0.
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there is definitely nonzero. In any event, the order of vanishing is ≤ 1 for these curves,
soX(Eq/Q) is finite. HenceX(Eq/Q)[2] has even F2-dimension and so must be trivial,
proving unconditionally that the rank is in fact one.

Finding points. The elements of the n-Selmer group may also be interpreted as
unramified coverings of E. These coverings have the property that every k-rational
point of E lifts to a k-rational point on exactly one of the coverings. If one is able to
obtain models for these as curves in projective space, then the logarithmic height of a
lifted point should be O(n) times smaller than that of its image on E. This means that
searching for points on the coverings should be more efficient than (and as effective
as) searching for points on E directly. For this reason it is desirable to have efficient
methods for performing descents for larger values of n.

To illustrate this consider the prime 68749 ≡ 13 mod 16 and the curve E68749 in the
family discussed above. Using some very deep results, we have shown that the rank
is one. This could also be achieved by finding a point of infinite order. A naive point
search would eventually find the point4

P =

(
427723613901884041

394673451632100
,
−287804417946186514282008589

7840736712769435119000

)
of infinite order, which together with (0, 0) generates E68749(Q). We found it much
quicker using the implementation of 4-descent (i.e. second 2-descent) in MAGMA. One
of the coverings produced is the quadric intersection

C =

{
4z1z2 + z2

2 + 4z1z3 + z2
3 + 6z1z4 − 4z2z4 − 4z3z4 + 6z2

4 = 0
6z2

1 − 2z1z2 − z2
2 + 2z2

3 + 12z1z4 − 2z2z4 + 2z3z4 − z2
4 = 0

}
⊂ P3 ,

together with a degree 16 map to E68749. One quickly finds the point (0 : 1 : 1 : 1)
mapping to P .

Remark: The algorithm developed in this thesis is explicit in that it produces models
for these coverings when n is the square of a prime. We must admit however that
we have not yet developed a theoretical basis for ensuring that the models produced
are suitable for the task of finding large points. The error term involved in the height
estimate above depends to a large extent on the model chosen. In order to get something
useful in practice, one needs the coefficients of the defining equations to be small.
Thanks to Tom Fisher and Michael Stoll we have some ad hoc methods which yield
significant improvements in this direction, but there is still work to be done.

Making finite X effective. For genus one curves, determining solvability is equiv-
alent to determining whether a curve is isomorphic to its Jacobian. One way of inter-
preting the conjectured finiteness of the Shafarevich-Tate group is the following:

In any family of pair-wise everywhere locally isomorphic smooth projective curves
defined over a number field k there are only finitely many k-isomorphism classes.5

4If we were so motivated, we could find an example for which no point of infinite order would fit
between the margins.

5This is known for curves of genus 6= 1. For genus 0, this is amounts to saying that a quaternion
algebra is determined by its ramification. For genus ≥ 2 it follows from the fact that there are only
finitely many automorphisms (see [Maz, I.5]).



20 I. MOTIVATION AND BACKGROUND

In addition to helping make the Mordell-Weil theorem explicit, descent may allow us
to make this finiteness statement explicit as well. By way of example we offer the
following theorem (taken more or less directly from [Maz, Theorem 1]), whose proof
is admittedly much deeper than anything else appearing in this thesis.

Theorem 1.1 (Rubin, Selmer). Let C/Q be the curve in P2 defined by the equation
3x3 + 4y3 + 5z3 = 0. If V/Q is any variety such that V ⊗ Qp is Qp-isomorphic to
C ⊗ Qp for every prime p ≤ ∞, then V is Q-isomorphic to exactly one of the 5 pair-
wise nonisomorphic curves:

3x3 + 4y3 + 5z3 = 0 ,

2x3 + 5y3 + 6z3 = 0 ,

2x3 + 3y3 + 10z3 = 0 ,

x3 + 4y3 + 15z3 = 0 ,

x3 + y3 + 60z3 = 0 .

Moreover, each of the curves in this list is everywhere locally isomorphic to C.

The last curve in the list has the obvious (and unique) rational point (1 : −1 : 0)
and can be identified with the Jacobian E of the other curves in the list. The theorem
is equivalent to saying thatX(E/Q) ' Z/3Z× Z/3Z and that these curves represent
the 5 = 9−1

2
+1 elements ofX(E/Q)/{±1}. The hard part is showing thatX(E/Q) is

finite. Since E has complex multiplication and its L-series does not vanish at s = 1 this
follows from work of Coates and Wiles [CoWi]. Subsequent work of Rubin [Ru] allows
one to conclude even that the exponent ofX(E/Q) is a power of 2 times a power of
3. The contribution of Selmer [Sel] (some decades earlier) was to perform the descent
necessary to prove that X(E/Q)[3∞] ' Z/3Z×Z/3Z and produce the curves appear-
ing in the list. Somewhere along the way one must also check thatX(E/Q)[2] = 0
(which it is).

2. The Selmer group

Let E be an elliptic curve over a number field k and n ≥ 2. As mentioned above,
there is an exact sequence

0→ E(k)/nE(k)→ Sel(n)(E/k)→ X(E/k)[n]→ 0 .

In this section we define the terms of this sequence using Galois cohomology and outline
the (effective) proof that Sel(n)(E/k) is finite.

The Kummer sequence. Let K be a perfect field with absolute Galois group GK .
For any n ≥ 2 indivisible by the characteristic of K, one has a short exact sequence

0→ µn → K̄× → K̄× → 0 .

Galois cohomology associates to this a long exact sequence of cohomology groups. From
this one obtains a second short exact sequence

0→ K×/K×n
δ−→ H1(K,µn)

n−→ H1(K, K̄×)[n]→ 0 .

The map labeled δ is the connecting homomorphism defined as follows. For a ∈ K×,
one chooses any n-th root α ∈ K̄×. The image of a is then the (class of the) coboundary
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of α, which is a 1-cocycle taking values in µn. In symbols

δ(a) : GK 3 σ 7→ ασ/α ∈ µn .

One can check that this does not depend on the choice of α. The famous ‘Theorem 90’
of Hilbert says that H1(K, K̄×) is trivial. Hence we have an isomorphism K×/K×n '
H1(K,µn). If µn ⊂ K×, then one recovers the classical ‘Kummer theory’,

K×/K×n ' Hom(GK ,Z/nZ) .

This says that the cyclic extensions of K of degree dividing n are in one to one cor-
respondence with classes of elements of K× modulo n-th powers, the correspondence
being given by adjoining n-th roots.

Now suppose E is an elliptic curve defined over K. Since multiplication by n defines
a surjective homomorphism on the K̄-points of E, we can form a ‘Kummer sequence’
for E,

0→ E(K)/nE(K)
δ−→ H1(K,E[n])→ H1(K,E)[n]→ 0 .

The connecting homomorphism is defined in a completely analogous way. To compute
the image on a class of E(K)/nE(K) represented by some point P , one chooses a lift
of P to a point Q ∈ E(K̄), such that nQ = P . Any two choices differ by an n-torsion
point of E. So, for any σ ∈ GK , the point Qσ−Q ∈ E(K̄) is n-torsion. One checks that
the assignment σ 7→ Qσ − Q is a cocycle whose class does not depend on the choices
for P and Q. Unlike the Gm case, the group H1(K,E) may be infinite.

The Selmer Group. We now specialize to the case that K = k is a number field.
As previously mentioned, the group E(k)/nE(k) is finite. To prove this, one shows that
it sits inside a finite subgroup of H1(k,E[n]). This subgroup is defined by imposing local
conditions.

Forming the Kummer sequence over k and all of its completions gives a commutative
diagram with exact rows, where the vertical maps are given by restriction

0 // E(k)/nE(k)
δ //

��

H1(k,E[n]) //

��

α

))RRRRRRRRRRRRR
H1(k,E)[n] //

��

0

0 //
∏

v E(kv)/nE(kv)
Q
v δv //

∏
v H1(kv, E[n]) //

∏
v H1(kv, E)[n] // 0

We are interested in the image of E(k)/nE(k). From the exactness of the rows, one
sees that this sits inside the kernel of the diagonal map. This leads to the following
definition.

Definition 2.1. The n-Selmer and Tate-Shafarevich groups of E are the groups

Sel(n)(E/k) = ker
(

H1(k,E[n])
α−→
∏

H1(kv, E)[n]
)

and

X(E/k) = ker
(

H1(k,E) −→
∏

H1(kv, E)
)
.

The exact sequence

0→ E(k)/nE(k)→ Sel(n)(E/k)→ X(E/k)[n]→ 0

follows immediately.
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Remark: For any separable isogeny φ : J ′ → J of Abelian varieties over K, we can
form a Kummer sequence as above. Over a number field, one may define the φ-Selmer
group of J ′ in a completely analogous way. It sits in an exact sequence

0→ J(K)/φ(J ′(k))→ Selφ(J ′/k)→ X(J ′/k)[φ]→ 0 .

The proof of the finiteness of Sel(n)(E/k) given below works, with the obvious modifi-
cations, to prove finiteness in this more general context as well.

We come to the fundamental result of this section.

Theorem 2.2. Let E be an elliptic curve over a number field k and n ≥ 2, then
Sel(n)(E/k) is finite and computable.

To show that the n-Selmer group is finite, one first shows that it is contained in the
unramified outside S subgroup, H1(k,E[n];S), for an appropriate finite set of primes
S. The criterion of Neron-Ogg-Shafarevich shows that one may take S to be the set
of primes v where E has bad reduction or such that v is archimedean or lies above n.
The theorem then follows from the general fact that if M is a finite Gk-module and S
is a finite set of primes containing all archimedean primes, then H1(k,M ;S) is finite
(see [Ser3, II.6.2]).

For M = E[n], the proof of this fact goes as follows. First one reduces to the case
when the n-torsion of E is k-rational. If k(E[n]) is the n-division field of E (i.e. the
smallest extension over which all n-torsion points are defined), then the group on the
left in the inflation-restriction exact sequence,

H1
(
Gal(k(E[n])|k), E[n]

)
→ H1(k,E[n])→ H1

(
k(E[n]), E[n]

)
,

is finite and, at least in principle, computable. It thus suffices to consider the group on
the right

This means we can assume k = k(E[n]). Under this assumption, the action of Gk

on E[n] is trivial and so

H1(k,E[n]) = Hom(Gk, E[n]) = Hom(Gk,Z/nZ× Z/nZ) .

The group on the right corresponds to the collection of all Galois extensions of k with
Galois group which may be embedded in Z/nZ × Z/nZ. The n-th roots of unity are
contained in k (because the Weil pairing on E[n] is Gk-equivariant), so these extensions
can be described using Kummer theory. Each is obtained by adjoining the n-th roots
of a pair of elements a, b ∈ k×/k×n. For v /∈ S, such an extension will be unramified at
v if and only if ordv(a) ≡ ordv(b) ≡ 0 modn (recall that S is assumed to contain all
archimedean primes and all primes dividing n). Let

k(S, n) = {a ∈ k×/k×n : ∀v /∈ S, ordv(a) ≡ 0 modn} .

Elements of H1(k,E[n]) unramified outside of S correspond to extensions which are
unramified outside S. So we have an isomorphism H1(k,E[n];S) ' k(S, n) × k(S, n).
The effective proof that the H1(k,E[n];S) is finite is completed by the following im-
portant theorem.

Theorem 2.3. Let k be a number field, n ≥ 2 and S a finite set of primes containing
all archimedean primes and all non-archimedean primes above n. Let

k(S, n) = {a ∈ k×/k×n : ∀v /∈ S, ordv(a) ≡ 0 modn} .
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Then k(S, n) is finite and there is an effective procedure for computing (a set of repre-
sentatives in k×) for k(S, n) which is efficient modulo computation of the n-torsion in
the S-class group of k and the cokernel of multiplication by n on the S-unit group of k.

To prove this, one shows (see for example [St2], [PS]) that there is an exact sequence

0→ O×k,S/O
×n
k,S → k(S, n)→ ClS(k)[n]→ 0 ,

where O×k,S and ClS(k) denote the S-unit and S-class groups of k, respectively. Since
the class group is finite and the S-unit group is finitely generated, all terms in the exact
sequence are finite. The fact that this is effective follows from the fact that the S-class
and -unit groups can be computed and that the maps in the short exact sequence above
can be determined explicitly.

More generally, if A is an étale k-algebra, we will use the notation A(S, n) to denote
the unramified outside S part of A×/A×n. If A decomposes into a product of number
fields A '

∏
ki, then A(S, n) '

∏
ki(S, n). So the theorem applies in this situation as

well.

According to Lenstra [Le2] there ‘appears to be’ a deterministic algorithm for
determining the class and unit groups of a number field k in time at most (2 +
log |∆|)O(d)|∆|3/4, where d = [k : Q] is the degree of k and ∆ is its discriminant.
If one only needs the kernel and cokernel of multiplication by n, some improvement
should be possible, but the consideration of S-class and -unit groups only makes things
more complicated. In any event, the complexity should remain exponential in the de-
gree.

The computation of H1(k,E[n];S) outlined above requires one to extend to the
n-division field of E. Generically this will be a GL2(Z/nZ) extension of k. The large
degree of this extension makes the resulting algorithm infeasible in most situations as
computation of the S-class and -unit groups is not likely to be manageable. Even if it
is, one still needs to somehow return to k, which may be problematic. Any practical
algorithm should avoid this step.

In any event, once one has computed H1(k,E[n];S) as a finite subgroup of A(S, n),
the n-Selmer group can be determined by considering the local conditions at the finitely
many primes of S. The groups H1(kv, E[n]) are finite, so this is a finite problem to which
there is an effective solution.

Remark: This discussion remains valid in the more general context of computing the
φ-Selmer group of an Abelian variety J . Namely, there is an effective procedure which
requires S-class and -unit group information in the minimal extension of k over which
all points in the kernel of φ and the relevant roots of unity are defined.

3. Using functions on the curve

In this section we show how one can study the Picard group of a curve by using
functions on the curve. The K-rational points of the Jacobian of a curve C can be
identified with Pic0

K(C), so one can use this to study the Mordell-Weil group. In the
next section we will describe in detail how this leads to a far more efficient algorithm
for computing the n-Selmer group of an elliptic curve when n is prime.
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A general framework for doing this is described by Schaefer in [Sch2]. Though more
general cases have been treated (notably cyclic covers of the projective line [PS]), at
the time this encompassed virtually all known explicit methods for performing descent
on Jacobians. Under certain assumptions, a rational function on C will induce a homo-
morphism from J(K) = Pic0

K(C) into a group of finite exponent. These induced maps
are given quite explicitly by evaluating functions at points of C and as such are suitable
for practical computations. Given an isogeny φ : J ′ → J , the connecting homomor-
phism in the corresponding Kummer sequence is also a homomorphism to a group of
finite exponent. Schaefer presents a strategy for choosing functions so that the induced
maps are related to (or can be identified with) a given connecting homomorphism.

In the context of [Sch2] the codomain of these induced maps is of the form A×/A×n,
where A is some étale K-algebra and J ′[φ] ⊂ J ′[n]. Schaefer shows that under certain
assumptions one can choose the function(s) so that the induced map Φ factors as

J(K)

δ &&MMMMMMMMMM

Φ // A×/A×n

H1(K, J ′[φ])

β

77ppppppppppp

where δ is the connecting homomorphism and the map β is injective. Over a number
field k, this ideal situation yields a commutative diagram

J(k)/φJ ′(k) � � Φ //

��

A×/A×n

��∏
v J(kv)/φJ

′(kv)
� �
Q

Φv //
∏

v A
×
v /A

×n
v

In principle, one can then compute H1(k, J ′[φ];S) as a subgroup of A(S, n). Having ac-
complished this, the explicit nature of the maps Φv makes computation of the φ-Selmer
group (as a subgroup of A(S, n)) entirely practical.

We would like to build on this perspective in essentially two orthogonal directions.
The first, which has been observed by Siksek [Sik3], is that under the assumptions of
[Sch2] these functions actually induce maps on all of PicK(C) and not just Pic0

K(C) =
J(K). In the context of second p-descent this is useful because we are now interested
in Pic1

K(C).
The second drives to the heart of the assumptions required for the method in [Sch2]

to work, namely that the map labelled β (or equivalently Φ) in the diagram above be
injective. When this is not satisfied information can get lost. Correcting for this requires
allowing for other functions which induce homomorphisms from the Picard group to a
seemingly more complicated group of finite exponent which is actually just as easy to
work with in practice. Our description of this group involves an ‘induced norm map’
coming from the notion of a derived GK-set which we now describe.

Derived GK-sets. If Ψ,Ω are finite GK-sets, we will say that Ψ is derived from Ω
if the elements of Ψ are unordered tuples (multisets) of elements of Ω and the action
on Ψ is induced by that on Ω. For example, the set of unordered pairs (distinct or
not) of elements in Ω is a derived GK-set. One can also interpret the elements of Ψ as
formal integral linear combinations of elements of Ω with nonnegative coefficients. In
this interpretation we write b ∈ Ψ as a sum

∑
naa of distinct elements a ∈ Ω.
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Recall the notation of section 2 of the introduction. To Ω and Ψ we associate étale
K-algebras, A(Ω) = MapK(Ω, K̄) and A(Ψ) = MapK(Ψ, K̄). If Ψ is derived from Ω as
a GK-set, then we define ‘induced norm maps’ between the corresponding algebras:

A(Ω) = MapK(Ω, K̄) 3 φ 7→

(
(b =

∑
naa) 7→

∏
a

φ(a)na

)
∈ MapK(Ψ, K̄) = A(Ψ) ,

A(Ψ) = MapK(Ψ, K̄) 3 φ 7→

a′ 7→ ∏
b=
P
naa

φ(b)na′

 ∈ MapK(Ω, K̄) = A(Ω) .

These maps may also be interpreted as follows. Let Θ be the GK-set whose elements
are the integral multiples of elements of Ω×Ψ of the form na(a, b), where b =

∑
na′a

′

(the action on Θ is that derived from Ω). In terms of multisets, if a is in b with
exact multiplicity na, then Θ contains the multiset which consists of (a, b) taken with
multiplicity na. Now A(Θ) splits as a product A(Θ) =

∏
O A(O) of finite extensions

of K corresponding to the GK-orbits O ⊂ Θ. If O is some orbit, then all na(a, b) ∈ O
have the same multiplicity (i.e. na = nO is constant on O). This is used to assign a
weight nO to each factor of A(Θ) and thus a map:

w : A(Θ) =
∏
O

A(O) 3 (φO) 7→ (φnOO ) ∈
∏
O

A(O) = A(Θ) .

On the other hand, Θ comes equipped with projection maps

Θ 3 na(a, b) 7→ a ∈ Ω

Θ 3 na(a, b) 7→ b ∈ Ψ .

These obviously respect the action of GK , so one has corresponding inclusions of A(Ω)
and A(Ψ) into A(Θ). Thus A(Θ) comes naturally equipped with norm maps NΩ and
NΨ to A(Ω) and A(Ψ), respectively. The induced norm maps above are given by the
compositions:

A(Ω) ↪→ A(Θ)
w−→ A(Θ)

NΨ−→ A(Ψ) ,

A(Ψ) ↪→ A(Θ)
w−→ A(Θ)

NΩ−→ A(Ω) .

While seemingly complicated, this description makes explicit computation of these in-
duced norm maps in concrete examples rather straight-forward. Two examples are given
following the proposition below; naturally, we will see more in the following chapter.

Descent on Picard groups using functions on curves. 6 Let C be a smooth,
projective and absolutely irreducible curve defined over K. We want to use the notion
of derived GK-sets to study the group Pic(C) of divisor classes on C which can be
represented by a K-rational divisor.

Let Ω ⊂ C(K̄) be a finite GK-set of geometric points on C and Ψ ⊂ Div(C̄) a finite
GK-set of effective divisors on C which are supported on Ω. We use A(Ω) and A(Ψ) to
denote the corresponding étale K-algebras. As a GK-set Ψ is derived from Ω and we
have an induced norm map ∂ : A(Ω)→ A(Ψ).

Now consider a rational function

f = (fψ) ∈ κ(C ⊗K A(Ψ) )× = MapK(Ψ, κ(C̄)×) .

6We have borrowed the name of this subsection from a short paper by Siksek [Sik3], where the
case of a K-rational rational function is considered.
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We consider this either as a function on C⊗KA(Ψ) or as a Galois equivariant family of
rational functions in κ(C̄)× parameterized by ψ ∈ Ψ. We interpret the divisor of f , an
element of Div(C ⊗K A(Ψ)), as a GK-equivariant map Ψ → Div(C̄). We write div(f)
as a difference of effective divisors. This can be interpreted as a difference of a pair of
GK-equivariant maps [f ]0, [f ]∞ : Ψ→ Div(C̄) whose values at ψ ∈ Ψ are the zero and
pole divisors of fψ, respectively. Now suppose f satisfies

(1) ∀ψ ∈ Ψ, [f ]0(ψ) = ψ, and
(2) ∀ψ ∈ Ψ and σ ∈ GK , [f ]∞(ψσ) = [f ]∞(ψ).

The first condition says that ψ is the zero divisor of the function fψ ∈ κ(C̄)×. The
second condition amounts to saying that the map [f ]∞ : Ψ → Div(C̄) is constant on
each GK-orbit in Ψ. The Galois equivariance then implies that, on each orbit O ⊂ Ψ,
the value of [f ]∞ is some K-rational divisor dO ∈ Div(C). We write each as a sum

dO =
∑
P

mO,PP ,

of closed points P and set mO = gcd(mO,P) (recall that a closed point corresponds to
a GK-orbit of points in C(K̄)). Using these weights, we define a map

ι : K 3 a 7→ (amO)O ∈
∏
O

A(O) = A(Ψ)

Proposition 3.1. With notation as above, let d =
∑

P nP [P ] ∈ Div(C) (written
as a sum of K̄-points of C) be any K-rational divisor on C with support disjoint from
all zeros and poles of the fψ.

(1) Evaluating f on d gives a well-defined element f(d) :=
∏

P f(P )nP ∈ A(Ψ)×.
(2) f induces a unique homomorphism

Pic(C)→ A(Ψ)×

ι(K×)∂(A(Ω)×)

with the property that, for all d as above, the image of the class of d is equal
to the class of f(d).

Before giving the proof, it seems appropriate to provide a couple of familiar exam-
ples.

p-descent on elliptic curves. Let E be an elliptic curve over K and p a prime
different from the characteristic of K. For each nontrivial p-torsion point P , one can
find a function fP ∈ κ(C̄)× with div(fP ) = p[P ] − p[0E]. The existence of such a
function is used in the definition of the Weil pairing ([Sil, III.8]). It follows from
Hilbert’s Theorem 90 that f can be defined over the field K(P ) obtained by adjoining
the coordinates of P to K.

Let A = MapK(E[p]\{0E}, K̄) be the étale algebra corresponding to the nontrivial
p-torsion points. Given a set {P1, . . . , Pr} ⊂ (E[p] \ {0E}) of representatives for the
GK-orbits and functions fPi as above, there is a unique way to extend the fPi to a
Galois equivariant family of rational functions indexed by E[p] \ {0E}. This gives a
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function f = (fP ) ∈ κ(C ⊗K A)×. In the notation of the proposition we have

Ω = E[p] \ {0E},
Ψ = {p[P ] : P ∈ Ω},

[f ]∞ = p[0E],

A(Ω) ' A(Ψ) ' A,

∂ : α 7→ αp, and

ι : a 7→ ap.

Since E(K) 6= ∅, we have PicK(E) = Pic(E). The proposition says that f induces a
homomorphism

PicK(E)→ A×

K×pA×p
=

A×

A×p
.

Since the target is of exponent p, this factors through the cokernel of multiplication by
p on PicK(E). So we get an induced homomorphism

E(K)

pE(K)
=

Pic0
K(E)

pPic0
K(E)

↪→ PicK(E)

pPicK(E)
→ A×

A×p
.

In section 4 we will see that the cohomology group H1(K,E[p]) may identified
with a subgroup of A×/A×p and that, under this identification, the map induced on
Pic0

K(E) = E(K) is equal to the connecting homomorphism in the Kummer sequence.
We thus find ourselves in the ideal situation described at the beginning of this section.

2-descent on double covers of P1. Let C be given by the equation7 u2
3 = g(u1), where

g ∈ K[u1] is separable of degree 2m with m ≥ 2. The assumption that the degree is
even means that the map to P1 does not ramify above∞; applying a suitable change of
coordinates one may always ensure that this is the case8. The assumption that m ≥ 2
is made to exclude consideration of genus 0 curves. Let A = K[u1]/g(u1) and denote
the image of u1 in A by θ. Then A is the étale algebra corresponding to the GK-set of
ramification points; θ is the map sending a ramification point to its u1-coordinate.

To do a 2-descent one typically uses the function u1− θ ∈ κ(C⊗K A)×. The divisor
of this function is div(u1− θ) = 2[(θ, 0)]− ([∞+] + [∞−]), where∞± denote the points
on C lying above∞ ∈ P1. Note that ([∞+]+[∞−]) is a sum of closed points of C. In the
notation of the proposition, Ω is the set of ramification points, Ψ = {2ω : ω ∈ Ω} and
their étale algebras are both isomorphic to A. The induced norm is given by squaring.
So the proposition gives a homomorphism

Pic(C)→ A×

K×A×2

If PicK(C) = Pic(C), then as above this yields a homomorphism

J(K)/2J(K)→ A×/K×A×2 ,

where J is the Jacobian of C. This can be used to obtain information on the Mordell-
Weil group. Since C(K) ⊂ Pic1

K(C), the homomorphism can also be used to study the
rational points on C.

7The variables are labeled here so as to be compatible with the notation used in chapter II.
8If there happens to be some K-rational ramification point, we can arrange for it to lie above

∞ ∈ P1. In this situation div(u1 − θ) = 2[(0, θ)]− 2[∞C ] and the proposition yields a homomorphism
to A×/A×2
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One can of course use other functions as well. For example the function u3 ∈ κ(C)×

has divisor div(u3) =
∑

ω∈Ω ω −m(∞+ +∞−). Now the relevant algebras are A and
K and the induced norm map is the usual norm NA/K : A→ K. The proposition gives
a homomorphism

Pic(C)→ K×

K×mNA/K(A×)
.

The proposition applies as well to the pair (u1 − θ, u3) to give a map

Pic(C)→ A× ×K×

ι(K×)∂(A×)
,

where ι : a 7→ (a, am) and ∂ : α 7→ (α2, NA/K(α)).
Unlike the situation for p-descent on elliptic curves, the map on J(K)/2J(K) in-

duced by u1 − θ is not usually injective. In the second part of this thesis we will see
how combining with the information from u3 can be used to correct for this.

Remark: The discussion here for hyperelliptic curves applies with minor changes to
the more general case of cyclic covers of the projective line of the form up3 = g(u1)
with deg(g) divisible by p. A detailed description of how the function u3 can be used
to similar effect in this context is the subject of a forthcoming paper of Stoll and Van
Luijk [StVL].

Proof of Proposition 3.1. Any rational function h ∈ κ(C̄)× defines a homomor-
phism from the group of divisors of C with support disjoint from the support of div(h)
to the multiplicative group of K̄ by

d =
∑

nPP 7→ h(d) =
∏

h(P )nP ∈ K̄× .

If K ′ is some extension of K and h is defined over K ′, then this restricts to give a
homomorphism from the group of K ′-rational divisors with support disjoint from that
of div(h) into K ′×. If f is as in the proposition, then it is defined over A(Ψ) which
splits as a product of extensions of K, so the first statement in the proposition is clear.

For the second, define

φf : Pic(C)→ A(Ψ)×

ι(K×)∂(A(Ω)×)

by setting the value of φf on Ξ ∈ Pic(C) equal to the class of f(d), where d ∈ Div(C)
is any K-rational divisor representing Ξ with support disjoint from Ω and [f ]∞. If this
is well-defined, then it is clearly the unique homomorphism with the stated property.

First we argue that such d exists. This follows from [La, page 166] where it is shown
that any K-rational divisor class which is represented by a K-rational divisor contains
a K-rational divisor avoiding a given finite set (see also [Sik3, footnote to page 4]).
Next we use Weil reciprocity to show that the result does not depend on the choice for
d.

Let h ∈ κ(C)× be any rational function whose zeros and poles are disjoint from
those of all of the fψ. We will show that f(div(h)) ∈ ι(K×)∂(A(Ω)×), from which the
proposition follows. For each ψ ∈ Ψ, the divisor of h is prime to

div(fψ) = [f ]0(ψ)− [f ]∞(ψ) = ψ − [f ]∞(ψ) .
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So by Weil reciprocity,

fψ(div(h)) = h(div(fψ)) =
h([f ]0(ψ))

h([f ]∞(ψ))
.

Interpreting this as a map we have

f(div(h)) =
h([f ]0)

h([f ]∞)
∈ MapK(Ψ, K̄×) = A(Ψ)× .

Define α ∈ MapK(Ω, K̄×) = A(Ω)× by α : Ω 3 ω 7→ h(ω) ∈ K̄×. Now consider
∂(α) ∈ MapK(Ψ, K̄×) = A(Ψ)×. The value of ∂(α) at ψ =

∑
nωω ∈ Ψ is

∂(α)ψ =
∏

α(ω)nω =
∏

h(ω)nω = h(ψ) = h([f ]0(ψ)) .

This shows that h([f ]0) = ∂(α) ∈ ∂(A(Ω)×).
It remains to show that h([f ]∞) ∈ ι(K×). Recall that the value of [f ]∞ on the orbit

O ⊂ Ψ is the divisor dO =
∑
P mO,PP and that mO = gcd(mO,P). The P are closed

points on C. In particular, each is a K-rational divisor and we know how to evaluate h
at P to obtain an element in K×. Extending by linearity we have that the value taken
by h([f ]∞) on any GK-orbit O ⊂ Ψ is

∏
P h(P)mO,P , which is a product of mO,P-th

powers in K×. A product of mO,P-th powers is clearly a gcd(mO,P)-th power, so the
value of h([f ]∞) on O is in K×mO . It follows that h([f ]∞) ∈ ι(K×). This completes the
proof. 2

Remark: Though we will make no use of it here, we point out that one can do slightly
better in the last paragraph of the proof. For a closed point P , use KP to denote the
residue field. Then in fact h(P) ∈ NKP/K(K×P ) ⊂ K×. This means that one may be
able to replace ι(K×) with a proper subgroup. The resulting homomorphism will then
carry more information. For example, suppose C is the double cover of P1 defined by

u2
3 = a2mu

2m
1 + · · ·+ a1u1 + a0 ,

where a2m ∈ K× \ K×2 and set L = K(
√
a2m). Then L is the residue field of the

closed point at ∞. The homomorphism induced by the typical u1 − θ map used to do
a 2-descent factors as:

Pic(C) −→ A×

NL/K(L×)A×2
−→ A×

K×A×2
.

It would be interesting to see if this can also be used to eliminate the ambiguity.

4. How to do a p-descent on an elliptic curve

Let E be an elliptic curve over a number field k and p a prime. In this section we
provide the details of how one can compute the p-Selmer group of E using the ideas
of the previous section. For odd p this was developed in [DSS, SchSt]. It is far more
efficient than the naive algorithm delivered by the proof of theorem 2.2. The claim to
efficiency stems from the fact that rather than working with the p-division field of E,
one works with the algebra obtained by adjoining coordinates of a generic p-torsion
point. Typically this is a field of degree p2 − 1 while the p-division field is of degree
(p2−1)(p2−p). Since the arithmetic computations required have exponential complex-
ity in this degree this gives a significant improvement. With the current state of the
art this gives a practical algorithm for performing 2-, 3- and perhaps even 5-descents
on elliptic curves of reasonable size and over number fields of moderate degree and
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discriminant.

We work again over K, a perfect field of characteristic not equal to p. Let A =
MapK(E[p]\{0E}, K̄) be the étale K-algebra corresponding to the nontrivial p-torsion
points. Let f = (fP ) ∈ κ(C ⊗K A)× be the function described in the example of the
previous section. This induces a homomorphism Φ := PicK(E)→ A×/A×p. Restricting
to the degree 0 part we get a homomorphism Φ : Pic0

K(E) = E(K)→ A×/A×p. We now
describe how this relates to the connecting homomorphism of the Kummer sequence.

Any map φ ∈ Ā = Map(E[p] \ {0E}, K̄) may be extended to a map defined on all
of E[p] by setting φ(0E) = 1. In this way the p-th roots of unity in Ā may be identified
with the GK-set of maps from E[p] to µp that take the value 1 at 0E. Among such
maps there are the homomorphisms, Hom(E[p], µp), which form a GK-subset. Using
the Weil pairing, Hom(E[p], µp) may be identified with E[p]. Taken together, these
identifications give rise to an injection

0→ E[p]
w−→ µp(Ā) .

By a generalization of Hilbert’s Theorem 90, H1(K,µp(Ā)) ' A×/A×p, so there is an

induced map H1(K,E[p])
w∗−→ A×/A×p.

Lemma 4.1. The following diagram commutes.

E(K)

δ &&MMMMMMMMMM
Φ // A×/A×p

H1(K,E[p])

w∗

88ppppppppppp

Proof: This is essentially a cocycle computation. See [Sch2, Theorem 2.3] 2

As mentioned at the beginning of the previous section, for this to be useful one
needs to know that w∗ is injective and be able to describe its image. The map in
question arises from the exact sequence

0→ E[p]
w
↪→ µp(Ā)

q−→ Q→ 0 ,

where Q is used to denote the quotient of µp(Ā) by the image of E[p]. Taking Galois
cohomology we have the exact sequence

µp(A)
q→ H0(K,Q)→ H1(K,E[p])

w∗−→ A×/A×p
q∗−→ H1(K,Q) .

So the kernel of w∗ is the finite group H0(K,Q)/q(µp(A)) and the image of w∗ is equal
to the kernel of q∗. The strategy for describing both of these groups is to develop a

more concrete description of the map µp(Ā)
q→ Q. This amounts to writing down a

GK-module morphism defined on Map(E[p], µp) with kernel equal to the subspace con-
sisting of maps that are homomorphisms.

The case p = 2. Since we are in characteristic 2, a map φ : E[2] → µ2 is a homo-
morphism if and only if

φ(P )φ(Q)φ(P +Q) = φ(0E) = 1, for some (any) basis {P,Q} of E[2] .

For a map φ ∈ µ2(Ā), this condition simply means that N(φ) = 1, where N = NA/K :
Ā→ K̄ is the norm. This gives a short exact sequence

0→ E[2]
w→ µ2(Ā)

N−→ µ2 → 0 .
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Hence, taking Galois cohomology and applying Hilbert’s Theorem 90, we have an exact
sequence9

1→ µ2

N(µ2(A))
→ H1(K,E[2])

w∗→ A×/A×2 N−→ K×/K×2 .

This allows us to determine the kernel of w∗. Since the action of GK on µ2 is trivial,
µ2(A) consists of those maps (E[2] \ {0E}) → µ2 which take constant values on the
GK-orbits. Since the number of non-trivial 2-torsion points is three, there must always
be some orbit of odd order. It is then clear that the norm N : µ2(A)→ µ2 is surjective,
and hence that w∗ is injective.

From the exact sequence it is also clear that the image of w∗ can be identified
with the kernel of the norm on A×/A×2. Taken together this shows that w∗ gives an
isomorphism

H1(K,E[2]) ' ker

(
N :

A×

A×2
→ K×

K×2

)
.

The case p ≥ 3. Assume now that p is an odd prime. The norm condition above
no longer describes the homomorphisms completely. Clearly any homomorphism is
homogeneous of degree 1, i.e. φ(nP ) = nφ(P ) for all n ∈ Z and P ∈ E[p]. Recall
that E[p] is a 2-dimensional Fp-vector space and that the action of GK on E[p] and
all GK-modules derived from it factors through GL2(Fp) (one says such modules have
GL2-action). Being homogeneous of degree 1 means that the action of a central element
αI ∈ GL2(Fp) is multiplication by α. For a GK-module M with GL2-action, use M (1) to
denote the subgroup of elements that are homogeneous of degree 1. With this notation,
we see that w : E[p]→ µp(Ā) actually gives a map w : E[p]→ µp(Ā)(1). One can show
that

H1(K,µp(Ā)(1)) = ker
(
g − σg : A×/A×p → A×/A×p

)
,

where g is a primitive root mod p and σg denotes the map induced on A by the action
of g on E[p] (see [SchSt, 5.2]). Thus the image of w∗ : H1(K,E[p]) → A×/A×p is
contained in this kernel as well.

Now suppose φ : E[p] → µp is homogeneous of degree 1. In order that φ be a
homomorphism it is necessary and sufficient that φ(P )φ(Q) = φ(P + Q) for all P ∈
E[p] \ {0E} and all Q ∈ E[p] \ {nP : n = 1, . . . , p}. Attempting to encode this in
terms of a norm would lead to consideration of the algebra corresponding to the set of
unordered triples of nontrivial p-torsion points that sum to 0E but are not contained
in a line through 0E. This is an algebra of degree 1

6
# GL2(Fp) = 1

6
(p2− 1)(p2− p). The

following lemma characterizes homomorphisms in a way which allows us to get away
with something much smaller.

Lemma 4.2. Let p be an odd prime and φ : F2
p → Fp any map. For φ to be Fp-linear

the following two conditions are necessary and sufficient.

(1) ∀a ∈ Fp, x ∈ F2
p, φ(ax) = aφ(x) (i.e. φ is homogeneous of degree 1).

(2)
∑

x∈` φ(x) = 0, for any affine line ` ⊂ F2
p not passing through the origin.

Proof: The necessity of these conditions is obvious. For the sufficiency see [SchSt,
5.7] 2

9One can check that the map induced by N after applying Theorem 90 is indeed the norm.
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Remark: When p = 3, the homogeneity is equivalent to requiring that the sum of the
values on any line through the origin be 0. So together, conditions (1) and (2) amount
to requiring that

∑
x∈` φ(x) = 0 hold for all lines ` ⊂ E[3].

Since the action of GK on E[p] is linear, the set of all affine lines in E[p] is stable
under the action of Galois. Since 0E is fixed, the subset L of those lines not passing 0E
is also GK-stable. Note that L is derived from E[p] \ {0E} as a GK-set in the sense of
section 3. Let B = MapK(L, K̄) be the étale algebra corresponding to L. The induced
norm map (coming from the structure of L as a derived GK-set),

N ′ : A 3 φ 7→
(
` 7→

∏
P∈`

φ(P )
)
∈ B ,

encodes the second condition in 4.2. Namely, a map φ ∈ µp(Ā)(1) is a homomorphism
if and only if N ′(φ) = 1. Thus one has an exact sequence

0→ E[p]→ µp(Ā)(1) N ′−→ µp(B̄)(1) .

Schaefer and Stoll have proven that this sequence remains exact when H1(K,−) is
applied [SchSt, Proposition 5.8]. So there is an exact sequence

H1(K,E[p])→ H1(K,µp(Ā)(1))
N ′−→ H1(K,µp(B̄)(1)) .

Hence the image of H1(K,E[p]) in A×/A×p is equal to

ker
(
g − σg : A×/A×p → A×/A×p

)
∩ ker

(
N ′ : A×/A×p → B×/B×p

)
.

Remark: There are a total of p(p + 1) lines (in E[p]), with exactly p + 1 passing
through any given point, from which it follows that #L = p2− 1. So B is a product of
fields of degree at most p2 − 1 over K. To perform second p-descents we need a norm
condition to cut out a space of affine maps. Since these maps no longer have a fixed
point, we no longer have a reasonable notion of homogeneity. This forces us to use a
larger algebra analogous to that mentioned preceding lemma 4.2 (see section II.2).

The proof that w∗ is injective is somewhat more involved than in the case p = 2.
The action of GK on E[p] corresponds to some conjugacy class of subgroups in GL2(Fp).
Essentially one classifies these and shows for each that the kernel of the induced map
is trivial. The details can be found in [SchSt, DSS].

Remark: To define w∗ : H1(K,E[n])→ A×/A×n there is no need to assume n is prime.
One can show that, when n is any odd integer, w∗ is injective provided the image of the
representation GK → GL2(Z/nZ) giving the action on E[n] has large enough image
[Cr1]. In the number field case, the map may fail to be injective somewhere locally
even if it is globally injective. So this is not particularly well suited to computing the
Selmer group. In general, there is an embedding into a certain quotient of (A⊗K A)×

[CFOSS-I, 3.2]. Generically this algebra will contain a number field of degree O(n4)
over k, making computation of the unramified subgroup impractical. This embedding
is useful, however, when one wants to find explicit models as coverings in projective
space (see [CFOSS-I, -II]).



4. HOW TO DO A p-DESCENT ON AN ELLIPTIC CURVE 33

Computing the unramified subgroup. Now specialize to the case that K = k
is a number field. If we identify H1(k,E[p]) with its image in A×/A×p then for any set
of primes S, we have

H1(k,E[p];S) = H1(k,E[p]) ∩ A(S, p) .

In the case p = 2 this may be computed as the kernel of NA/k : A(S, 2) → k(S, 2)
which, after having computed A(S, 2) and k(S, 2) using theorem 2.3, can be reduced
to linear algebra over F2. For odd p one needs to compute the kernels of g − σg and
N ′ on A(S, p). If one also computes B(S, p) (actually it suffices to deal with B(∅, p) -
see [SchSt, Section 7.1]), then the kernel of N ′ can be computed using linear algebra
over Fp. Alternatively one can compute ker(N ′) by checking directly which elements in
the image are p-th powers in B. At least in the case p = 3, the map g − σg coincides
with the norm to a certain subalgebra. As such it is also amenable to computation via
linear algebra. In any event, computation of A(S, p) will dominate the running time.
This leads to the following result, already alluded to at the beginning of the previous
section.

Theorem 4.3. Let E be an elliptic curve over k, p a prime and S a finite set
of primes (containing all infinite primes if p = 2). The cohomology group H1(k,E[p])
embeds in A×/A×p and there is an effective procedure for computing H1(k,E[p];S) (as
a subgroup of A×/A×p) which is efficient modulo computation of A(S, p).

From the unramified subgroup to the Selmer group. We know the p-Selmer
group is contained in H1(k,E[p];S) for an appropriate finite set of primes S. The next
result gives a more precise statement. It also has the practical benefit of showing that
we can usually take S to be a rather small set of primes.

Theorem 4.4. Let S be the set of primes of k containing all primes above p, all
primes v such that the Tamagawa number of E at v is divisible by p, and all archimedean
primes if p = 2. Then

Sel(p)(E/k) = {ξ ∈ H1(k,E[p];S) | ∀v ∈ S, resv(ξ) ∈ δv(E(kv)) } .

This is [SchSt, Proposition 3.2]. We will need a similar statement when we consider
second p-descents. The ingredients of the proof will be the same; once one knows
that the Selmer group is unramified outside S, the result is obtained from a counting
argument outlined in the next two lemmas.

Lemma 4.5. Let v be a non-archimedean prime of k. Then

#E(kv)/pE(kv) = pd ·#E(kv)[p] ,

where d = [kv : Qp] if v lies over p and d = 0 otherwise.

Proof: Using the theory of formal groups, one shows that E(kv) contains a finite
index subgroup isomorphic to the maximal ideal in the ring of integers of kv [Mat].
This allows one to compute the size of the cokernel of multiplication by p. For details
see [Sch1, Lemma 3.8] or [Sch2, Proposition 2.4]. 2

On the other hand, the size of the unramified subgroup of H1(kv, E[p]) can be
computed using the inflation-restriction sequence.
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Lemma 4.6. If v is a non-archimedean prime of k not lying over p, then the size
of the unramified subgroup of H1(kv, E[p]) is equal to #E(kv)[p].

Proof: This is shown in the proof of [Sch1, Lemma 3.1] 2

Since the connecting homomorphism induces an injective map on E(kv)/pE(kv) we
have the following.

Corollary 4.7. For primes v /∈ S, the unramified subgroup of H1(kv, E[p]) is equal
to the image of the connecting homomorphism.

Since we can compute H1(k,E[p];S) using theorem 4.3, the problem of computing
the p-Selmer group is reduced to checking, at the finitely many primes of S, which
of the finitely many elements of H1(k,E[p];S) restrict into the image of E(kv) under
the connecting homomorphism δv : E(kv) → H1(kv, E[p]). This is a finite problem.
The explicit presentation of the connecting homomorphism in terms of the function
f = (fP ) makes it tractable.

Computing the local images. In practice, one makes use of the fact that A
splits as a product of number fields. If {P1, . . . , Pr} are a set of representatives for the
Galois orbits in E[p] \ {0E}, then A '

∏
i k(Pi), where k(Pi) denotes the extension of

k obtained by adjoining the coordinates of Pi. The map f = (fP ) is then determined
by its values at Pi for i = 1, ..., r. So it is enough to choose such a generating set and
at each Pi a rational function fPi defined over k(Pi), with a zero of order p at Pi and
a pole of order p at 0E.

The functions fPi also induce local maps which allow us to determine the image of
δv as a subgroup of A×v /A

×p
v , where A = A⊗kv. At each prime v we have a commutative

diagram of finite dimensional Fp-vector spaces (we have identified E(k) and Pic0
k(E)).

E(k)/pE(k)

��

f // A(S, p)

resv
��

E(kv)/pE(kv)
fv // A×v /A

×p
v

The size of the lower left space is given by lemma 4.5. The horizontal maps are
injective, hence this is also the size of the image of fv. To compute it, it is enough to
find the images of sufficiently many independent elements of Pic0

kv(E) under fv. The
group in the lower right can be determined using Hensel’s lemma and knowledge of the
decomposition of v in the constituent fields of A. To determine the class of any α ∈ A×v
modulo p-th powers it is sufficient to know α up to some finite precision (see III.2.2).
So in practice it is usually easier to determine independence by looking at the images
in A×v /A

×p
v .

Identifying H1(kv, E[p]) with its image in A×v /A
×p
v , the image of fv is the image of the

local connecting homomorphism. Having computed it, its preimage in A(S, p) can be
found using linear algebra. Intersecting these preimages with H1(k,E[p];S) ⊂ A(S, p),
as v runs over S, yields the p-Selmer group. All of these local computations can be
performed very quickly, whence the following result.

Theorem 4.8. Let E be an elliptic curve over k. There is an effective procedure
for computing (a set of elements in A× representing) the p-Selmer group of E which is
efficient modulo computation of A(S, p).



5. THE INTERPRETATION AS n-COVERINGS 35

5. The interpretation as n-coverings

In the preceding sections we have dealt with the n-Selmer group as a purely alge-
braic object. In this section we discuss a geometric interpretation of the n-Selmer group
elements as coverings of the elliptic curve. In addition to the conceptual advantages
offered by a geometric perspective, the ability to represent n-Selmer group elements
as geometric objects yields two important practical benefits. Firstly, it allows search-
ing for points on the coverings. Provided one is able to produce nice models for the
coverings, this should make finding points of large height easier. Secondly, it opens up
the possibility of performing higher descents. This, the primary focus of the thesis, is
taken up in the next two chapters.

The twisting principle. The connection between the Galois cohomology groups
of the preceding sections and the geometric objects we seek is given by the so-called
twisting principle. If A is some algebro-geometric object defined over K, then a twist
of A is an object A′, also defined over K, which is isomorphic to A over some alge-
braic extension of K. Two twists are said to be (K-)isomorphic if they are already
isomorphic over K. The twisting principle states that the set of isomorphism classes of
twists of A/K is classified by the pointed set H1(K,Aut(A)) (The distinguished point
corresponding to the isomorphism class of A). The validity of this ‘principle’ depends,
of course, on the objects considered.

If A′ is a twist of A, then there is an isomorphism φ : A′ → A defined over some
extension of K. One associates to this the map

Gk 3 σ 7→ φσφ−1 ∈ Aut(A) .

One can check that this is a cocycle and that its class in H1(K,Aut(A)) does not
depend on the choice for φ. This gives an injective map from the set of K-isomorphism
classes of twists into H1(K,Aut(A)). If A is a quasi-projective variety then this map
is also surjective, and hence an isomorphism [Ser2, Ch. V, Cor. 2 to Prop. 12]. Thus
given a cocycle ξ ∈ H1(K,Aut(A)), one may form the twist of A by ξ.

Following [CFOSS-I, Section 1] we claim that the map will also be surjective in
all of our applications. Our objects will be quasi-projective K-varieties equipped with
additional structure. To form the twist of such an object, one first forms the twist of the
underlying quasi-projective variety. The additional structure may then be transfered
using the resulting isomorphism.

Torsors. Let G be a commutative algebraic group defined over K. A K-torsor
(T , µ) under G is a twist T of G together with a simply transitive algebraic group
action

µ : G × T → T
of G on T defined over K. An isomorphism of K-torsors T and T ′ under G is an
isomorphism T ' T ′ which is compatible with the action of G. The action of G on
itself by translation gives G the structure of a K-torsor under G and any K-torsor
under G which possesses a K-rational point is K-isomorphic to this trivial torsor.
The automorphism group of this trivial torsor is isomorphic to G. So by the twisting
principle, H1(K,G) classifies the set of K-isomorphism classes of K-torsors under G.

In this way, if E is an elliptic curve over K, then H1(K,E) classifies K-torsors
under E and any class in H1(K,E) can be represented by some smooth, projective and
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absolutely irreducible genus one curve T/K with a simply transitive, Galois equivariant
action of E. This will be a trivial torsor precisely when T (K) 6= ∅. One can express
the group law in H1(K,E) geometrically in terms of these genus one curves [Sil, Exer.
10.2]. With this interpretation, the group H1(K,E) is often referred to as the Weil-
Châtelet group of E/K. Conversely, any smooth, projective and absolutely irreducible
genus one curve T defined over K can be given the structure of a K-torsor under its
Jacobian E. Up to isomorphism, the only possible ambiguity in the choice comes from
the automorphisms of E as an elliptic curve. When the j-invariant of E is neither 0
nor 1728, the only automorphisms are {±1}. In any case, T can be endowed with at
most finitely many non-isomorphic structures of torsor under E. We will usually abuse
notation by writing T for a K-torsor under E when in fact the action of E on T is part
of the data.

Similarly H1(K,E[n]) classifies isomorphism classes of K-torsors under E[n]. Such
an object is a finite GK-set together with a compatible action of E[n] which is simply
transitive. This gives a useful interpretation, but there are also others.

n-coverings. Let C and D be smooth, projective and absolutely irreducible curves
defined over K and π : D → C a finite étale morphism defined over K. We say that
(D, π) is a Galois covering if the group of K̄-automorphisms of D considered as a
scheme over C acts simply transitively on each fiber of π. In this situation we refer to
the group of K̄-automorphisms of the covering as the Galois group. There is a natural
action of GK on these automorphisms. If the Galois group is abelian, then it is a
GK-module and the notions of Galois covering of C with group M and of irreducible
C-torsor under M are synonymous. The term M -covering will also be used to mean a
Galois covering with group M .

If M is any finite GK-module and D → C is an M -covering, then it follows from
the twisting principle that the set of isomorphism classes of Galois coverings of C with
group M is parameterized by H1(K,M). It is important to note that one must assume
the existence of at least one such covering. Even then, there will in general be no canon-
ical choice for a trivial covering. For this reason we interpret the set of isomorphism
classes of M -coverings of C as a principal homogeneous space for H1(K,M) rather
than as a group. The action is given, of course, by twisting. In what follows, we will
primarily be interested in the case where M = E[n].

Definition 5.1. Let C be a smooth, projective and absolutely irreducible curve
defined over K with Jacobian E and n ≥ 2 prime to the characteristic of K. An n-
covering of C over K is a Galois covering of C defined over K with Galois group
isomorphic to E[n]. We denote the set of all K-isomorphism classes of n-coverings of

C defined over K by Cov(n)(C/K).

Geometrically, every n-covering of C is obtained by pulling-back the multiplication
by n map via a suitable embedding of C into the Jacobian. When C = E is an elliptic
curve, every n-covering of E can be viewed as a twist of the multiplication by n map
on E. This gives a canonical choice for the trivial n-covering of E. So Cov(n)(E/K)
is canonically isomorphic to H1(K,E[n]), and as such is considered to be a group. In

general (provided it is nonempty), we consider Cov(n)(C/K) as principal homogeneous
space for H1(K,E[n]) with the action being given by twisting.

Let us quickly reinterpret the Kummer sequence

0→ E(K)/nE(K)
δ→ H1(K,E[n])→ H1(K,E)[n]→ 0
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using the language of torsors and n-coverings. It is evident from the definition of the
connecting homomorphism that a point P ∈ E(K) is mapped to the class of the
n-covering given by

πP : E 3 Q 7→
(
nQ+ P

)
∈ E .

Note that the image of πP on the Mordell-Weil group is the coset πP (E(K)) = P +
nE(K). If (D, π) is an n-covering of E, then by definition (D, π) is a twist of (E, n),
so there is some isomorphism ψ : D → E defined over K̄ such that π = n ◦ ψ. This is
used to give D the structure of torsor under E via the rule

µ(Q, x) = ψ−1 (ψ(x) +Q) ,

the addition taking place on E. The map H1(K,E[n])→ H1(K,E)[n] in the sequence
is the forgetful map sending a covering (D, π) to the class of D (with the action of
E via µ above) in H1(k,E)[n]. A K-torsor under E is trivial precisely when it has a
K-rational point, so the image of E(K)/nE(K) in H1(K,E[n]) consists precisely of
those (isomorphism classes of) n-coverings which have K-rational points.

In particular, this shows that the n-coverings of E partition its K-rational points:

E(K) =
∐

(D,π)∈Cov(n)(E/K)

π(D(K)) .

The nonempty sets in this union are the cosets of nE(K) ⊂ E(K). When K = k is a
number field, these cosets are finite in number. More generally we have the following
fundamental theorem, which goes back to Chevalley and Weil [ChWe].

Theorem 5.2. Let C be a smooth, projective and absolutely irreducible curve defined
over K and M a finite GK-module. Suppose that over K̄ there exists an M-covering of
C. Then every K-rational point P ∈ C(K) is the image of a K-rational point on some
M-covering of C defined over K, which is unique up to K-isomorphism. Moreover,
if K is a number field or the completion of a number field, then only finitely many
isomorphism classes of M-coverings are represented by curves with K-rational points.

Remark: The need to assume that a ‘geometric M -covering’ exists is forced by topol-
ogy. In order that M -coverings exist, M must be a finite quotient of the (étale) funda-
mental group of C.

Composite coverings. Let m,n ≥ 2 be integers not divisible by the characteristic
of K, E an elliptic curve over K and (C, ρ) an n-covering of E. We would like to relate

the sets Cov(m)(C/K) and Cov(mn)(E/K) = H1(K,E[mn]).
There is an exact sequence,

0→ E[m]
i−→ E[mn]

m−→ E[n]→ 0 .

From this we deduce an exact sequence

0→ E(K)[n]

mE(K)[mn]
→ H1(K,E[m])

i∗→ H1(K,E[mn])
m∗→ H1(K,E[n])

α→ H2(K,E[m]) ,

(5.1)

where α is a connecting homomorphism.
We call any (D, π) ∈ H1(K,E[mn]) such that m∗(D, π) = (C, ρ) a lift of (C, ρ) to

an mn-covering. There is a canonical map Cov(m)(C/K) → H1(K,E[mn]), given by
composing the covering maps. If (D′, π′) is an m-covering of C, its image under this
map is the class of (D′, ρ ◦ π) which is an mn-covering of E. The image of this map is
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the set of all lifts of (C, ρ) to an mn-covering. The fibers of this map are parameterized

by the finite group E(K)[n]
mE(K)[mn]

. In this way one reduces the study of mn-coverings of E

to the study of m-coverings of the n-coverings of E.

One can further reduce the problem to the study of n-coverings where n is a prime
power.

Lemma 5.3. Suppose m and n are relatively prime and not divisible by the charac-
teristic of K. Then

H1(K,E[mn]) ' H1(K,E[m])× H1(K,E[n])

Proof: Consider the exact sequence (5.1). Since H1(K,E[n]) is of exponent n and m
is prime to n, the cokernel of m∗ vanishes. The same argument applies to the kernel of
i∗. So (5.1) reduces to the required split exact sequence.

Alternatively one can use that fact that E[mn] and E[m] × E[n] are isomorphic
GK-modules when m and n are relatively prime. 2

In some situations it may be possible that an n-covering of E have no lift to an
mn-covering. The connecting homomorphism α in (5.1) gives the obstruction to finding
a lift. If C is an everywhere locally solvable n-covering of E over a number field k, then
this obstruction vanishes everywhere locally (since the existence of points implies the
existence of a lift). Tate has shown [Ca2, Section 5] that when m is prime, the group
H2(k,E[m]) satisfies the Hasse principle. This means any class in H2(k,E[m]) that is
everywhere locally trivial is trivial. Whence the following result.

Theorem 5.4 (Tate). Suppose E is an elliptic curve over a number field k and
(C, ρ) is an everywhere locally solvable n-covering of E defined over k. Then, for any

prime number p, the set Cov(p)(C/k) is non-empty.

Remark: This result implies that every element ofX(E/k) is divisible by p in H1(k,E)
for every prime p.

The Selmer set. Let C be a smooth, projective and absolutely irreducible curve
defined over a number field k. In order that C(k) 6= ∅, C must have a point over every
completion. For curves of genus 0 it is well known that this is already sufficient. It is
equally well known that this does not hold in general. Theorem 5.2 provides another
obstruction to the existence of k-points: In order that C(k) 6= ∅ it is necessary (and
sufficient) that for any suitable finite Gk-module M there exist an M -covering of C
defined over k with a k-rational point. Such a covering must necessarily be everywhere
locally solvable. With this in mind, we make the following definition.

Definition 5.5. Let C be a smooth, projective and absolutely irreducible curve
defined over a number field k. We define the n-Selmer set of C/k to be the set of all
isomorphism classes of n-coverings of C over k that are everywhere locally solvable:

Sel(n)(C/k) = {(D, π) ∈ Cov(n)(C/k) | for all primes v, D(kv) 6= ∅ } .

It is immediate that
(

Sel(n)(C/k) = ∅
)
⇒
(
C(k) = ∅

)
.

When C = E is an elliptic curve, Sel(n)(E/k) is a subgroup of Cov(n)(E/k) =

H1(k,E[n]). We already defined Sel(n)(E/k) in section 2. Of course the two definitions
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are equivalent: The condition that a class ξ ∈ H1(k,E[n]) restrict into the local im-
age of the connecting homomorphism is equivalent to requiring that every n-covering
representing ξ have a local point.

Similarly, the Tate-Shafarevich groupX(E/k) may be interpreted as the group of
k-isomorphism classes of k-torsors under E that have points everywhere locally. As
such, nontrivial elements are represented by smooth genus one curves over k which
give counter-examples to the Hasse principle.

We can interpret the method for p-descent described in the previous section from
this geometric perspective as well. Let S be the set of bad primes for E given in theorem
4.4. Then H1(k,E[p];S) is the finite set of isomorphism classes p-coverings of E which
have a kv point at all primes v /∈ S. To cut out the Selmer set one needs to determine
which of these are also locally solvable at the primes in S. This was achieved alge-
braically by using the explicit description of the connecting homomorphism in terms of
the function f = (fP ); In principle it could also be accomplished by determining local
solvability of the coverings.

Second descents. Performing a n-descent on E one obtains the finite group
Sel(n)(E/k). Determining the subgroup E(k)/nE(k) ⊂ Sel(n)(E/k) is equivalent to

deciding which of these n-coverings have rational points. If (C, π) ∈ Sel(n)(E/k), then
there is no local obstruction to the existence of a k-rational point on C. But this is
not the only obstruction; C may fail to have a rational point because Sel(n)(C/k) = ∅.
A second n-descent determines the subgroup of Sel(n)(E/k) consisting of coverings for
which this more refined obstruction is also trivial.

Definition 5.6. To do a second n-descent on E means to compute Sel(n)(C/k) for

some (multiple, all) covering(s) (C, π) ∈ Sel(n)(E/k).

It is clear from the definitions that the map

H1(k,E[n2])
n∗−→ H1(k,E[n]) .

sends the n2-Selmer group to the n-Selmer group. So one possibility for computing the
n2-Selmer group is to compute the fiber above each element in Sel(n)(E/k). Up to the

equivalence furnished by the kernel in the exact sequence (5.1), ker(i∗) = E(k)[n]
nE(k)[n2]

, this

is the same as computing Sel(n)(C/k) for each (C, ρ) ∈ Sel(n)(E/k). Since E(k)[n]
nE(k)[n2]

is

finite and (easily) computable, the information one obtains this way is just as good.
Thus one reduces the problem of performing n2-descents on elliptic curves to that of
performing second n-descents.

Remark: In the language of [Ca1], the n-coverings (C, ρ) ∈ Sel(n)(E/k) for which

Sel(n)(C/k) 6= ∅ are the coverings which ‘survive the second descent’. The classes of
such C inX(E/k) form the kernel of the Cassels-Tate pairing onX(E/k)[n]. For the
purposes of bounding the rank of E(k), this kernel and the second descent yield the
same information. However, performing a second n-descent gives more information.
Namely, one should be able to construct explicit models representing the coverings.

The following lemma shows that for the purpose of bounding the rank of the
Mordell-Weil group or the order of the Shafarevich-Tate group one should not need
to perform descents on every element in the Selmer group.
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Lemma 5.7. Let E be an elliptic curve over a number field k, p a prime and suppose
that X(E/k)[p] has order ≤ p2. Then the following are equivalent.

(1) X(E/k)[p∞] = X(E/k)[p] ' Z/pZ× Z/pZ.

(2) There exists (C, π) ∈ Sel(p)(E/k) such that Sel(p)(C/k) = ∅.

Proof: LetN = #
(
X(E/k)[p]

pX(E/k)[p2]

)
be the number of classes in the quotient ofX(E/k)[p]

by the subgroup of elements divisible by p inX(E/k). The Cassels-Tate pairing in-
duces a nondegenerate alternating bilinear form on this quotient. It follows that N is
a square. On the other hand, (1) is equivalent to requiring that N = p2, while (2) is
equivalent to having N > 1. The result follows since p is prime. 2

Remark: Note also that when (1) holds there will be (#E(k)/pE(k))·(p2−1) elements
of the Selmer group satisfying (2), so such an example should not be difficult to find.
One can obviously employ similar tricks when the rank ofX(E/k)[p] is larger or when
p is replaced by a prime power.

6. Projective models

We now want to discuss the possibility of representing these abstractly defined
geometric objects concretely as curves in projective space. We work over a perfect field
K and fix integers m,n ≥ 2 not divisible by the characteristic.

Period, index and genus one normal curves. Let T be a smooth, projective
and absolutely irreducible genus one curve defined over K with Jacobian E. The period,
per(T ), of T is the least positive degree of a K-rational divisor class on T . Equivalently,
T can be endowed with the structure of a torsor under E and per(T ) is the order of this
class in the group H1(K,E) (the order does not depend on the choice of structure). One
defines the index, ind(T ), of T to be the least positive degree of a K-rational divisor
on T . Clearly per(T ) ≤ ind(T ). We will say that T has a period-index obstruction if
the two are not equal. Note also that T (K) 6= ∅ if and only if per(T ) = ind(T ) = 1.

For any K-rational divisor of degree n ≥ 2 on T , the associated complete linear
system gives rise to a morphism from T to Pn−1 defined over K. For n = 2 this results
in a double cover of P1 ramified in four points, which gives an (affine) model for T of
the form y2 = f(x) where f ∈ K[x]. One can arrange to have deg(f) = 4 by changing
coordinates so that the covering is not ramified above ∞ ∈ P1. Such an object (or
the normalized model in the (1, 2, 1)-weighted projective plane) is called a genus one
normal curve of degree 2. For n ≥ 3, the complete linear system yields an embedding
T ↪→ Pn−1. The image is called a genus one normal curve of degree n. For n = 3, the
image of T is a plane cubic curve. For larger n, the homogeneous ideal of the image
is generated by a K-vector space of quadrics of dimension n(n− 3)/2. For the sake of
completeness, we will say that a genus one normal curve of degree 1 is a curve given
by a Weierstrass equation y2 = f(x) with f separable and of degree 3. One easily sees
that T admits a model as a genus one normal curve of degree n if and only if ind(T )
divides n.

More generally, the complete linear system associated to any K-rational divisor
class on T of degree n ≥ 2 gives rise to a K-morphism T → S from T to a Brauer-
Severi variety S of dimension n− 1 (see [Ser1, p. 160], [CFOSS-I, 1.20], [Cl, Section
3]). Conversely, if T → S is such a morphism, then over K̄ we have that S ' Pn−1.
Assuming T is not contained in any hyperplane, the pull-back of the hyperplane class
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is a K-rational divisor class on T of degree n. Such a morphism exists if and only if
per(T ) divides n.

This leads to the notions of torsor divisor class pairs and Brauer-Severi diagrams.
The data for a torsor divisor class pair consists of a K-torsor T under E and a K-
rational divisor class of degree n on T . The corresponding morphism T → S is called
a Brauer-Severi diagram. In [CFOSS-I, Section 1] it is shown that, up to appropriate
notions of isomorphism, torsor divisor class pairs and Brauer-Severi diagrams are both
parameterized by the group H1(K,E[n]). Recall that this group also parameterizes n-
coverings of E. If (C, ρ) is an n-covering, then there exists an isomorphism ψ : C → E
defined over K̄ such that ρ = n ◦ψ. This gives C the structure of a K-torsor under E.
The pull-back of n[0E] by ψ defines a K-rational divisor class on C. One can show that
this gives a torsor divisor class pair, whose class in H1(K,E[n]) is the same as that
of (C, ρ). Thus the Brauer-Severi diagram corresponding to (C, ρ) is the map C → S
given by the complete linear system associated to the divisor ψ∗n[0E]. This results in
a model for C as a genus one normal curve of degree n in Pn−1 if and only if ψ∗n[0E]
is linearly equivalent to some K-rational divisor.

The obstruction map. Recall that Pic(T ) is the quotient of the group of K-
rational divisors on T by the group of K-rational principal divisors, while PicK(T ) =
Pic(T̄ )GK is the group of K-rational divisor classes. It follows from Hilbert’s Theorem
90 that the obvious map Pic(T ) → PicK(T ) is injective. In general, however, it is not
surjective. To measure this failure one is naturally led to use Galois cohomology. The
Picard group is defined by the exact sequence

1→ K̄× → κ(T̄ )× → Div(T̄ )→ Pic(T̄ )→ 0 .

Taking Galois invariants, this sequence may no longer be exact. One can deduce an
exact sequence

0→ Pic(T )→ PicK(T )
δT−→ Br(K) ,

where Br(K) denotes the Brauer group of K. The map δT gives the obstruction to a
K-rational divisor class being defined by a K-rational divisor.

Following [CFOSS-I] we define the obstruction map

Obn : H1(K,E[n])→ Br(K)

by Obn(ξ) = δT (Ξ), where (T,Ξ) is any torsor divisor class pair representing the
class ξ ∈ H1(K,E[n]). From this definition we obtain the fundamental property of
the obstruction map that the Brauer-Severi diagram corresponding to an n-covering
(C, ρ) gives a model for C as a genus one normal curve of degree n in Pn−1 if and only
if Obn((C, ρ)) = 0. Conversely, any genus one normal curve T → Pn−1 of degree n,
together with a structure of torsor under E determines a unique isomorphism class of
n-coverings of E with trivial obstruction. Recall also that the torsor structure is unique
up to automorphisms of E (as an algebraic group).

O’Neil has shown [O’N] that the obstruction map is quadratic. This means that,
for any integer a, Obn(aξ) = a2 Obn(ξ) and that the pairing

(ξ, ξ′) 7→ Obn(ξ + ξ′)−Obn(ξ)−Obn(ξ′)

is bilinear. The pairing is in fact the cup product associated to the Weil pairing on
E[n], i.e. the composition

∪n : H1(K,E[n])× H1(K,E[n])
∪−→ H2(K,E[n]⊗ E[n])

en−→ H2(K,µn) ' Br(K)[n] .
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Extension to Cov(n)(C/K). We now allow n ≥ 1 with the convention that a 1-
covering is the identity map. Let (C, ρ) be an n-covering of E defined over K. We would
like to extend the obstruction map to the set of isomorphism classes ofm-coverings of C.
To do this, we simply compose with the canonical map Cov(m)(C/K)→ H1(K,E[mn])
that is given by composing the covering maps. We denote the resulting map,

Cov(m)(C/K)→ H1(K,E[mn])
Obmn−→ Br(K) ,

also by Obmn. The reader is cautioned that this map and, consequently, the set in the
following definition depend on the structure of C as an n-covering of E. This slight
abuse of notation should cause no confusion.

Definition 6.1. We say that an m-covering π : D → C has trivial obstruction if
its image under Obmn is trivial. We use

Cov
(m)
0 (C/K) := {(D, π) ∈ Cov(m)(C/K) : Obmn((D, π)) = 0}

to denote the set of isomorphism classes of m-coverings of C with trivial obstruction.

The obstruction maps of levels m, n and mn are related in the following lemma.

From this one sees that Cov
(m)
0 (C/K) = ∅ if Obn((C, ρ)) 6= 0, and, in the particular

case m = n, that Obn2 ◦i∗ = 0.

Lemma 6.2. The following diagram commutes.

H1(K,E[m])
i∗ //

Obm
��

H1(K,E[mn])
m∗ //

Obmn
��

H1(K,E[n])

Obn
��

Br(K)[m]
n // Br(K)[mn]

m // Br(K)[n]

Proof: One can prove this using the compatibility of the Weil pairings of levels mn
and n and the fact that the bilinear form associated to the obstruction map is the Weil
pairing cup product. For details see [CS, Proposition 6]. 2

Remark: The obstruction map for n-coverings is closely related to the period-index
obstruction for the underlying curves. If T is a K-torsor under E of period dividing mn,
then T has index dividing mn if and only if there is a map π : T → E making T into an
mn-covering of E with trivial obstruction. In particular, if per(C) = ind(C) = n, then

Cov
(m)
0 (C/K) 6= ∅ implies that there is some T ∈ H1(K,E) with trivial period-index

obstruction such that mT = C. However, if (D, π) is an m-covering of C and D has
no period-index obstruction it is not in general true that (D, π) has trivial obstruction
(even for C = E).

If D is a smooth, projective and absolutely irreducible curve over K and D(K) 6= ∅,
then Pic(D) = PicK(D). If K is a number field and D is everywhere locally solvable,
then this is the case everywhere locally. From the exact sequence Pic(D)→ PicK(D)→
Br(D) and the local-global principle for the Brauer group we see that the existence of
points everywhere locally implies that Pic(D) = PicK(D). This is a result of Cassels
[Ca2, Theorem 1.2]. It follows that an m-covering π : D → C has trivial obstruction
if D(K) 6= ∅ or if K is a number field and D is everywhere locally solvable. In partic-
ular, the elements of the m-Selmer set (resp. m-Selmer group if C = E) have trivial
obstruction.
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Remark: Recall the exact sequence E(K)
δ→ H1(K,E[n]) → H1(K,E)[n] → 0. Since

the image of δ consists of those classes of n-coverings which have a K-rational point,
it is tempting to think that Obn should factor through H1(K,E)[n]. However, the
obstruction map is not a homomorphism, so this need not be the case (cf. the previous
remark).

The following lemma gives an alternative characterization of the obstruction map
when m = n which will be fundamental to our definition of the descent map in the
next chapter.

Lemma 6.3. Let ρ : C → E be an n-covering defined over K, set X = ρ−1(0E)

and let (D, π) ∈ Cov(n)(C/K). Then (D, π) has trivial obstruction if and only if there

exists a model for D as a genus one normal curve of degree n2 in Pn2−1 defined over
K with the property that the pull-back of any x ∈ X by π is a hyperplane section.

Proof: Fix isomorphisms ψD : D → E and ψC : C → E (defined over K̄) such that
the diagram

D

ψD
��

π // C

ψC
��

ρ // E

E n
// E n

// E

commutes. By definition (D, π) has trivial obstruction if and only if ψ∗D(n2[0E]) is
linearly equivalent to some K-rational divisor. On the other hand, D admits a model
as in the statement of the lemma if and only if π∗[x] is linearly equivalent to some K-
rational divisor, for each x ∈ X. It thus suffices to show, for all x ∈ X, that ψ∗D(n2[0E])
and π∗[x] are linearly equivalent. For this we may work geometrically. The problem is
then equivalent to showing that for any n-torsion point P ∈ E[n], the pull-back of P
under the multiplication by n isogeny is linearly equivalent to n2[0E]. This follows from
the well-known fact that two divisors on an elliptic curve are linearly equivalent if and
only if they have the same degree and the same sum. Indeed, the divisors in question
both have degree n2 and sum to 0E in the group E(K̄). 2

Computing models explicitly. Let E be an elliptic curve over K. We have the

rather abstractly defined subset Cov
(n)
0 (E/K) ⊂ H1(K,E[n]) of isomorphism classes

of n-coverings that admit a model as a genus one normal curve of degree n. On the
other hand, when p is prime, we have a more concrete realization of H1(K,E[p]) as
a subgroup of A×/A×p, where A is the étale K-algebra associated to the non-trivial

p-torsion points of E. Given a ∈ A× representing a class in Cov
(p)
0 (E/K), one would

like to be able to explicitly compute a set of defining equations.
The main result of [CFOSS-I, -II] is a method for doing just that. In fact they

allow n to be an arbitrary integer greater than 2, the situation for 2-descent having
been well-known for some time (e.g. [Ca4, Section 15]). In section 4 we remarked
that for arbitrary n, H1(K,E[n]) can be embedded in a quotient of the étale K-algebra
R× := MapK(E[n]×E[n], K̄×). It is from this algebraic presentation that they compute
models explicitly. When n is prime it is also shown how to obtain representatives in
R× from the subgroup of A×/A×n computed by the method described in section 4. So
taken together these give a method for performing explicit p-descents.
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For their method to work, they require access to a ‘Black Box’ which, given struc-
ture constants for a K-algebra known to be isomorphic to Matn(K), computes an
isomorphism explicitly. This allows them to ‘trivialize’ the obstruction algebra associ-

ated to a class in Cov
(n)
0 (E/K). For n = 2 this amounts to finding a point on a conic.

For n = 3 and K = Q there is a practical method for performing the role of the ‘Black
Box’ which is part of the 3-descent implementation in MAGMA. The details of this are
to be discussed in [CFOSS-III].

We summarize their result in the following theorem. While this becomes the starting
point for our second p-descents, the details of the method itself will not be needed in
what follows. It appears to be a feature of second descents that the explicit construction
of models requires far less work.

Theorem 6.4. Given a ‘Black Box’ as above, a Weierstrass equation for E and
some element in R× representing an n-covering (C, ρ) of E with trivial obstruction, we
can explicitly compute a set of defining equations for the image of the Brauer-Severi
diagram C → Pn−1 corresponding to (C, ρ). This produces a genus one normal curve
of degree n defined by:

• an equation y2 = f(x) with f ∈ K[x] separable of degree 4, when n = 2;
• a ternary cubic form with coefficients in K, when n = 3;
• a set of n(n− 3)/2 linearly independent quadrics over K when n ≥ 4.



CHAPTER II

The Descent Map

Let p be a prime, K a perfect field of characteristic not equal to p, E an elliptic
curve over K and ρ : C → E a p-covering of E. In this chapter we study the set

Cov
(p)
0 (C/K) of isomorphism classes of p-coverings of C with trivial obstruction. The

main tool here is the descent map (defined in section 3). Much like the situation for

p-descents on elliptic curves, this allows us to embed Cov
(p)
0 (C/K) into a quotient of

some étale algebra. When K is a number field, this set contains the p-Selmer set so this
becomes the theoretical foundation for performing second p-descents. For an outline of
the contents of this (and the next) chapter we refer the reader back to the introduction.

Throughout this chapter we make the following assumptions on C.

• Pic(C) = PicK(C), i.e. every K-rational divisor class can be represented by
some K-rational divisor.
• Cov(p)(C/K) 6= ∅, i.e. there exists a p-covering of C defined over K.

Remark: These assumptions are satisfied when K is a number field and C is ev-
erywhere locally solvable. The first is a result of Cassels [Ca2, Theorem 1.2]; it is a
consequence of the local-global principle for the Brauer group of K. The second is a
result of Tate (appearing in the same article of Cassels, lemma 6.1). It is ultimately
a consequence of the local-global principle for H1(K,E[p]). These results were also
mentioned in the previous chapter.

From the second assumption above it follows that (C, ρ) has trivial obstruction.
The Brauer-Severi diagram corresponding to (C, ρ) gives a model for C as a genus one
normal curve of degree p in Pp−1. We fix defining equations of the following form. For
p = 2, C is a double cover of the projective line ramified in four points. We have a
model in the (1, 1, 2)-weighted projective plane given by an equation u2

3 = c · f(u1, u2),
where f(u1, u2) ∈ K[u1, u2] is a binary quartic monic in u1 and c ∈ K×. The typical
affine model is given by setting u2 = 1. For p = 3, C ⊂ P2 is defined by the vanishing
of some ternary cubic form U(u1, u2, u3) ∈ K[u1, u2, u3]. For larger p, the model is as a
(noncomplete) intersection of p(p− 3)/2 quadrics Qi(u1, . . . , up) ∈ K[u1, . . . , up].

Note that the model for C determines the class of (C, ρ) in H1(K,E[p]) up to an
automorphism of E as an elliptic curve. The model together with the structure of C
as a torsor under E determines a unique class in H1(K,E[p]). The torsor structure is
given by fixing an isomorphism ψ : C → E, defined over K̄, such that ρ = p ◦ ψ. The

set Cov
(p)
0 (C/K) studied in this chapter does not, however, depend on this extra data.

In particular, the results of this chapter apply to any genus one normal curve of degree
p satisfying the two assumptions above.
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1. The fake Selmer set

To motivate the coming material, we give here a summary of a naive attempt at
a second p-descent. Those who are familiar with descent on elliptic curves and other
objects would probably consider this to be the obvious thing to try. We do not give
complete proofs here since the purpose is primarily motivational.

Definition 1.1. When p ≥ 3, we say that a point x ∈ C is a flex point if there is
a hyperplane in Pp−1 meeting C in x with multiplicity p. For p = 2, we define the flex
points to be the ramification points of the double cover of P1. In both cases we denote
the set of flex points of C by X.

Remark: The terminology generalizes the classical notion of flex points of plane cubics.

Since the flex points are defined by a geometric property, they are stable under the
action of GK . In other words, X is a GK-set. The action of E on C restricts to an
action of E[p] on X. One can see this by noting that the flex points are precisely the
points of C lying above 0E under the covering map. Thus X is an E[p]-torsor; its class
in H1(K,E[p]) is the same as that of the p-covering (C, ρ) (see [CFOSS-I, Section 1]).
It follows also that #X = p2. We use F (for ‘flex algebra’) to denote the corresponding
étale K-algebra,

F := MapK(X, K̄) ,

and use [x] to denote the map X → Div(C̄) whose value at x ∈ X is the divisor [x].
To perform a p-descent on an elliptic curve, one uses a Galois equivariant family

of functions with zeros of order p at the nontrivial p-torsion points. For performing
descent on C, the analog is a family of functions with zeros of order p at the flex points
of C. To obtain such a function we choose a linear form t̃ ∈ F [u1, ..., up] whose divisor
div(t̃) ∈ Div(C ⊗K F ) = MapK(X,Div(C̄)) is equal to p[x]. Existence follows from the
definition of a flex point. For p = 2 we take the linear form u1 − θu2, where θ denotes
the map sending a flex point to its u1-coordinate in the affine model given by setting
u2 = 1 (cf. the examples following Proposition I.3.1). We then choose some linear form
u ∈ K[u1, . . . , up] which cuts out a divisor on C that is disjoint from X. Their ratio
gives a rational function t := t̃/u ∈ κ(C ⊗K F )×. For p = 2, choosing u = u2 recovers
the function denoted ‘u1 − θ’ in the examples of I.3.

The divisor of t is div(t) = p[x] − div(u). We find ourselves in the situation of
Proposition I.3.1, which yields a homomorphism

Φfake : PicK(C) −→ F×

K×F×p
.

Recall that for a divisor class Ξ ∈ PicK(C), represented by a K-rational divisor
d =

∑
P nP [P ] with support disjoint from X and the zeros of u, Φfake(Ξ) is equal

to the class of
∏
t(P )nP modulo K×F×p. In particular, if P ∈ C(K) = Pic1

K(C) is any
point which is neither a flex nor a pole of t, then its image under this map is given by
evaluating t̃ at some set of coordinates for P in K.

Suppose (D, π) is a p-covering of C with trivial obstruction. Then by lemma I.6.3

there is a model for D in Pp2−1(z1 : · · · : zp2) with the property that the pull-back of
any flex is a hyperplane section. This means we can choose a Galois equivariant family
of linear forms hx ∈ K̄[z1, . . . , zp2 ], indexed by x ∈ X, such that the divisor on D cut
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out by hx is equal to π∗[x]. The Galois equivariance means hσx = hxσ for all σ ∈ GK .
So h = (hx) can be considered as a linear form with coefficients in F cutting out the
divisor π∗[x] on D ⊗K F .

On the other hand, the divisor of t̃ is p[x]. So there exists some δ ∈ F× such that
the relation t̃ ◦ π = δhp holds in the coordinate ring of D ⊗K F . We use this to define
a map

Φ̃fake : Cov
(p)
0 (C/K)→ F×/K×F×p ,

sending (D, π) to the class of δ. Of course one must check that this is well-defined; for
the sake of this discussion we will just assume it (cf. theorem 3.2). We will refer to this
as the fake descent map. This is simply to distinguish it from the map we define with
theorem 3.2 below.

The definition is functorial in the base field and this fake descent map has the
property that if K ⊂ L is any extension and Q ∈ D(L) is an L-rational point, then

Φ̃fake((D, π)) ≡ Φfake(π(Q)) modL×F×pL .

Recall that the p-coverings of C partition its K-rational points. This property says that
the map Φfake : C(K) = Pic1

K(C)→ F×/K×F×p factors through the set of equivalence
classes determined by this partition. Thus it can be used to obtain information on the
p-coverings of C.

Now specialize to the case that K = k is a number field and use Fv to denote F ⊗kv
for a completion kv of k. We have a commutative diagram:

C(k)
Φfake //

��

F×

k×F×pQ
resv

��∏
v C(kv)

Q
Φfake,v //

∏
v

F×v
k×v F

×p
v

We make the following definition.

Definition 1.2. The fake p-Selmer set of C over k is the set

Sel
(p)
fake(C/k) = {δ ∈ F×/k×F×p : resv(δ) ∈ Φfake,v(C(kv)) for all v } .

Remark: For p = 2, this coincides with the definitions in [BS, Sta]. Occasionally
one also sees the additional condition that c · NF/k(δ) ∈ k×2, where c is the leading
coefficient of the binary quartic defining C. While perhaps useful in practice, this is not
needed in the definition since any global element that is everywhere locally a square is
a square and this condition is satisfied for the local images at all primes.

Suppose (D, π) ∈ Sel(p)(C/k), and Φ̃fake((D, π)) = δ. Then for every v, resv(δ) is

the image under Φfake,v of some kv-rational point on C. This shows that Φ̃fake maps
the p-Selmer set to the fake p-Selmer set. In particular, if the fake Selmer set is empty,
then so are both Sel(p)(C/k) and C(k).

When p = 2 it is known (we recover a proof in section 6) that the fake descent map
is two1 to one onto its image. Each fiber consists of a pair of coverings which differ

1If C has a k-rational flex point, then actually the map is injective. This case is however uninter-
esting; in addition to having an obvious k-rational point, C is trivial as a 2-covering of its Jacobian.
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only by the hyperelliptic involution on C. In particular, the two underlying curves are
k-isomorphic.

The condition that some δ in the image of Φ̃fake lie in Sel
(2)
fake(C/k) is that, for

each prime v, at least one of the two 2-coverings in the fiber above δ has a kv-point.
However, since the two 2-coverings are k-isomorphic, either both have a kv-point or

neither does. This allows one to conclude that Φ̃fake : Sel(2)(C/k) → Sel
(2)
fake(C/k) is

surjective. Thus, computing the fake 2-Selmer set gives an effective means of performing
a second 2-descent.

Those familiar with second 2-descents (or 2-descents on hyperelliptic curves) will
recall that the ambiguity ultimately comes down to a choice of square root of c ·
NF/k(δ) ∈ k×2. For larger p, the fibers can also be seen as parameterizing choices of
p-th roots, but now in a certain k-algebra (subject to various conditions and up to a
certain equivalence - cf. corollary 5.5). Consequently, the fibers can be larger and less
well-behaved. Moreover, the argument above no longer works since the coverings in a
given fiber need not be k-isomorphic as curves.

To deal with these issues, we need to somehow tease out the information ignored
by this fake descent map. Ultimately, this will require us to use a descent map induced
by Galois equivariant families of functions on C whose zero divisors may be supported
on multiple points of X, perhaps with higher multiplicities. For example, in the case
p = 2, the ambiguity can be eliminated by using the additional function u3/u

2
2 ∈ κ(C̄)×,

whose zero divisor is the sum of the four flex points. In practice this is hardly necessary,
but it is indicative of the situation for odd p.

2. The linear part of the descent map

Throughout this section we work over K, an arbitrary field of characteristic not
equal to p, keeping the notation and assumptions laid out above. In this section we
suppress covering maps from the notation: when we write D ∈ Cov(p)(C/K) it is im-
plicit that this means the class of some covering π : D → C.

Since we have assumed that there exists a p-covering of C, the set Cov(p)(C/K)
is a principal homogeneous space for H1(k,E[p]) (cf. Definition I.5.1). The action of a
class represented by a cocycle ξ on a covering D is given by twisting. We use Dξ to
denote the twist of D by ξ. Both D and ξ have canonical images in H1(k,E[p2]) and
the action of twisting coincides with the group law there. Namely, the image of Dξ is
the sum of the images of D and ξ. The obstruction map Obn was defined in section
I.6. We now identify how this changes under the action of twisting.

Lemma 2.1. For D ∈ Cov(p)(C/K) and ξ ∈ H1(K,E[p]) we have

Obp2(Dξ) = C ∪p ξ + Obp2(D) ,

where ∪n denotes the cup product associated to the Weil pairing of level n.

Remark: Rewriting this as C ∪p ξ = Obp2(D+ ξ)−Obp2(D), we can interpret the cup
product C ∪p ξ as the directional derivative of Obp2 along ξ.

Proof: For the proof, we identify D, Dξ and ξ with their images in H1(K,E[p2]). We
know that Obn is quadratic, and that the associated bilinear form is given by ∪n (see
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I.6). This means that

D ∪p2 ξ = Obp2(Dξ)−Obp2(D)−Obp2(ξ) .

The compatibility of the obstruction maps of different levels (lemma I.6.2) shows that
Obp2(ξ) = 0. On the other hand, the Weil pairings of levels mn and n satisfy the
compatibility condition (see [Sil, III.8]):

for all S ∈ E[mn] and T ∈ E[m] , emn(S, T ) = em(nS, T ) .

For the cup product on the left-hand side above this means

D ∪p2 ξ = (p∗D) ∪p ξ = C ∪p ξ ,

which completes the proof. 2

We use C⊥ to denote the annihilator of C with respect to ∪p, i.e.

C⊥ = {ξ ∈ H1(K,E[p]) : C ∪p ξ = 0 } .

Corollary 2.2. The set Cov
(p)
0 (C/K) is either empty or is a principal homoge-

neous space for C⊥ ⊂ H1(K,E[p]).

Proof: This is clear from the lemma and the fact that the action of H1(K,E[p]) on

Cov(p)(C/K) is compatible with the group law in H1(K,E[p2]) 2

Affine Maps. As noted above, the set X of flex points has the structure of a K-
torsor under E[p]. As such, X may be identified with the affine space underlying the
2-dimensional Fp-vector space E[p]. The action of GK on X factors through the affine
general linear group, which is an extension of the general linear group by the group of
translations:

1→ E[p]→ AGL(X)→ GL(E[p])→ 1 .

Here E[p] acts on X by translations and GL(E[p]) acts on E[p] in the obvious way.

In general, if V,W are vector spaces and A denotes the affine space underlying V ,
then a map φ : A→ W is said to be affine if, for all x ∈ A and P,Q ∈ V, one has

φ(x+ P +Q) + φ(x) = φ(x+ P ) + φ(x+Q) .

Geometrically, this says that the sums of the values of φ on the two pairs of opposite
vertices of any parallelogram in A are equal. We define Aff(A,W ) to be the vector
space of affine maps from A to W .

Given an affine map φ : A→ W and x ∈ A, we can obtain a linear map Λφ,x : V →
W by ‘projecting onto the linear part’. This is defined by Λφ,x(P ) = φ(x+ P )− φ(x).

Lemma 2.3. Λφ,x is linear and does not depend on the choice for x.

Proof: First we show that Λφ,x is independent of x. For this let x′ ∈ A be any other
point. There is a uniquely determined Q ∈ V such that x′ = x + Q. Then for any
P ∈ V ,

Λφ,x(P )− Λφ,x′(P ) = φ(x+ P )− φ(x)− φ(x+ P +Q) + φ(x+Q) ,
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which is equal to 0, since φ is affine. To show Λφ = Λφ,x is linear, let P ′ ∈ V . Then
using that φ is affine

Λφ(P + P ′) = φ(x+ P + P ′)− φ(x)

= φ(x+ P ) + φ(x+ P ′)− 2φ(x)

= Λφ(P ) + Λφ(P ′) .

2

This projection gives rise to a surjective linear map Aff(A,W )→ Hom(V,W ). One
can easily verify that the kernel is the space of constant maps. Thus we have an exact
sequence

0→ W → Aff(A,W )→ Hom(V,W )→ 0 .

Now return to the case V = E[p] and A = X. We consider µp as an Fp-vector space
written multiplicatively. It naturally embeds in Aff(X,µp) as the subspace of constant
maps. The group Aff(X,µp) itself may be identified with a subgroup of Map(X, K̄). As
such it inherits a natural action of GK . We have a short exact sequence of GK-modules

1→ µp → Aff(X,µp)→ Hom(E[p], µp)→ 0 .(2.1)

The GK-module E[p] is self-dual via the Weil pairing. Namely, we can identify E[p]
with Hom(E[p], µp) via

E[p] 3 P 7→ ep(P,−) ∈ Hom(E[p], µp) .

Remark: Alternatively, one can make this identification using P ↔ ep(−, P ). Since
the Weil pairing is alternating, the two differ by a sign. This controls the factor of
−1 in the next lemma. We have made our choice in deference to the formulation of
proposition 4.1 below.

Making this identification in the exact sequence (2.1) above and taking Galois
cohomology we obtain an exact sequence

H1(K,µp)→ H1(K,Aff(X,µp))→ H1(K,E[p])
Υ−→ Br(K)[p] .(2.2)

Here we have also identified H2(K,µp) with the p-torsion in the Brauer group of K.
The next lemma identifies C⊥ with the kernel of Υ.

Lemma 2.4. Υ(ξ) = −C ∪p ξ.

Remark: We may consider Cov(p)(C/K) as the affine space underlying the Fp-vector

space H1(K,E[p]). With this interpretation the obstruction map Obp2 : Cov(p)(C/K)→
Br(K)[p] is affine, as one can see from lemma 2.1. Lemma 2.4 identifies Υ (up to sign)
as the corresponding linear map obtained by projecting.

Proof: Recall that ρ : C → E denotes the covering map and that ψ : C → E is an
isomorphism (defined over some extension of K) such that p ◦ψ = ρ. For any σ ∈ GK ,
the map ψσ−ψ corresponds to translation by an element of E[p]. This defines a cocycle
representing the class of C in H1(K,E[p]). The cup product −C ∪p ξ is the class of the
2-cocycle

GK ×GK 3 (σ, τ) 7→ ep(ψ − ψτ , ξτσ) ∈ µp .
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Now let ξ ∈ H1(K,E[p]). Υ is a connecting homomorphism, so to compute Υ(ξ)
we first choose a lift of ξ to a cochain with values in Aff(X,µp). For any P ∈ E[p], we
claim that the map φP : X 3 x 7→ ep(P, ψ(x)) ∈ µp is affine and that its image under
Aff(X,µp) → E[p] is P . To see that it is affine, let x ∈ X and Q,R ∈ E[p]. Using
bilinearity of the Weil pairing we have

φP (x+Q+R) · φP (x) = ep(P, ψ(x+Q+R)) · ep(P, ψ(x))

= ep(P, ψ(x) +Q+R) · ep(P, ψ(x))

= ep(P, ψ(x) +Q) · ep(P, ψ(x) +R)

= φP (x+Q) · φP (x+R) .

The image of φP in Hom(E[p], µp) is given by projecting onto the linear part. This is
the map

R 7→ φP (x+R)/φP (x) = ep(P, ψ(x) +R)/ep(P, ψ(x)) = ep(P,R) .

The identification of E[p] with Hom(E[p], µp) is given by

E[p] 3 P ↔ ep(P,−) ∈ Hom(E[p], µp) ,

so the image of φP in E[p] is P .
Thus Υ(ξ) is given by the coboundary of the cochain σ 7→ ep(ξσ, ψ) = ep(−ψ, ξσ) ∈

Aff(X,µp). Here ep(−ψ, ξσ) is the map x 7→ ep(−ψ(x), ξσ). The value of the coboundary
on a pair (σ, τ) ∈ GK ×GK is given by

ep(−ψ, ξσ)τ · ep(−ψ, ξτ )
ep(−ψ, ξστ )

=
ep(−ψτ , ξτσ)

ep(−ψ, ξτσ)
= ep(ψ − ψτ , ξτσ) .

This is the same as the cup product computed above, so the lemma is proven. 2

When is Cov
(p)
0 (C/k) nonempty? The material of this subsection will not be

needed in what follows. Suppose C is defined over a number field k and is everywhere

locally solvable. It is natural to ask if Cov
(p)
0 (C/k) is always nonempty. If so, then every

element ofX(E/k)[p] lifts (under multiplication by p) to an element in H1(k,E)[p2] of
index dividing p2 (cf. the remark following lemma I.6.2). We offer the following answer
in the case p = 2.

Theorem 2.5. If C ∈ Sel(2)(E/k), then Cov
(2)
0 (C/k) 6= ∅.

Proof: To begin with let p be an arbitrary prime. Since we have assumed C to have
points everywhere locally we have Obp(C) = 0. From this and the compatibility of
Obp and Obp2 (see I.6.2) it follows that the obstruction algebra associated to any

D ∈ Cov(p)(C/k) is actually p-torsion. So from lemma 2.4 it follows that the image of

Obp2 : Cov(p)(C/k)→ Br(k)[p] is a coset of the image of Υ. Evidently, Cov
(p)
0 (C/k) 6= ∅

if and only if this coset is equal to the image of Υ.
Extending the exact sequence (2.2) defining Υ we have

H1(k,Aff(X,µp))→ H1(k,E[p])
Υ−→ Br(k)[p]

α−→ H2(k,Aff(X,µp)) .

By exactness, the image of Υ is the kernel of α. The discussion above shows that
the composition α ◦ Obp2 : Cov(p)(C/k) → H2(k,Aff(X,µp)) is constant, equal to say

a ∈ H2(k,Aff(X,µp)). Morevover, Cov
(p)
0 (C/k) 6= ∅ if and only if a = 0. For any prime

v, we also see that Cov
(p)
0 (C/kv) 6= ∅ if and only if resv(a) = 0.
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On the other hand, for each prime v, there exists some Dv ∈ Cov(p)(C/kv) with
Dv(kv) 6= ∅. Such a covering must have trivial obstruction (over kv), so everywhere

locally Cov
(p)
0 (C/kv) 6= ∅. Consequently a ∈ H2(k,Aff(X,µp)) is everywhere locally

trivial. To prove the proposition it is enough to show that H2(k,Aff(X,µ2)) satisfies
the Hasse principle, i.e. any class in H2(k,Aff(X,µ2)) that is everywhere locally trivial
is trivial.

For the moment we will continue to work with an arbitrary prime p. To ease notation
let M = Aff(X,µp). By Poitou-Tate duality [CoN, 8.6.7], the Hasse principle holds
or fails simultaneously for H2(k,M) and H1(k,M∨), where M∨ = Hom(M,µp). Our
strategy is to write down a map from H1(k,M∨) to a group known to satisfy the Hasse
principle. The kernel of this map is finite and depends only on the action of Gk on the
flex points of C. For fixed p there are only finitely many possibilities for the action, and
for each, the kernel can be computed. For p = 2 it turns out that the map is always
injective.

Let R = Mapk(M, k̄) be the algebra of all Gk-equivariant maps from M to k̄ and
let Q denote the quotient of µp(R̄) = Map(M,µp) by the subspace consisting of maps
that are homomorphisms. Then we have an exact sequence

0→M∨ → µp(R̄)
q→ Q→ 0 .

Taking the Galois cohomology of this sequence over k and its completions we obtain a
diagram with exact rows

µp(R)

��

q // H0(k,Q)

��

// H1(k,M∨)

��

// H1(k, µp(R̄))

��∏
v µp(Rv)

Q
qv //
∏

v H0(kv, Q) //
∏

v H1(kv,M
∨) //

∏
v H1(kv, µp(R̄))

The Grunwald-Wang theorem [CoN, 9.1.11], implies that the rightmost vertical map
is injective. So if H1(k,M∨)→ H1(k, µp(R̄)) is injective, then the Hasse principle holds
for H1(k,M∨).

The action of Gk on X factors through the affine general linear group AGL2(Fp)
and determines the action on µp. The actions of Gk on X, µp and any modules derived
from the two (e.g. M∨ and µp(R̄)) depend only on its image in AGL2(Fp). If this is
denoted by G, then we have a commutative diagram with exact rows:

H0(k, µp(R̄))
q // H0(k,Q) // H1(k,M∨) // H1(k, µp(R̄))

H0(G, µp(R̄))
q // H0(G, Q) // H1(G,M∨) // H1(G, µp(R̄))

The kernel of the map H1(k,M∨) → H1(k, µp(R̄)) is thus isomorphic to the finite
group H0(G, Q)/q(H0(G, µp(R̄))). Note also that this only depends on the conjugacy
class of G in AGL2(Fp). For a subgroup H ⊂ AGL2(Fp), let us use R(H) to denote
H0(H,Q)/q(H0(H,µp(R̄))).

The proof of the proposition is thus reduced to verification of the following state-
ment:

For any subgroup H ⊂ AGL2(F2) ' S4 we have R(H) = 0.



2. THE LINEAR PART OF THE DESCENT MAP 53

Up to conjugacy there are 11 subgroups of S4. For each H, R(H) is a combinatorial
object that can be computed using linear algebra over F2. We have performed this
computation in MAGMA and verified, for each H, that R(H) = 0. 2

For odd p, this Hasse principle can fail - we have the following example. The cubic
curve

C : x3 + x2z + 5xy2 − 4xyz − 9xz2 + 2y3 − 2y2z + 9yz2 − 6z3 = 0

defined over Q is everywhere locally solvable. If F ′ denotes the extension of Q obtained
by adjoining the coordinates of all flex points of C, then its Galois group G = Gal(F ′|Q)
is an extension of Z/2Z by Z/3Z × Z/3Z. The subgroup G′ = Z/3Z × Z/3Z acts
transitively on X and the quotient corresponds to adjoining the cube roots of unity
to Q. A computation as in the lemma shows that R(G) ' R(G′) 6= 0 and that up
to conjugacy these are the only subgroups of AGL2(F3) with this property. Above
any prime v of Q there are at least 3 primes of F ′ (only the ramified primes need
to be checked), so all decomposition groups are of index ≥ 3 in G. In particular,
none of them are isomorphic to G or G′. So, for each v, R(Gv) = 0 and the Hasse
principle must fail. Indeed, the kernels ofR(G)→

∏
vR(Gv) and H1(Q,Aff(X,µ3)∨)→∏

H1(Qv,Aff(X,µ3)∨) are isomorphic.
Of course this does not tell us that there are no 3-coverings of C with trivial obstruc-

tion and, for the curve in question, this is not the case. With corollary 5.4 below we give

a concrete algebraic realization of Cov
(3)
0 (C/k) as a subquotient of some étale k-algebra

defined by certain norm conditions. For the curve above one can check that these norm

conditions are satisfiable and so Cov
(3)
0 (C/k) 6= ∅. Our gut feeling is that Theorem 2.5

should fail for odd p, but it seems very difficult to produce counter-examples.

Making cohomology groups explicit. We have identified C⊥ with the kernel
of Υ. By exactness of the sequence (2.2) defining Υ, this is the same as the image
of H1(K,Aff(X,µp)) in H1(K,E[p]). This suggests that we should look for a practical
description of H1(K,Aff(X,µp)).

Recall that F denotes the flex algebra MapK(X, K̄) and that µp(F̄ ) = Map(X,µp).
We have a canonical monomorphism Aff(X,µp) ↪→ µp(F̄ ); this is simply the observa-
tion that an affine map is a map. To obtain a description of H1(K,Aff(X,µp)) we want
to extend this to a short exact sequence and take its Galois cohomology. To make this
useful, we need a better description of the quotient.

The case p = 2. A map is affine if the products of its values on either pair of
opposite vertices of a parallelogram in X are the same. For p = 2, there is only one
(nondegenerate) parallelogram in X. The norm map NF/K : F → K takes φ ∈ F̄ =
Map(X, K̄) to the product of its values on all vertices of this parallelogram. It is
then easy to see that a map φ ∈ F̄× = Map(X, K̄×) is in Aff(X,µ2) if and only if
φ2 = NF/K(φ) = 1. To encode this, we define a map

∂ : F 3 φ 7→ (φ2, NF/K(φ)) ∈ F ×K .

Lemma 2.6. We have (∂F̄×)GK = {(δ, ε) ∈ F× ×K× |NF/K(δ) = ε2 } and

H1(K,Aff(X,µ2)) ' (∂F̄×)GK

∂F×
.
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Proof: It was noted above that the kernel of ∂ on F̄× is the group of affine maps to
µ2. This gives an exact sequence

1→ Aff(X,µ2)→ F̄×
∂→ ∂F̄× → 1 .

Its long exact sequence, together with Hilbert’s Theorem 90, gives

F×
∂→ (∂F̄×)GK → H1(K,Aff(X,µ2))→ H1(K, F̄×) = 0 ,

from which the second statement follows. The description of (∂F̄×)GK is clear. 2

Remark: One should think of (∂F̄×)GK as the set of elements in F× which have square
norm, together with a choice of square root for this norm.

Remark: Let Y ⊂ Div(C̄) be the set containing the divisor
∑

x∈X [x] and the divisors,
2[x] for x ∈ X. Then Y is a GK-set derived from X. Its corresponding étale K-algebra
is isomorphic to F ×K and ∂ : F → F ×K is simply the ‘induced norm map’ defined
in section I.3.

The case p ≥ 3. Now assume p is odd. We want to characterize the affine maps as
above. One way would be to write down a map which encodes the property defining
affine maps. This would lead to consideration of a K-algebra of degree O(p6). We would
like to get away with less. The following easy lemma does this in the case p = 3.

Lemma 2.7. A map φ : A2
F3
→ F3 is affine if and only if

∑
x∈` φ(x) = 0 for every

affine line ` ⊂ A2
F3

.

Proof: Easy. This also follows from lemma 2.8 below. 2

Remark: When p > 3 there are maps with this property that fail to be affine. This is
because the map obtained by a projection as in lemma 2.3 may fail to be homogeneous
of degree one (cf. lemma I.4.2).

The affine lines in A2
F3

correspond to the 12 unordered triples of points of the form

{x, x+ P, x− P} ,
where x ∈ A2

F3
, 0 6= P ∈ F2

3 and x ± P denotes the translate of x by ±P . So the
property in the lemma can be rewritten as

φ(x+ P ) + φ(x− P ) = −φ(x) = 2φ(x) , for all x ∈ A2
F3

and P ∈ F2
3 \ {0}.

Recall that a map is affine if the sums of its values on the two pairs of opposite vertices
of any parallelogram are equal. The condition above expresses this for the degenerate
parallelograms where one pair of opposite vertices coincide.

Lemma 2.8. Let p be an odd prime and φ : A2
Fp → Fp. In order that φ be affine it

is necessary and sufficient that

φ(x+ P ) + φ(x− P ) = 2φ(x) ,

for all x ∈ A2
Fp and P ∈ F2

p \ {0}.

Proof: The necessity of this condition is clear from the discussion above. To show
sufficiency, assume the condition is satisfied and let S, T ∈ F2

p and x ∈ A2
Fp . We must

show that φ(x+ S + T ) + φ(x) = φ(x+ S) + φ(x+ T ).
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Using the condition on the pairs (x + S, T ), (x + T, S), (x, S − T ) ∈ A2
Fp × F2

p we
get

φ(x+ S + T ) = 2φ(x+ S)− φ(x+ S − T )

φ(x+ S + T ) = 2φ(x+ T )− φ(x+ T − S)

2φ(x) = φ(x+ (S − T )) + φ(x− (S − T ))

Summing these yields,

2φ(x+ S + T ) + 2φ(x) = 2φ(x+ S) + 2φ(x+ T ) ,

which gives the result since 2 is invertible, as p is assumed to be odd. 2

In order to cut out the affine maps Aff(X,µp) ⊂ µp(F̄ ) we would like to write down
a ‘norm map’ that encodes this condition. To set up for an eventual application of
proposition I.3.1 we want to describe this in terms of divisors on C.

Lemma 2.9. The set of divisors of the form (p−2)[x] + [x+P ] + [x−P ] ∈ Div(C̄),
with x ∈ X and P ∈ E[p], is a GK-stable set of hyperplane sections of C.

Proof: The fact that these divisors form a GK-set is obvious, since both the flex
points of C and the p-torsion points of E are themselves GK-sets. To see that they
are hyperplane sections, we may work geometrically, considering C as an elliptic curve
with some flex x0 ∈ X as distinguished point. Note that the flex points are then
the p-torsion points on the elliptic curve (C, x0). Since the model for C is given by the
embedding corresponding to the complete linear system |p[x0]|, the hyperplane sections
are precisely those divisors linearly equivalent to p[x0]. That the divisors in the lemma
are hyperplane sections is then a consequence of the well-known fact that two divisors
on an elliptic curve are linearly equivalent if and only if they have the same degree and
the same sum. 2

Before proceeding, we fix some notation. We use Y to denote the set of hyperplanes
in the lemma. It is a GK-set and we denote its corresponding étale K-algebra by H (for
‘hyperplane algebra’). Note that Y is derived from X in the sense described in section
I.3. As a GK-set, Y splits as a disjoint union of (at least) two GK-stable subsets. The
first consists of the p2 hyperplane sections of the form p[x] with x ∈ X. These divisors
correspond to pairs (x, P ) with P = 0. The other consists of those y ∈ Y associated to
some pair (x, P ) with P 6= 0. These two GK-subsets will be denoted by Y1 and Y2; their
corresponding étaleK-algebras will be denoted byH1 andH2. AsGK-sets,X and Y1 are
isomorphic and so we will identify F with H1. Thus H splits as H ' H1×H2 ' F×H2.

For p = 3, Y2 consists of the 12 lines of P2 that pass through three distinct flex

points of C. For p ≥ 5, X × E[p]\{0E}
{±1} and Y2 are isomorphic as GK-sets, a pair (x, P )

corresponding to the hyperplane section (p−2)[x] + [x+P ] + [x−P ]. From this we see
that #Y2 = p2(p2 − 1)/2. There is a canonical projection Y2 3 (x, P ) 7→ x ∈ X. Thus,
for p ≥ 5, H2 may be viewed as an F -algebra of degree (p2 − 1)/2.

Since Y is derived from X as a GK-set, we have an induced norm map (see section
I.3):

∂ : F 3 φ 7→
(
y 7→

∏
x∈y

φ(x)
)
∈ H .
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The product appearing here is to be taken with appropriate multiplicities. So, for ex-
ample, the value of ∂(φ) on the divisor

(
(p − 2)[x] + [x + P ] + [x − P ]

)
∈ Y is the

product φ(x)p−2φ(x+ P )φ(x− P ).

Using the characterization of affine maps given by lemma 2.8 we have the following
analog of lemma 2.6.

Lemma 2.10.

H1(K,Aff(X,µp)) '
(∂F̄×)GK

∂F×
.

Proof: By lemma 2.8, a map φ ∈ F̄× is an affine map to µp if and only if the product
of its values on any hyperplane section y ∈ Y is 1 (i.e. if and only if it lies in the kernel
of ∂). This gives an exact sequence

1→ Aff(X,µp)→ F̄×
∂→ ∂F̄× → 1 .

The result then follows by taking the long exact sequence and using Hilbert’s Theorem
90 as in 2.6. 2

Remark: Under the splitting, H ' F ×H2, ∂ splits as ∂ = ∂1 × ∂2, where the ∂i are
induced by the structure of Yi as a GK-set derived from X. Since ∂1(φ) = φp, we have
that

(∂F̄×)GK ⊂ {(δ, ε) ∈ F× ×H×2 : ∂2(δ) = εp } .
In the case p = 2 this was sufficient to describe (∂F̄×)GK . For odd p equality need not
hold in general. One may still, however, think of (∂F̄×)GK as a subset of elements of
F× with p-th power norm (in H×2 ) together with a(n appropriate) choice of p-th root
(cf. lemmas 5.3, 5.5 ).

The notation above can be made compatible with that for p = 2 used in the remark
following lemma 2.6. Namely, we take Y1 to be the set of divisors of C that are of the
form 2[x] for some x ∈ X and Y2 the be the set consisting of the divisor

∑
x∈X [x]. Then

H ' H1 × H2 ' F × K and the induced norm is the same as the map ∂ : F → H
appearing in lemma 2.6.

Combining the results above, we obtain the following description of C⊥ valid for
both even and odd p. Similar statements have appeared in the literature for p = 2,
most notably [Fi4, Theorem 4.1].

Corollary 2.11. There is an isomorphism C⊥ ' (∂F̄×)GK/K×∂F×, where for
odd p (resp. p = 2) we identify K× with its image in H× ' F××H×2 under the diagonal
embedding ιp : α 7→ (α, α) (resp. the embedding ι2 : α 7→ (α, α2)).

Proof: Lemma 2.4 shows that C⊥ is isomorphic to H1(K,Aff(X,µp)) modulo the
image of H1(K,µp). Lemma 2.10 (for p = 2, use 2.6) and Hilbert’s Theorem 90 allow
us to identify these groups with (∂F̄×)GK/∂F× and K×/K×p, respectively. We only
need to show that the identifications are compatible.

Set p̃ = deg(∂2). Thus p̃ = p for odd p and p̃ = 2p otherwise. Noting that K̄ ⊂ F̄ =
Map(X, K̄) consists of the constant maps we see that, for α ∈ K̄, ∂(α) = (αp, αp̃) ∈
F̄ × H̄2. For any p, we have the following commutative diagram, where ιp is the map
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in the statement of the lemma.

1 // µp //
� _

��

K̄×
p //

� _

��

K̄× //
� _

ιp

��

1

1 // Aff(X,µp) // F̄×
∂ // ∂F̄× // 1

The identifications are made by taking Galois cohomology and using that, by Hilbert’s
Theorem 90, H1(K,−) of the middle terms vanish. From this compatibility is clear. 2

From now on, we will always assume K× is embedded in H× using the map in the
lemma.

3. The descent map

Recall (corollary 2.2) that Cov
(p)
0 (C/K) is a principal homogeneous space for C⊥.

We have already obtained a more or less concrete description of C⊥ as a subgroup of

H×/K×∂F×. The goal now is to give an equally explicit description of Cov
(p)
0 (C/K)

as a coset of C⊥ inside H×/K×∂F×. This will be achieved by our descent map.

The strategy here will be similar to that used in defining the fake descent map. Re-
call the Galois equivariant family of functions t = (tx) ∈ κ(C⊗KF )× used to define this.
The zero divisor of t is the map p[x], where [x] ∈ Div(C ⊗K F ) = MapK(X,Div(C̄))
denotes the map whose value at x ∈ X is the divisor [x]. Similarly we use [y] to denote
the element of Div(C ⊗K H) = MapK(Y,Div(C̄)) whose value at y ∈ Y is the divi-
sor y ∈ Div(C̄). The material of the preceding section indicates that for p-descent on
C we want a Galois equivariant family of functions defined over H with zero divisor [y].

First assume p is odd. By lemma 2.9, the divisors in Y are all hyperplane sections
of C. So we can proceed exactly as in section 1. Namely, we choose a linear form
˜̀ ∈ H[u1, . . . , up] cutting out the divisor [y]. We then choose any linear form u ∈
K[u1, . . . , up] cutting out a divisor on C that is disjoint from X to obtain a rational

function ` = ˜̀/u ∈ κ(C ⊗K H)× with

div(`) = [y]− div(u) .

For p = 2, we use the function denoted (u1 − θ, u3) in the examples of I.3.1. The
notation there was in terms of the affine model. In terms of the weighted projective
model, we define ` ∈ κ(C ⊗K H)× = MapK(Y, κ(C̄)×) as the map

y 7→
{

(u1 − θxu2)/u2 if y = 2[x], and
u3/u

2
2 if y =

∑
x∈X [x],

where the binary quartic defining C factors as f(u1, u2) =
∏

x(u1 − θxu2). Note that
u3 has weight 2, so u3/u

2
2 is indeed a rational function on C. To make the notation

compatible with that for odd p, we set ˜̀= (u1 − θu2, u3). One is tempted to refer to ˜̀

as a linear form with coefficients in H = F ×K (even though u3 is not linear). So as to
avoid making constant distinctions between even and odd p we will allow ourselves this
abuse of terminology. We also set u = u2 ∈ K[u1, u2]. Recalling that K is embedded in

H = F ×K using the map α 7→ (α, α2) it makes sense to write ` = ˜̀/u.
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Proposition 3.1. The function ` induces a unique homomorphism

Φ : PicK(C)→ H×/K×∂F× ,

with the property that the image of any divisor class is given by evaluating ` at any
K-rational representative with support disjoint from X and div(u).

Proof: This follows directly from Proposition I.3.1. 2

Remark: Under the splitting Y = Y1

∐
Y2, we have H ' F × H2 and ` corresponds

to a pair of rational functions (`1, `2) defined over F and H2. The divisor of `1 is
p[x]− div(u). This means that the fake map Φfake factors as

Φfake : PicK(C)
Φ−→ H×

K×∂F×
pr1−→ F×

K×F×p
,

where pr1 is the map induced by projection onto the first factor. So any unproven
statements appearing in section 1 can be readily deduced from the material presented
here by simply ignoring the second factor of H.

Identifying Pic1
K(C) with C(K) we can think of Φ as giving a map on the K-points

of C. For the points outside X and div(u), this is simply given by evaluating `. Note
also that the homomorphism does not depend on the choice for u. So if we like, we
may determine the image of a point by evaluating ˜̀ on some choice of homogeneous
coordinates. For this reason we may refer to ˜̀ as the linear form defining the descent
map in the following theorem.

Theorem 3.2. The choice of linear form ˜̀ determines a unique well-defined map
(called the descent map)

Φ̃ : Cov
(p)
0 (C/K) −→ H×/K×∂F×

with the following property. If (D, π) ∈ Cov
(p)
0 (C/K) and K ⊂ L is any extension of

fields with Q ∈ D(L), then

Φ̃((D, π)) ≡ Φ(π(Q)) modL×∂F×L .

In particular, if D(K) 6= ∅, then Φ̃((D, π)) is the image of some K-rational point of C
under Φ.

Remark: Recall that Cov
(p)
0 (C/K) yields a partition of the K-rational points of C,

C(K) =
∐

(D,π)∈Cov
(p)
0 (C/K)

π(D(K)) .

The defining property says that Φ : C(K) → H×/K×∂F× is constant on each of the
sets appearing in this partition and that the value on each is equal to the image of the
corresponding covering under the descent map.

Proof: Let (D, π) ∈ Cov
(p)
0 (C/K). By assumption we have a model for (D, π) as a

genus one normal curve of degree p2 in Pp2−1 = Pp2−1(z1 : · · · : zp2), where π is defined
by homogeneous polynomials, πi ∈ K[z1, . . . , zp2 ] and the pull-back of any flex point x
on C is a hyperplane section hx of D. For any x, hx can be defined by the vanishing
of some linear form hx ∈ K̄[z1, . . . , zp2 ]. Moreover, we can choose these hx to form a
Galois equivariant family. Thus they may be patched together to obtain a linear form
h ∈ F [z1, . . . , zp2 ] cutting out the divisor π∗[x] on D ⊗K F .
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Since the zero divisor of ` is [y] = ∂[x] ∈ Div(C ⊗K H) we see that ∂h and ˜̀◦ π
cut out the same divisor on D. It follows that the rational functions ` ◦π and ∂h/u ◦π
have the same divisor. Hence there exists some ∆ ∈ H× such that

` ◦ π = ∆ ·
(

∂h

u ◦ π

)
in κ(D ⊗K H)×.(3.1)

We define the image of Φ̃((D, π)) to be the class of ∆ ∈ H×/K×∂F×.
A different choice of forms defining π would change the left-hand side of (3.1) by

a factor in K×. Similarly, a different choice for the form h = (hx)x∈X defining (hx)x∈X
would change the right-hand side of (3.1) by a factor in ∂F×. Thus, having fixed the

model for (D, π) in Pp2−1 we get a well-defined element of H×/K×∂F×.
Let us show that this does not depend on the model. Suppose (D′, π′) is isomorphic

to (D, π), and choose a model for (D′, π′) in Pp2−1 as genus one normal curve. As
above, choose a linear form h′ ∈ F [z1, . . . , zp2 ] cutting out the divisors π′∗[x] on D′.
By assumption we have an isomorphism of coverings ϕ : D′ → D defined over K (i.e.
such that π′ = π ◦ ϕ). Let ϕ∗ : κ(D ⊗K H) → κ(D′ ⊗K H) denote the isomorphism
of function fields induced by ϕ. Applying ϕ∗ to equation (3.1), we obtain a relation in
κ(D′ ⊗K H),

∆ ·
(
∂(h ◦ ϕ)

u ◦ π′

)
= ϕ∗

(
∆ ·
(

∂h

u ◦ π

))
= ϕ∗(` ◦ π) = ` ◦ π ◦ ϕ = ` ◦ π′ .(3.2)

The divisor on D′ cut out by h ◦ ϕ is π′∗[x], so the extremal terms in (3.2) define the
image of (D′, π′) under the descent map. Thus the image of (D′, π′) is also the class of
∆, which shows that Φ̃ is well-defined.

It remains to show that Φ̃ has the stated property. For this let Q ∈ D(L) be a point
defined over some extension L of K. We can find an L-rational divisor d =

∑
i niQi

on D linearly equivalent to [Q] and such that the support of d contains no points
lying above the flex points of C or the zeros of u. The divisor [π(Q)] on C is linearly
equivalent to the L-rational divisor π∗d :=

∑
i ni[π(Qi)] (e.g. [Sil, II.3.6]). So Φ(π(Q))

is represented by `(π∗d). On the other hand, the relation (3.1) defining ∆ gives,

`(π∗d) = ∆ ·
(

∂h

u ◦ π

)
(d) ,

since deg(d) = 1. Now since d is L-rational,
(
∂h
u◦π

)
(d) ∈ L×∂F×L . So Φ(π(Q)) is repre-

sented by ∆ as required.
2

In what follows we will refer to a linear form h ∈ F [z1, . . . , zp2 ] as in the proof (i.e.
such that π∗[x] = div(h)) as a linear form defining the pull-back of a generic flex. Recall

that ` is defined as the ratio ` = ˜̀/u. If (D, π) ∈ Cov
(p)
0 (C/K) and h is a linear form

defining the pull-back of a generic flex (on some model of (D, π)), then the image of
(D, π) under the descent map is also represented by the ∆ ∈ H× satisfying the relation

˜̀◦ π = ∆∂h

in the coordinate ring of D.
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4. Injectivity of the descent map

The fake descent map factors through the descent map as

Φ̃fake : Cov
(p)
0 (C/K)

Φ̃−→ H×

K×∂F×
pr1−→ F×

K×F×p
.

So the descent map carries more information. In this section we show that this extra
information is enough to eliminate any ambiguity.

Proposition 4.1. Let (D, π) ∈ Cov
(p)
0 (C/K), ξ ∈ C⊥ and (D, π) · ξ be the twist of

(D, π) by ξ. Then

Φ̃((D, π) · ξ) = Φ̃((D, π)) · Φ̃0(ξ) ∈ H×/K×∂F× ,

where Φ̃0 : C⊥ ' (∂F̄×)GK/K×∂F× is the isomorphism given by corollary 2.11.

Recall that C⊥ acts simply transitively on Cov
(p)
0 (C/K) by twisting. The proposi-

tion shows that the image of C⊥ under Φ̃0 acts on the image of Cov
(p)
0 (C/K) under Φ̃

by multiplication and that the pair (Φ̃, Φ̃0) respects these two actions. Since Φ̃0 is an
isomorphism, we deduce the following.

Corollary 4.2. Assume Cov
(p)
0 (C/K) is nonempty. Then the descent map is

an affine isomorphism (i.e. isomorphism of principal homogeneous spaces). In par-

ticular Φ̃ : Cov
(p)
0 (C/K) → H×/K×∂F× is injective, and its image is a coset of

(∂F̄×)GK/K×∂F× inside H×/K×∂F×.

Before giving the proof, it will be useful to put together a diagram. For any x0 ∈ X
and P ∈ E[p], the Weil pairing on E[p] gives a map

φP,x0 : X 3 x 7→ ep(P, x− x0) ∈ µp ,

where x− x0 denotes the unique T ∈ E[p] such that x0 + T = x. A different choice for
x0 gives a map which differs by a constant factor. Thus, the image of φP,x0 in

µp(F̄ )/µp = Map(X,µp)/{constant maps}

depends only on P . Nondegeneracy of the Weil pairing shows that distinct choices for
P lead to distinct maps. Thus we have an embedding E[p] ↪→ µp(F̄ )/µp.

Recall that the kernel of ∂|F̄× is the space of affine maps to µp. Since ∂1 is just the
p-th power map, the space of affine maps is also equal to the kernel of ∂2|µp(F̄ ). Since

the constant maps are affine, ∂2 induces a map on µp(F̄ )/µp. For any P ∈ E[p] and
x0 ∈ X, the map φP,x0 is affine (cf. the proof of 2.4). Now, by counting dimensions for
example, we see that the sequence

0→ E[p]→ µp(F̄ )/µp
∂2−→ µp(H̄2)

is exact.
We also have an exact sequence

1→ Aff(X,µp)→ µp(F̄ )
∂2−→ µp(H̄2) .

We claim that the two are compatible in the sense that following diagram commutes.
The map Aff(X,µp) → E[p] is given by projecting an affine map onto its linear part
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and then identifying E[p] with its dual using the Weil pairing (so the vertical sequence
on the left is (2.1), considered in the discussion leading up to lemma 2.4).

1

��

1

��
µp

��

µp

��

1 // Aff(X,µp) //

��

µp(F̄ )

��

∂2 // ∂2

(
µp(F̄ )

)
// 1

0 // E[p] //

��

µp(F̄ )/µp

��

∂2 // ∂2

(
µp(F̄ )

)
// 1

0 1

Note that the rows and columns are exact.

Lemma 4.3. The diagram commutes.

Proof: We only need to show that the lower-left square commutes, the rest being
obvious. Let φ : x 7→ φ(x) be an affine map. Choose some x0 ∈ X. Projection onto the
linear part is the map Λφ : P 7→ φ(x0 +P )/φ(x0). Identifying E[p] with its dual via the
Weil pairing, Λφ is the unique R ∈ E[p] such that, for all P ∈ E[p], φ(x0 +P )/φ(x0) =
ep(R,P ). The image of this R in µp(F̄ )/µp is the class of the map φR,x0 : x 7→ ep(R, x−
x0). By the property defining R, this is equal to the map x 7→ φ(x0 +(x−x0))/φ(x0) =
φ(x)/φ(x0). Modulo constant maps, this is the same as the image of φ in µp(F̄ ), so the
diagram commutes. 2

Remark: When p = 2 the diagram has the curious property that it is self-dual upon
reflection about the obvious diagonal (e.g. Aff(X,µ2) and µ2(F̄ )/µ2 are dual as GK-
modules). For odd p, a simple dimension count shows this is no longer the case.

For the proof of the proposition, we will make use of an alternative description of
the embedding E[p] ↪→ µp(F̄ )/µp.

Lemma 4.4. Let D ∈ Cov
(p)
0 (C/K̄) (nb: over K̄, not K) and let h denote a linear

form (with coefficients in F̄ ) defining the pull-back of the generic flex point on C. For
any R ∈ E[p], the image of R under the composition E[p] ↪→ µp(F̄ )/µp ↪→ F̄×/K̄×

is equal to the class of h(Q+R)
h(Q)

, where Q ∈ D is any point chosen so that h(Q) and

h(Q+R) are both defined and nonzero.

Proof: Let ψ : C → E be the isomorphism (defined over K̄) such that p ◦ ψ = ρ
and let x0 be the preimage of 0E under ψ. Further, let Q0 be any preimage of x0 on D
and ψD : D → E be the isomorphism defined (over K̄) by Q 7→ (Q− Q0). We have a
commutative diagram,

E

p

��

D

π

��

ψDoo

E C
ψ

oo
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If x is a flex point, evaluating the coefficients of h at x gives a linear form hx defining
the pull-back of [x] by π. Consider the function hx/hx0 ∈ κ(D̄)× and its image gx =
(ψ−1

D )∗(hx/hx0) ∈ κ(Ē)×. The divisor of hx/hx0 is π∗[x]− π∗[x0], so by commutativity
div(gx) = p∗[(x − x0)] − p∗[0E]. By definition of the Weil pairing [Sil, III.8], for any
R ∈ E[p],

ep(R, x− x0) =
gx(T +R)

gx(T )
,

where T ∈ E is any point chosen so that both numerator and denominator are defined
and nonzero. Thus, we have

ep(R, x− x0) =
hx(ψ

−1
D (T ) +R)hx0(ψ−1

D (T ))

hx(ψ
−1
D (T ))hx0(ψ−1

D (T ) +R)
.(4.1)

Considered as an element of F̄× = Map(X, K̄×) modulo the constant maps, the right-
hand side of (4.1) is represented by the map

h(ψ−1
D (T ) +R)

h(ψ−1
D (T ))

=

(
x 7→ hx(ψ

−1
D (T ) +R)

hx(ψ
−1
D (T ))

)
.

On the other hand, the left-hand side of (4.1) represents the image of R in µp(F̄ )/µp,
so we are done. 2

Proof of Proposition 4.1 Let (D, π), (Dξ, πξ) and ξ be as in the proposition, and

fix models for everything in Pp2−1. We have an isomorphism (of coverings) ϕ : Dξ → D
defined over K̄, with the property that ϕσ(Q) = ϕ(Q) + ξσ for all Q ∈ Dξ and σ ∈ GK .

Choose linear forms h and hξ with coefficients in F defining the pull-backs of the
generic flex by π and πξ, respectively. For some ∆,∆ξ ∈ H×, necessarily representing

the images of (D, π) and (Dξ, πξ) under Φ̃, we have

∆ · ∂h = ˜̀◦ π and ∆ξ · ∂hξ = ˜̀◦ πξ
in the coordinate rings of D and Dξ, respectively. Applying ϕ∗ to the first relation and
comparing with the second gives

∆ · ∂(h ◦ ϕ) = ∆ξ · ∂hξ
in the coordinate ring of Dξ. Specializing to a point Q in Dξ not lying above any flex
point of C (i.e. so that neither hξ nor h ◦ ϕ vanish at Q) we have

∆ξ

∆
= ∂

(h(ϕ(Q))

hξ(Q)

)
∈ (∂F̄×)GK .

Note that hξ(Q) and h(ϕ(Q)) depend on a choice of homogeneous coordinates for Q,
but that their ratio does not. This is GK-invariant since ∆ and ∆ξ are in H×.

Under the isomorphism (∂F̄×)GK/∂F× ' H1(k,Aff(X,µp)) given in lemma 2.10,

∂
(
h(ϕ(Q))
hξ(Q)

)
corresponds to the class of the cocycle

η : GK 3 σ 7→
(
h(ϕ(Q))

hξ(Q)

)σ (
hξ(Q)

h(ϕ(Q))

)
∈ µp(F̄ ) = Map(X,µp) ,

which a priori takes values in Aff(X,µp) ⊂ µp(F̄ ). We need to show that the image of
this cocycle under the map induced by Aff(X,µp) → E[p] is cohomologous to ξ. For
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this we make use of the following commutative diagram

Aff(X,µp)
� � //

��

µp(F̄ ) � � //

��

F̄×

��
E[p] � � // µp(F̄ )/µp

� � // F̄×/K̄×

(4.2)

Since the horizontal maps are all injective, it will be enough to show that, for any
σ ∈ GK , the images of ξσ and ησ in the lower-right corner are equal. For this we will
make use of the preceding lemma.

Using the fact that h and hξ are defined over H and rearranging, we have

ησ =

(
h(ϕσ(Qσ))

h(ϕ(Q))

)(
hξ(Q)

hξ(Qσ)

)
.

Making use of the fact that ϕσ(Qσ) = ϕ(Qσ) + ξσ we can rewrite this as

ησ =

(
h(ϕ(Q) + ξσ + (ϕ(Qσ)− ϕ(Q)) )

h(ϕ(Q))

)(
hξ(Q

σ + (Q−Qσ))

hξ(Qσ)

)
.

By lemma 4.4 this represents the image of

ξσ + (ϕ(Qσ)− ϕ(Q))− (Qσ −Q) ∈ E[p]

under the embedding given by the bottom row of (4.2). But

(ϕ(Qσ)− ϕ(Q))− (Qσ −Q) = 0E

(see [Sil, X.3.5]) so the images of ησ and ξσ in the lower right corner of (4.2) are equal.
From this the proposition follows. 2

We can use a similar argument to prove the following useful lemma. This says that
we could use ` to perform descent on E = Jac(C). In practice, one is likely to have
produced C by performing a descent on E, so this is not going to yield anything new.
It does however allow us to relate the descent on C to the descent on E.

Lemma 4.5. The following diagram is commutative.

Pic0
K(C)

Φ
��

E(K)

δE
��

(∂F̄×)GK

K×∂F×

Φ̃−1
0 // C⊥

� � // H1(K,E[p])

Here δE is the connecting homomorphism from the Kummer sequence associated to E,
and the composition of the bottom row is the map identifying (∂F̄×)GK/K×∂F× with
C⊥ ⊂ H1(K,E[p]).

Proof: Let Ξ ∈ Pic0
K(C) and choose a representative d ∈ Div(C) whose support is

disjoint from X and any zeros of u. Write d as a difference d = d1 − d2 of effective
divisors and write each di as a sum di =

∑n
j=1 Pi,j of n = deg(d1) = deg(d2) (possibly

non-distinct) points on C. Now choose any (D, π) ∈ Cov
(p)
0 (C/K̄) and a linear form

h with coefficients in F̄ defining the pull-back of the generic flex. For each Pi,j in the
support of d, choose a point Qi,j ∈ D such that π(Qi,j) = Pi,j. These choices are such
that, as points on E,

p
(
Qi,j −Qi′,j′

)
=
(
Pi,j − Pi′,j′

)
,
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for any i, j, i′, j′. In particular, p
∑n

j=1(Q1,j − Q2,j) = d. So the image of Ξ under the
connecting homomorphism is given by the cocycle

σ 7→

(
n∑
j=1

(Qσ
1,j −Qσ

2,j)−
n∑
j=1

(Q1,j −Q2,j)

)
∈ E[p] .

On the other hand, the image of Ξ under Φ is represented by

`(d1)

`(d2)
=

n∏
j=1

`(P1,j)

`(P2,j)
.

Choose homogeneous coordinates for the Pi,j which are compatible with the action of
the Galois group (i.e. so that applying σ to the coordinates of Pi,j gives the homogeneous
coordinates for P σ

i,j). The class of Φ(Ξ) is then also represented by∏
j

˜̀(P1,j)
˜̀(P2,j)

∈ H× ,

where ˜̀(Pi,j) now means evaluating the linear form on the given choice of homogeneous
coordinates for Pi,j.

In the coordinate ring of D (over H̄) we have ˜̀◦ π = Φ̃((D, π)) · ∂h. We can fix
forms defining the covering map π and choose homogeneous coordinates for the Qi,j

so that the equality π(Qi,j) = Pi,j is also true for the coordinates chosen. Now since
deg(d) = 0, we have that

n∏
j=1

˜̀(P1,j)
˜̀(P2,j)

=
n∏
j=1

∂h(Q1,j)

∂h(Q2,j)
= ∂

(
n∏
j=1

h(Q1,j)

h(Q2,j)

)
∈ ∂F̄× ,

whereby h(Qi,j) means evaluating h at the given choice of coordinates.
Under the isomorphism (∂F̄×)GK/K×∂F× ' H1(K,Aff(X,µp))/K

×, Φ(Ξ) is sent
to the class of the cocycle

σ 7→ ασ/α ,

where α ∈ F̄× is any element such that ∂α represents Φ(Ξ). The argument above shows

we may take α =
(∏n

j=1
h(Q1,j)

h(Q2,j)

)
. Hence, the image of Ξ in H1(K,Aff(X,µp))/K

× is

represented by the cocycle η sending σ ∈ GK to

ησ =

(
n∏
j=1

h(Q1,j)

h(Q2,j)

)σ

·

(
n∏
j=1

h(Q2,j)

h(Q1,j)

)

=

(
n∏
j=1

hσ(Qσ
1,j)

hσ(Qσ
2,j)

)
·

(
n∏
j=1

h(Q2,j)

h(Q1,j)

)

=

(
n∏
j=1

hσ(Qσ
2,j + (Qσ

1,j −Qσ
2,j))

hσ(Qσ
2,j)

)
·

(
n∏
j=1

h(Q1,j + (Q2,j −Q1,j))

h(Q1,j)

)
Applying lemma 4.4 as in the proof of the proposition, to each factor appearing, we
see that the image of ησ in H1(K,E[p]) is equal to the class of the cocycle

GK 3 σ 7→
n∑
j=1

(
(Qσ

1,j −Qσ
2,j)− ((Q1,j −Q2,j)

)
∈ E[p] .
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This is the same as the image under the connecting homomorphism, so the diagram
commutes. 2

5. Image of the descent map

From the preceding material we know that the image of the descent map is a coset
of (∂F̄×)GK/K×∂F× inside H×/K×∂F×. We would like to say even more.

From here on use HK to denote the image of Cov
(p)
0 (C/K) under the descent

map and H0
K for (∂F̄×)GK/K×∂F×. Note that 2.11 gives an isomorphism C⊥ ' H0

K .

For explicit purposes one prefers to work with representatives in H×. We set H̃0
K =

(∂F̄×)GK ⊂ H×. To achieve the same for HK , let P ∈ C(K̄) be any point that is
neither a flex nor a pole of u. Define H̃K = (`(P ) · ∂F̄×)GK . That this does not depend
on the choice for P is shown in the proof below.

Lemma 5.1. HK = H̃K/K
×∂F×

Proof: To show that H̃K does not depend on P , let P ′ ∈ C(K̄) be any point which

is neither a zero nor a pole of `. Choose (D, π) ∈ Cov
(p)
0 (C/K̄) (nb: over K̄, not K).

Fixing a model for (D, π) and choosing a linear form h defining the pullback of the
generic flex, we get a relation ` ◦ π = ∆(∂h/u ◦ π) in κ(D ⊗K̄ H̄). Choosing points Q,
Q′ lying above P and P ′ we get that

`(P )/`(P ′) =
∂h(Q) · u(P ′)

∂h(Q′) · u(P )
=

(
u(P ′)

u(P )

)
· ∂
(
h(Q)

h(Q′)

)
∈ K̄×∂F̄× = ∂F̄× .

It follows that the coset `(P ) · ∂F̄× does not depend on P . Hence neither does its
GK-invariant subset.

Clearly if H̃K is nonempty, then it is a coset of H̃0
K . So it will suffice to show that(

H̃K 6= ∅
)

=⇒
(
∅ 6= HK ⊂ H̃K/K

×∂F×
)
.

In section 7 we show how to construct representatives for elements of Cov
(p)
0 (C/K)

from elements of H̃K , so we will assume HK 6= ∅.
To show containment, let (D, π) ∈ Cov

(p)
0 (C/K). Its image in HK is defined by a

relation in the coordinate ring of D of the form ˜̀◦ π = ∆∂h. Evaluating at any point
Q ∈ D not lying above a flex or zero of u, we see that ∆ ∈ `(π(Q)) ·∂F̄×. But we know
∆ is Galois invariant, so it must lie in (`(π(Q)) · ∂F̄×)GK = H̃K . 2

The value of this description is that it shows that non-membership in HK is stable
under base change.

Corollary 5.2. Let K ⊂ L be any extension of fields and ∆ ∈ H×. If ∆⊗K 1L ∈
H̃L, then ∆ ∈ H̃K. The same is true of HK.

Proof: At least for algebraic extensions (i.e. L ⊂ K̄), this is evident from the fact that
H̃K is defined by taking Galois invariants. One might be able to deduce the general
case from this. We give an alternate proof using geometric methods in 7.16 below. 2

This means we can work over any extension to decide whether an element of H×

represents a class in HK . Over a number field k, this works as follows. We pick a prime
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v of k and compute the images under Φ̃v of all coverings (Dv, πv) ∈ Cov
(p)
0 (C/kv) with

D(kv) 6= ∅ by finding sufficiently many independent points of C(kv), up to sufficiently
high precision, and evaluating ` on them (cf. Section III.2). By the corollary, those
∆ ∈ H×/k×∂F× that restrict into this set necessarily lie in Hk. Those that do not may
still lie in Hk, but are certainly not in the image of the Selmer set under the descent
map. So they can be ignored.

Remark: The analog of this statement for the fake descent map fails. In the case p = 2
for example, in order that δ ∈ F× represent the image of some 2-covering under the
fake descent map it is necessary and sufficient that c ·NF/K(δ) be a square (see below).
This means that every class in F×/K×F×2 is the image of some 2-covering defined over
a quadratic extension of K.

Explicit norm conditions.

The case p = 2. When p = 2, H2 = K and ∂2 is the norm from F to K. We have
seen (lemma 2.6) that

H̃0
K = {(δ, ε) ∈ F× ×H×2 : ∂2(δ) = ε2}

= {(δ, ε) ∈ F× ×K× : NF/K(δ) = ε2 } .

Recall that the model for C is given by u2
3 = c · f(u1, u2) with f monic and of degree

4 in u1. The functions, `1 = (u1 − θu2)/u2 and `2 = u3/u
2
2, used to define the descent

map satisfy c ·NF/K(`1) = `2
2. So H̃K is the coset

H̃K = {(δ, ε) ∈ F× ×K× : c ·NF/K(δ) = ε2 } .

The image of H̃K under the projection to F×/K×F×2 gives the familiar description
(e.g [BS, MSS, Sta]) of the image of the fake descent map as the set

Hfake
K = {δ ∈ F×/K×F×2 : c ·NF/K(δ) ∈ K×2} .

This gives very explicit descriptions of the images of the fake and true descent maps
in terms of a norm condition. We would like something similar for odd p.

The case of odd p. Suppose (δ, ε) ∈ H̃0
K . Then (δ, ε) = (∂1(α), ∂2(α)) for some

α ∈ F̄×. Since ∂1(α) = αp we have

H̃0
K ⊂ {(δ, ε) ∈ F× ×H×2 : ∂2(δ) = εp} .

Already for p = 3 this can be a proper inclusion. To see why suppose (δ, ε) ∈ F××H×2
with ∂2(δ) = εp. Choosing any α ∈ F̄× which is a p-th root of δ we see that ∂2(α) = ηε
for some η ∈ µp(H̄2). In order that (δ, ε) be in H̃0

K we must have that η lies in the
image of ∂2|µp(F̄ ). But for p ≥ 3, ∂2|µp(F̄ ) is not surjective (count dimensions).

Thus, while ε is a p-th root of ∂2(δ), it is not necessarily the case that all p-th roots
will lead to pairs in H̃0

K . One needs to impose extra conditions. We can achieve this for
p = 3 by using the second norm map induced by the structure of Y2 as a GK-module
derived from X (see section I.3). This is the map ∂′2 : H2 → F defined by

H2 = MapK(Y2, K̄) 3 φ 7→
(
x 7→

∏
y:x∈y

φ(y)
)
∈ MapK(X, K̄) = F .
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For p = 3, the value of ∂′2(φ) on a flex point x is the product of the values taken by φ
on the lines (in Y2) passing through x.

Lemma 5.3. For p = 3,

H̃0
K =

{
(δ, ε) ∈ F× ×H×2 : ∂2(δ) = ε3 and ∂′2(ε) = δ ·

(
NH2/K(ε)

NF/K(δ)

)}
.

Since H̃K is a coset, we have the following description.

Corollary 5.4. For p = 3, there exist constants β ∈ H×2 and β′ ∈ F× such that

H̃K =

{
(δ, ε) ∈ F× ×H×2 : ∂2(δ) = βε3 and ∂′2(ε) = β′δ ·

(
NH2/K(ε)

NF/K(δ)

)}
.

Proof: The proof makes use of the following two identities. For any φ ∈ F̄×,

∂′2∂2(φ) = φ3NF/K(φ) and NH2/K∂2(φ) = NF/K(φ)4 .

To prove these one considers intersection divisors on C. In the first identity, the value
of the left-hand side at a given flex x is the product (with multiplicities) of the values
of φ on the points lying on the lines passing through x. Every point of X other than
x lies on exactly one of these lines while x lies on all four. Thus in the product, the
value at x appears with multiplicity four, while the values at all other flexes occur with
multiplicity one. This is evidently equal to the value of the right-hand side at x. One
proves the second identity similarly.

Now suppose that (δ, ε) = (∂1(α), ∂2(α)) ∈ H̃0
K . Applying the identities to α we see

that ∂′2(ε) = δNF/K(α) and NH2/K(ε) = NF/K(δ)NF/K(α). Whence, H̃0
K is contained

in the set in the statement.
For the other inclusion suppose that (δ, ε) is in the set in the statement. Let α ∈ F̄×

be any cube root of δ. Then ∂2(α) = ηε, for some η ∈ µ3(H̄2). It is enough to show
η = ∂2(ζ) for some ζ ∈ µ3(F̄ ), for then (δ, ε) = ∂(αζ−1) ∈ (∂F̄×)GK = H̃0

K .
Using linear algebra over F3 one can easily check (preferably using a computer)

that
im
(
∂2 |µ3(F̄ )

)
= ker

(
∂′2 −NH2/K |µ3(H̄2)

)
(actually, the identities above show “⊂” so one only needs to determine the dimension
of the kernel). So we have to show ∂′2(η) = NH2/K(η).

Applying ∂′2 to ∂2(α) = ηε we obtain

∂′2∂2(α) = ∂′2(η)∂′2(ε) = ∂′2(η)δ ·
(
NH2/K(ε)

NF/K(δ)

)
Using the first identity the left-hand side is equal to δNF/K(α). Using the second
identity the right-hand side becomes

∂′2(η)δ ·
(
NH2/K(ε)

NF/K(δ)

)
= ∂′2(η)δ ·

(
NH2/K(∂2(α))

NH2/K(η)NF/K(α3)

)
= δNF/K(α) ·

(
∂′2(η)

NH2/K(η)

)
.

Comparing this with the left hand side we conclude ∂′2(η) = NH2/K(η) as required.

To prove the corollary, we argue as follows. The divisor cut out by ˜̀
1 is 3[x], while

that cut out by ˜̀
2 is ∂2[x]. So in the coordinate ring of C ⊗K H2 there is a relation

∂2(˜̀
1) = β ˜̀3

2, which determines β ∈ H×2 . Similarly NF/K(˜̀
1) · ∂′2(˜̀

2) and ˜̀
1 ·NH2/K(˜̀

2)
cut out the same divisor on C. So β′ ∈ F× can be computed by taking their ratio
modulo the ideal generated by the homogeneous cubic defining C. 2
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For general p arguing similarly we obtain the following. These constants will be
used in the algorithm presented in Chapter III.

Lemma 5.5. There exist constants c ∈ K× and β ∈ H×2 such that any (δ, ε) ∈ HK

satisfies NF/K(δ) ≡ c modK×p and ∂2(δ) = βεp.

Proof: The existence of β is proven exactly as in the lemma above. For the first
condition note that the divisor on C defined by NF/k(˜̀

1) is p times the divisor
∑

x∈X [x].
The divisor

∑
x∈X [x] is itself cut out by some form g ∈ K[u1, . . . , up] of degree p. Thus,

there is some c ∈ K×, such that in the coordinate ring of C

NF/K
˜̀
1 = c · gp .

Arguing as above, we see that all (δ, ε) ∈ HK satisfy the relation in the statement. 2

Remark: In the case p = 3, one may take g to be the determinant of the Hessian
matrix of the homogeneous cubic defining C and the choice is unique up to scalar
multiple. In general there may be many choices. In any event, the class of the constant
modulo p-th powers does not depend on the choice.

In principle one should be able to find more conditions which describe H̃K com-
pletely. In practice, however, such a description is not actually necessary since we can
apply corollary 5.2 instead.

Let Hfake
K denote the image of H̃K in F×/K×F×p under the map induced by pr1.

Then Hfake
K is the image of Cov

(p)
0 (C/K) under the fake descent map and

Hfake
K ⊂ {δ ∈ F×/K×F×p : ∂2(δ) ∈ β ·H×p2 } .

The next lemma identifies a sufficient condition for equality.

Lemma 5.6. If the natural map H1(K, ∂2(µp(F̄ )))→ H1(K,µp(H̄2)) induced by the
inclusion ∂2(µp(F̄ )) ⊂ µp(H̄2) is injective, then

Hfake
K = {δ ∈ F×/K×F×p : ∂2(δ) ∈ β ·H×p2 } .

This is satisfied when p < 5.

Proof: We take Galois cohomology of the exact sequence

1→ Aff(X,µp)→ µp(F̄ )
∂2−→ ∂2(µp(F̄ ))→ 1 .

This gives a commutative diagram with exact top row:

H1(K,Aff(X,µp)) //

��

H1(K,µp(F̄ )) //

��

H1(K, ∂2(µp(F̄ )))

��

(∂F̄×)GK/∂F× // F×/F×p
∂2 // H×2 /H

×p
2

The left and middle vertical maps are isomorphisms given by lemma I.2.10 and HT90,
respectively. Up to another application of Theorem 90, the vertical map on the right
is the map in the statement. If this is injective, then the bottom row is exact. The
description of Hfake

K follows since it is a coset of the kernel of ∂2.
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Injectivity holds trivially for p = 2; the map is the identity. For the general case,
consider the short exact sequence

1→ ∂2(µp(F̄ ))→ µp(H̄2)→ Q→ 1 ,

where Q denotes the quotient. One needs to show that the map µp(H2) → QGK is
surjective. For given p there are only finitely many possibilities (corresponding to con-
jugacy classes of subgroups in AGL2(Fp)). In the case p = 3, one can check (using
MAGMA, for example) that in each case the map is indeed surjective. 2

For p ≥ 5, the same computations show that injectivity can fail. In the number field
case with p < 5, a corollary is that a local-global analog of corollary 5.2 is valid for

Hfake
k . Recall that Sel

(p)
fake(C/k) was defined as the set of classes in F×/k×F×p which

restrict into the image of

Φfake,v : Pic1
kv(C)

Φv−→ Hv
pr1−→ F×v /k

×
v F
×p
v

at all primes of k, whereas Hfake
k is the image of the fake descent map

Φ̃fake : Cov
(p)
0 (C/K)→ F×/k×F× .

Corollary 5.7. For k a number field and p equal to 2 or 3, Sel
(p)
fake(C/k) ⊂ Hfake

k

Proof: For p < 5, lemma 5.6 gives a description of the image of the fake descent
map, both locally and globally, as the set of classes represented by elements δ such
that ∂2(δ)/β is a p-th power. The Grunwald-Wang theorem [CoN, IX.9.1.11] implies
that an element of H×2 is a p-th power if it is a p-th power everywhere locally. So if δ

restricts into Hfake
kv

for all primes v of k, it represents a class in Hfake
k . 2

Remark: The possibility that this might fail for larger p should probably be taken as
an indication that the fake Selmer set (as we have defined it) is not the correct object
to consider.

6. The main diagram

Recall the exact diagram of section 4:

1

��

1

��
µp

��

µp

��

1 // Aff(X,µp) //

��

µp(F̄ )

��

∂2 // ∂2

(
µp(F̄ )

)
// 1

0 // E[p] //

��

µp(F̄ )/µp

��

∂2 // ∂2

(
µp(F̄ )

)
// 1

0 1

(6.1)
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Let KK be the finite, although somewhat unwieldy, group

KK '
H0
(
K, (∂2(µpF̄ ))

)
∂2

(
H0
(
K, µp(F̄ )

µp

)) ⊂ µp(H2)

∂2

(
H0
(
K, µp(F̄ )

µp

)) .
Taking Galois cohomology of the diagram above we have the following.

Proposition 6.1 (Main Diagram). The following diagram is exact and commuta-
tive.

1

��

1

��
1 // KK // C⊥ ' H0

K

pr1 //

��

F×/K×F×p

��

∂2∗ // H1(K, ∂2(µp(F̄ )))

1 // KK // H1(K,E[p]) //

Υ

��

H1
(
K, µp(F̄ )

µp

)
��

∂2∗ // H1(K, ∂2(µp(F̄ )))

Br(K)[p] Br(K)[p]

Proof: The lower of the two rows is obtained directly from the long exact sequence
of the bottom row of (6.1). Up to the identifications described below, the upper row is
obtained by taking Galois cohomology of the upper row of (6.1) and then modding out
by the images of H1(K,µp). A completely formal diagram chase shows that the kernels
of these two rows must be isomorphic (so that KK is the kernel in the top row as well).

The identifications are the obvious ones following from HT90, lemma 2.10 and
corollary 2.11. One can check that the map labelled pr1 is in fact induced by projection
of H ' F ×H2 onto its first factor. This is obvious from the proof of 2.11. 2

Remark: The point of lemma 5.6 is to show that, for p = 2, 3, we can replace
H1(K, ∂2(µp(F̄ ))) with H×2 /H

×p
2 without affecting exactness. In this case, ∂2∗ is equal

to the map induced by ∂2 : F → H2 (as it should be). In general,

pr1(H0
K) ⊂ {δ ∈ F×/K×F×p : ∂2(δ) ∈ H×p2 } ,

but the inclusion may be proper.

The relevant data for descent on C is contained in a translate of the top row. For
any (δ, ε) ∈ HK we have a commutative diagram. The lower row is an exact sequence
of groups; the upper row an exact sequence of pointed sets:

Cov
(p)
0 (C/K)

Φ̃

��

Φ̃fake

''PPPPPPPPPPPP

1 // KK · (δ, ε) // HK

pr1 // ker (∂2∗) · δ // 1

1 // KK

·(δ,ε)

OO

// H0
K

·(δ,ε)

OO

pr1 // ker (∂2∗)

·δ

OO

// 1
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Suppose the image of (D, π) ∈ Cov
(p)
0 (C/K) under the descent map is (δ, ε). Then

the image under the fake descent map is δ. There are #KK isomorphism classes of
p-coverings with trivial obstruction that map to the class of δ under the fake descent
map. Their images under Φ̃ are represented by the pairs ∂(η) · (δ, ε) = (δ, ∂2(η)ε), as

∂2(η) ∈
(
∂2(µp(F̄ ))

)GK ranges over a set of representatives for KK .
When p = 2, H2 ' K and ∂2 : F → K is the norm. A map φ ∈ µ2(F̄ ) = Map(X,µ2)

gives a Galois invariant class in µ2(F̄ )/µ2 if and only if φ takes a constant value on
each GK orbit in X. The norm of such a map can be non-trivial only if there is some
orbit of odd order. This can happen only if there is a K-rational flex point. This shows
that KK is either of order 2 or trivial, correspondingly as X(K) is or is not empty.
We recover the fact that the ‘fake descent map’ is two to one unless C is trivial as a
2-covering of its Jacobian, in which case the map is injective. This is a special case of
the following lemma.

Lemma 6.2. If there exists a K-rational flex point, then KK = 0.

Proof: Using the K-rational flex as a base point for an Abel-Jacobi map to the
Jacobian gives a K-isomorphism C ' E identifying X and E[p] as GK-sets. The
functions used to define the fake descent map are the same as those used to perform p-
descent on E (as described in section I.4). So injectivity follows from the corresponding
statement from p-descent on elliptic curves. 2

Remark: Unlike the case for p = 2, the converse of this statement does not hold when
p is odd. There are examples where GK acts transitively on X and KK = 0.

In general, KK can be computed if one knows the Galois action on the flex points.
As previously mentioned, the action factors through the affine general linear group,
AGL2(Fp) (and KK depends only on the conjugacy class of the image). For fixed p
there are only finitely many possibilities. The following table gives some indication of
the situation for small p. The entries give the number of subgroups of AGL2(Fp), up
to conjugacy, for which dimFp(KK) is larger than the indicated value. For example, in
the case p = 3, there are 46 subgroups up to conjugacy and #KK ∈ {1, 3, 9, 27}. For
46−13 = 33 of the possible Galois actions (including the generic situation) KK is trivial.

p dimFp KK ≥ 0 ≥ 1 ≥ 2 ≥ 3 ≥ 4
2 11 7 0 0 0
3 46 13 4 2 0
5 132 28 7 3 0
7 236 37 4 2 0

7. Inverse of the descent map

The main result of this section is the explicit construction of an inverse to the
descent map. Recall that H̃K ⊂ H× is the subset of elements which represent classes

in the image of Φ̃ : Cov
(p)
0 (C/K)→ H×/K×∂F×.

Theorem 7.1. Given ∆ ∈ H̃K, we can explicitly compute a set of p2(p2− 3)/2 lin-

early independent quadrics over K which define a genus one normal curve D∆ ⊂ Pp2−1

of degree p2 and a set of homogeneous polynomials defining a map π∆ : D∆ → C



72 II. THE DESCENT MAP

making D∆ into a p-covering of C. Moreover, the image of the class of (D∆, π∆) in

Cov
(p)
0 (C/K) under the descent map is equal to the class of ∆ in HK.

We are going to give two proofs of this theorem (at least for odd p). The first is
strongly influenced by [CFOSS-II, Section 3]. In that paper, the problem of obtaining
models of n-coverings of elliptic curves with trivial obstruction as genus one normal
curves of degree n is considered. Their first step (in the ‘Segre embedding method’) is
to embed the curve as a genus one normal curve of degree n2. They then show that,
after projection to a suitable hyperplane, the embedding factors through the Segre
embedding Pn−1 × (Pn−1)∨ → Pn2−1. Making this factorization explicit requires an
explicit trivialization of the obstruction algebra associated to the n-covering.

In our situation, things are actually somewhat simpler. We start with a p-covering
of C. The analog of the first step of the Segre embedding method above yields a model
as genus one normal curve of degree p2. This already gives us what we are after. It
is a feature of second p-descents that no trivialization of the obstruction algebra is
necessary. One will note that this is also the case for p = 2.

Our second proof is (on its own) actually incomplete; it seems to leave open the
possibility that the scheme D∆ that we construct from a given ∆ ∈ H̃K splits into
p components each of which is a p-isogeny covering2 of C. The primary reason for
including it here is that it yields a proof of 5.2. Namely, one wants to know what
the construction yields if one starts with ∆ ∈ H× \ H̃K . Not surprisingly, one gets a
0-dimensional scheme.

Another advantage to the second proof is that it gives a geometric interpretation
of the relation between the fake and genuine descent maps. In order to show that D∆

is a p-covering, we first work only with δ, where ∆ = (δ, ε). To it we associate a model

in Pp2−1 for a (neither smooth nor irreducible) curve Dδ of degree pp
2−1 with a map

to C. In a sense, these Dδ are the geometric objects witnessed by the fake descent
map. The group H1(K,µp(F̄ )/µp) appearing in the main diagram can be interpreted as
parameterizing the twists of such objects, giving some explanation for its appearance
there.

An important theoretical consequence of this theorem that should not be overlooked

is that Cov
(p)
0 (C/K) is non-empty whenever H̃K is. This completes the proof of lemma

5.1.

The case p = 2. We briefly recall the method described in [MSS, Sta, BS] for
constructing the coverings in the case p = 2. The only, very minor, difference here is
that we work with HK rather than its image in F×/K×F×2.

Recall that we have a model for C (in (1, 1, 2)-weighted projective space) given by
an equation u2

3 = c · f(u1, u2), where f(u1, u2) is a binary quartic, monic in u1, and
c ∈ K×. The classes in HK are represented by the elements in

H̃K = {(δ, ε) ∈ F× ×K× : c ·N(δ) = ε2 } ,
where N = NF/K is the norm. To construct the covering corresponding to (δ, ε), one
considers the equation

˜̀= (δ, ε) · a∂(z) ,

2By p-isogeny covering we mean a étale covering that is geometrically Galois with cyclic Galois
group isomorphic to the kernel of some degree p isogeny on the Jacobian.
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where we think of a ∈ K× and z ∈ F \ {0} as unknowns. Note that this really
corresponds to the two equations

u1 − θu2 = δaz2 and u3 = εa2N(z) ,(7.1)

with coefficients in F and K, respectively.

Remark: Typically one works with elements of

{δ ∈ F× : c ·N(δ) ∈ K×2} ,

which give only the first equation. To get the second equation one needs to choose a
square root of c · N(u1 − θu2) = c · N(δ)N(az2). Note that the fiber over δ in H̃K is
{(δ,±ε)}, so the only role played by ε is to fix this choice.

In terms of the basis {1, θ, θ2, θ3} we can write an arbitrary element of F as z =∑4
i=1 ziθ

i−1. This also allows us to identify (F \{0})/K× with the K-points of P3. Under
this correspondence 0 6= z =

∑
ziθ

i−1 ∈ F̄ corresponds to the point (z1 : · · · : z4) ∈ P3.
Writing the first equation in (7.1) above in terms of the basis for F over K and

collecting powers of θ gives four equations with coefficients in K:

u1 = a ·Q1(z1, . . . , z4) ,

u2 = a ·Q2(z1, . . . , z4) ,

0 = a ·Q3(z1, . . . , z4) ,

0 = a ·Q4(z1, . . . , z4) ,

where the Qi are homogeneous of degree 2. The last two equations define a quadric
intersection Dδ ⊂ P3. The only role played by a is to deal with the fact that we want
to work with projective coordinates. In particular any pairs (δ, ε) and (δ′, ε′) which are
congruent modulo K× will yield the same curve. The equations

u1 = Q1(z1, . . . , z4) ,

u2 = Q2(z1, . . . , z4) ,

u3 = εN(z1, . . . , z4) .

define a morphism π(δ,ε) : P3 → P2(1, 1, 2). Using the fact that c · N(δ) = ε2, one
can check this gives a morphism π(δ,ε) : Dδ → C. One can show that this is in fact a
2-covering of C in various ways. But note already that if it is a 2-covering of C, then

it represents a class in Cov
(2)
0 (C/K) (we have exhibited a model) and by construction

its image under the descent map will be given by (δ, ε). We outline a method that is
similar in some respects to one of the approaches taken below for odd p.

First one shows that π(δ,ε) is an unramified morphism of degree 4, and in particular
finite, so Dδ is of dimension 1. For this it suffices to work geometrically. Over K̄
all flex points are defined, so in an appropriate choice of basis for F̄ over K̄, the
equation u1 − θu2 = δaz2 can be written as four equations u1 − θiu2 = aδiz

2
i where for

i ∈ {1, . . . , 4}, u1 − θiu2 = 0 defines the tangent line to C at the flex point (θi : 0 : 1).
Let P = (P1 : P2 : P3) be any choice of coordinates defining a point in C(K̄). Then

P1 − θiP2 = 0 if and only if P represents the flex point (θi : 1 : 0). The system of
equations

P1 − θiP2 = δiz
2
i ; i = 1, . . . , 4
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has 24 solutions (resp. 23 solutions) in F̄ '
∏

i=1 ...,4 K̄ when P is not a flex point (resp.

is a flex point). The additional condition P3 = εNF/K(z1, . . . , z4) is satisfied by exactly
half (resp. all) of these. In projective coordinates, this gives 22 = 4 preimages of P on
Dδ. We conclude that π(δ,ε) is unramified of degree 4. By Riemann-Hurwitz, Dδ is a
smooth genus one curve.

One must also show that the covering is Galois with group E[2]. For this it also
suffices to work geometrically. Namely, it is enough to show that over K̄ the corre-
sponding extension of function fields is Galois with group isomorphic to Z/2Z×Z/2Z
(see, for example, [Sta, 5.1.2]). For this, choose any i0 ∈ {1, . . . , 4}. Then, for i 6= i0,

Ti :=
u1 − θiu2

u1 − θi0u2

∈ κ(C̄)×

is a non-constant rational function in κ(C̄)×. One can see from the defining equations
that the extension of function fields corresponding to the coverings is given by

κ(C̄) ↪→ κ(C̄)(
√
Ti : i 6= i0) ' κ(D̄δ) ,

i.e. by adjoining square roots of the Ti to κ(C̄)×. However, the Ti are not independent.
The norm condition (or comparing degrees) shows that the product of all three is a
square in κ(C̄)×. So the extension is biquadratic, hence Galois with the appropriate
Galois group.

Remark: An alternative to this last argument is to use that the action of µ2(F̄ )/µ2

on (F̄ \ {0})/K̄× induces an action on P3 by linear automorphisms. Under this action,

E[2] ' ker
(
NF/K |µ2(F̄ )/µ2

)
leaves the space of solutions to ˜̀= (δ, ε) · ∂(z) invariant.

So this gives the action of E[2] on Dδ by automorphisms compatible with π(δ,ε). One
can check directly that this action is simply transitive on each fiber.

Remark: If one starts with (δ, ε) ∈ H×\H̃K , then the construction produces a quadric
intersection Dδ and a map Dδ → P2(1, 1, 2), but this will not be a map to C (cf.
Corollary 5.2).

The case p > 2. Let ∆ ∈ H×. Note that we are not yet assuming ∆ ∈ H̃K . We
can associate to ∆ a C-scheme D∆ defined over K as follows.

Fix a basis {e1, ..., ep2} for F = MapK(X, K̄) over K. We can then write an arbitrary
element z ∈ F as z =

∑
i ziei. The choice of basis gives an identification of (F \{0})/K×

with the K-points of Pp2−1, 0 6= z =
∑
ziei corresponding to the point (z1 : · · · : zp2) ∈

Pp2−1.
We start with the equation

˜̀= a∆∂(z)

where a ∈ K× and z ∈ F \ {0} are treated as unknown. The map ∂ : F → H can
be written as a homogeneous polynomial of degree p in the zi and so our equation
corresponds to an equation

˜̀(u1, ..., up) = a∆∂(z1, ..., zp),

where ˜̀and ∂ are homogeneous polynomials of degrees 1 and p, respectively, both with
coefficients in H. Writing this out in a basis for H over K (extending the basis chosen
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above) and equating coefficients on the basis vectors gives a system of m := [H : K]
equations, with coefficients in K, of the form:

linear in u1, . . . , up = degree p in z1, . . . , zp2 .(7.2)

We claim that the matrix defined by the coefficients of the m linear forms in the
left-hand side of (7.2) has full rank (i.e. rank equal to p). For this one uses a geometric
argument; over K̄, ` splits as a tuple of linear forms defining the hyperplanes in Y and
these span the space of all linear forms in K̄[u1, . . . , up].

Eliminating u1, . . . , up gives a system of equations:{
ui = a · πi(z1, . . . , zp2) , for i = 1, . . . , p
0 = a · Pi(z1, . . . , zp2) , for i = 1, . . . ,m− p

}
where πi and Pi are homogeneous of degree p with coefficients in K. Let

{Qj(u1, . . . , up) : j = 1, . . . , N}
be the homogeneous polynomials defining the model for C as a genus one normal curve
of degree p in Pp−1. Recall that in the case p = 3, N = 1 and Q1 is of degree 3. For

larger p, N = p(p−3)
2

and the Qj are of degree 2. We define D∆ ⊂ Pp2−1(z1 : · · · : zp2) as
the (reduced) K-subscheme defined by the vanishing of the polynomials in the set

{Pi : 0 < i ≤ m− p}
⋃
{Qj(π1, . . . , πp) : 0 < j ≤ N} .

The second set is included to ensure that the rational map

Pp2−1(z1 : · · · : zp2)→ Pp−1(u1 : · · · : up)
defined by ui = πi(z1, . . . , zp2) restricts to a morphism π∆ : D∆ → C. Note also that if
∆ ≡ ∆′ modK×, then (D∆, π∆) = (D∆′ , π∆′). In other words, (D∆, π∆) only depends
on the class of ∆ in H×/K×.

Remark: In the case p = 3, m = [H : K] = 21, so D∆ ⊂ P8 is defined by 18 cubics
and one form of degree 9. For p > 3, we have m = p2(p2 + 1)/2, so the model is given

by p2(p2+1)
2
− p forms of degree p and N = p(p−3)

2
forms of degree 2p. We will see below

how to obtain a set of p2(p2−3)
2

quadrics generating the homogeneous ideal.

One obvious, but important, property of the construction is given in the following
lemma. This says that if (D∆, π∆) is a p-covering of C, then its image under the descent
map is necessarily given by ∆.

Lemma 7.2. If there is some R ∈ C(K) such that `(R) ∈ ∆ ·K×∂F×, then there
exists some Q ∈ D∆(K) such that π∆(Q) = R.

Proof: Suppose R ∈ C(K) is such that `(R) = a∆∂(Q) with a ∈ K× and Q ∈ F×.
Choose homogeneous coordinates (R1 : · · · : Rp) for R and write Q =

∑
i eiQi with

Qi ∈ K. Recall that `(R) =
˜̀(R1,...,Rp)

u(R1,...,Rp)
, where u is a linear form not vanishing at

(R1, . . . , Rp). Then ˜̀(R1, . . . , Rp) = au(R1, . . . , Rp)∆∂(Q1, . . . , Qp2). Eliminating as in
the construction we see that

Ri = au(R1, . . . , Rp) · πi(Q1, . . . , Qp2) , for i = 1, . . . , p,

0 = au(R1, . . . , Rp) · Pj(Q1, . . . , Qp2) , for j = 1, . . . ,m− p .
Note that au(R1, . . . , Rp) ∈ K×. Since R ∈ C, the equations above say that the point
(Q1 : · · · : Qp2) lies in D(K) and is mapped via π∆ to R. 2
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The association H× 3 ∆ 7→ (D∆, π∆) depends on the choice of basis for F over K.
We assume all (D∆, π∆) are constructed using the same basis (and so live in the same

copy of Pp2−1). A different choice of basis leads to objects which differ only by a linear
automorphism of the ambient space. It is to be understood that this automorphism is
applied to each (D∆, π∆) if we change the basis.

When working geometrically, it will be convenient to use the basis of F̄ over K̄ given
by the characteristic functions. These are the maps ex ∈ F̄ = Map(X, K̄) (indexed by
x ∈ X) taking the value 1 at x and the value 0 at all x′ 6= x. In terms of this basis,

0 6= z ∈ F̄ \ {0} corresponds to the point z = (zx) ∈ Pp2−1 with zx-coordinate given by
the value of z at x. We can extend to a basis for H̄ over K̄ by taking the characteristic
functions on Y and identifying x ∈ X with the hyperplane in Y cutting out the divisor
p[x] on C. Then ∂(z) splits as the tuple of polynomials, (indexed by y ∈ Y )

∂(z) =

(∏
x∈y

zx

)
y∈Y

,

where as usual the product is to be taken with appropriate multiplicities.

Lemma 7.3. Given ∆ ∈ H× we can explicitly compute a set of p2(p2−3)/2 linearly

independent quadrics over K which lie in the homogeneous ideal of D∆ ⊂ Pp2−1.

Remark: We are not (yet) claiming that these quadrics define D∆; we have also not
assumed that ∆ ∈ H̃K .

Proof: Under the splittingH ' F×H2, write ∆ = (∆1,∆2). The equation ˜̀= a∆∂(z)
corresponds to the two equations

˜̀
1 = a∆1z

p and ˜̀
2 = a∆2∂2(z) .(7.3)

First consider the case p ≥ 5. Recall that, as a GK-set Y2 ' X × E[p]\{0E}
{±1} and that

F may be viewed as a subalgebra of H2. The hyperplanes in Y2 cut out divisors on C
of the form (p − 2)[x] + [x + P ] + [x − P ]. So there is a quadratic form Ñ such that
∂2(z) = zp−2Ñ(z). We can obtain a homogeneous equation in H2 by taking the ratio
of the two equations in (7.3) and multiplying through by z2. We get

˜̀
2

˜̀
1

· z2 =

(
∆2

∆1

)
· Ñ(z) .(7.4)

To achieve the same when p = 3, recall that F corresponds to the GK-set X
consisting of the 9 flex points while H2 corresponds to the GK-set Y2 consisting of the
12 lines in P2 passing through three distinct flex points. We can no longer view F as a
subalgebra of H2. Instead we work with the étale algebra M = MapK(Z, K̄) associated
to the GK-set Z consisting of all pairs (x, y) ∈ X × Y2 such that x ∈ y. Each flex is
contained in four lines, while each line passes through three flexes so

[M : F ] = 4 and [M : H2] = 3 .

Recall (see section I.3) that the ‘induced norm’

∂ = ∂1 × ∂2 : F → F ×H2

is given by ∂1(z) = z3 and ∂2(z) = NM/H2(z). So, identifying z with its image in M ,

we can write ∂2(z) = zÑ(z) for some quadratic form Ñ . Over M we can write our
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equations as
˜̀
1 = a∆1z

3 and ˜̀
2 = a∆2zÑ(z) .

Again we can obtain a homogeneous equation in M by taking the ratio. We get an
equation

˜̀
2

˜̀
1

· z2 =

(
∆2

∆1

)
· Ñ(z) .

Formally this is exactly what was obtained for p ≥ 5. Note also that [M : K] =
32(32 − 1)/2, while for larger p we have [H2 : K] = p2(p2 − 1)/2. So in either case,
writing the equation out in terms of the basis over K gives p2(p2− 1)/2 quadrics some
of whose coefficients are rational functions on C. These can be eliminated using linear
algebra over K to obtain a set of quadrics with coefficients in K which vanish on D∆.

We want to count the number of independent quadrics left after eliminating. For
this we may work geometrically. For p ≥ 5 we can index the elements of Y by pairs

(x, P ) ∈ X × E[p]
{±1} . The linear form ˜̀ splits over K̄ as ˜̀ = (˜̀

(x,P )), where ˜̀
(x,P ) is a

linear form with coefficients in K̄ defining the hyperplane whose intersection with C is
given by the divisor (p−2)[x] + [x+P ] + [x−P ]. Note that P = 0 = 0E is allowed. For
p = 3 we can do the same, but with the caveat that the indexing is no longer unique.

Namely, each line y ∈ Y2 corresponds to three pairs (x, P ) ∈ X × E[p]
{±1} (we get one

pair for each x ∈ y). In any case, we can still use the index (x,P ) to denote the factor
of H̄ corresponding to the line in P2 whose intersection with C is given by the divisor
[x] + [x+ P ] + [x− P ].

The notation is such that for distinct (x, P ) ∈ X× E[p]\{0}
{±1} , we have distinct rational

functions

G(x,P ) :=
˜̀
(x,P )

˜̀
(x,0)

∈ κ(C̄)×

with divisors div(G(x,P )) = [x+P ]+ [x−P ]−2[x]. Over K̄, we can work with the basis

of F̄ given by the characteristic functions and use (zx) for coordinates on Pp2−1. In
terms of these and the G(x,P ) the homogeneous equation (7.4) corresponds to a system
of equations

G(x,P ) · z2
x = ∆̃(x,P ) · zx+P zx−P ,(7.5)

parameterized by (x, P ) ∈ E[p]\{0}
{±1} , where for simplicity we have denoted ∆(x,P )/∆(x,0)

by ∆̃(x,P ).

For fixed x, the (p2 + 1)/2 linear forms ˜̀
(x,P ), with P ∈ E[p]/{±1}, all define

hyperplanes meeting C in x with multiplicity at least p− 2. This gives p− 2 nontrivial
relations among them. The matrix given by the coefficients of the ˜̀

(x,P )(u1, . . . , up) has
rank ≤ p−(p−2) = 2. On the other hand, the rank must be greater than one since these
do not all define the same hyperplane. This introduces a dependence among the G(x,P ).
Alternatively one can argue that the functions G(x,P ) are all in the Riemann-Roch space
L(2[x]) which has dimension 2.

In any event, if we fix P0 ∈ E[p] \ {0}, then for any P ∈ E[p]\{0}
{±1} , we can find

aP , bP ∈ K̄ such that
G(x,P ) = aPG(x,P0) + bP .

Using this to eliminate the G(x,P ) from (7.5) we obtain a set of quadrics

aP ∆̃(x,P0) · zx+P0zx−P0 + bP · z2
x = ∆̃(x,P ) · zx+P zx−P ,
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parameterized by P ∈ E[p]\{0,±P0}
{±1} and with coefficients in K̄. Since ∆̃(x,P ) 6= 0, these

are necessarily independent. Note also that the monomials appearing in these quadrics
are all of the form zx+Qzx−Q for some Q ∈ E[p]/{±1}. A different choice for x leads
to quadrics involving a disjoint set of monomials. So, in total this gives a set of #X ·
#
(
E[p]\{0,±P0}
{±1}

)
= p2(p2 − 3)/2 independent quadrics as required. 2

There is an obvious action of F̄× on (F̄ \ {0})/K̄× by multiplication. The choice

of basis gives an identification of the latter with the K̄-points of Pp2−1 and hence a
representation

F̄× 3 α 7→ ϕα ∈ PGLp2 = Aut(Pp2−1) .

Working with the basis of F̄ given by the characteristic functions, the representation
takes the particularly simple form α = (αx) 7→ Diagonal(αx); this is just coordinate-
wise multiplication. Assuming we are working with a basis for F over K, we see that
for any extension of fields K ′/K,

ϕα ∈ PGLp2(K ′)⇔ α ∈ (F ⊗K K ′)× .

Lemma 7.4. For any ∆ ∈ H̄× and α ∈ F̄×, the action of α on Pp2−1 induces an
isomorphism (of C-schemes) ϕα : D∂(α)·∆ → D∆.

Corollary 7.5. Let ∆ ∈ H× and (D∆, π∆) be the corresponding C-scheme. The
coset ∆H0

K ⊂ H×/K×∂F× parameterizes a set of twists of (D∆, π∆) as a C-scheme
defined over K up to K-isomorphism.

Proof: To prove the lemma, use thatD∂(α)·∆ is defined by the equation ˜̀= ∂(α)∆∂(z).

If Q ∈ D∂(α)·∆ is any point mapping to, say P ∈ C, then the point αQ ∈ Pp2−1 evidently
satisfies

∆∂(αQ) ≡ ∆∂(α)∂(Q) ≡ ˜̀(P ) modK× .

The equivalence here is meant for any choices of coordinates for P and Q. This means
αQ is a point of D∆ lying above P . This proves the lemma.

The lemma implies that if ∆ ∈ H×, then the C-schemes corresponding to the
elements of ∆H̃0

K = ∆(∂F̄×)GK are all twists of (D∆, π∆). The isomorphism ϕα :
D∂(α)∆ → D∆ is defined over K if and only if α ∈ F× in which case ∂(α)∆ and ∆
differ by an element of K×∂F×. So ∆H0

K parameterizes the corresponding twists in

∆H̃0
K up to K-isomorphism. 2

By definition, any twist of a p-covering is a p-covering, so we can reduce to the
geometric situation. To prove the theorem, it is enough to show that there is some
∆ ∈ H̃K̄ such that (D∆, π∆) is a p-covering of C defined over K̄. The proof of the
following lemma also shows that for ∆ ∈ H̃K , the p2(p2 − 3)/2 quadrics obtained in
lemma 7.3 generate the homogenous ideal of D∆.

Lemma 7.6. There exists some ∆ ∈ H̃K̄ such that (D∆, π∆) is a p-covering of C.

Proof: For this we may work over K̄, using the basis given by the characteristic
functions and zx for coordinates on Pp2−1. Choosing any flex point x0 ∈ X as origin,
we may consider (C, x0) as an elliptic curve over K̄. Denote the multiplication by p
map on (C, x0) by π : C → C. This is a p-covering of C. We are going to find some
∆ ∈ H̄× representing the image of (C, π) under the descent map and then show that
the scheme D∆ produced by the construction above is equal to the image of (C, π)

under a certain embedding into Pp2−1 as a genus one normal curve of degree p2.
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To compute the image of (C, π) under the descent map we use the definition.

Namely, we embed C in Pp2−1 in such a way that the pull-back of any flex point is
a hyperplane section. This amounts to finding a basis for the Riemann-Roch space of
the divisor π∗[x0]. For each x ∈ X, we can find a rational function Gx ∈ κ(C̄)× with
divisor div(Gx) = π∗[x] − π∗[x0]. For existence of these functions, note that π is mul-
tiplication by p on the elliptic curve (C, x0) and recall that the Weil pairing on (C, x0)
is defined in terms of such functions (see [Sil, III.8]). By Riemann-Roch the dimension
of L(π∗[x0]) is p2 = #X. Clearly the Gx lie in the Riemann-Roch space, so it will
suffice to show that they are linearly independent. This follows from the definition of
the Weil pairing; the Gx are eigenfunctions for distinct characters with respect to the
action of X = C[p] by translation. (see the first paragraph of the proof of Prop. 3.3 in
[CFOSS-II]).

Thus we may define an embedding of C into Pp2−1 via

g : C 3 P 7→ (Gx(P ))x∈X ∈ Pp2−1 .

It is evident that the pull-back of any flex point x ∈ X by π is the hyperplane section
of g(C) ⊂ Pp2−1 cut out by zx = 0. Let Q ∈ C \ C[p2] be any point, with projective
coordinates g(Q). By the definition of the descent map, the image of (C, π) under the
descent map is represented by the ∆ ∈ H̄× such that

˜̀(π(Q)) = ∆∂(g(Q)) .(7.6)

By definition we have that ∆ ∈ H̃K̄ .
Equation (7.6) was also used to construct D∆. So it is clear that π∆ ◦ g = π on

C \C[p2] and that the image of this open subscheme under g is contained in D∆. Since
D∆ is projective (hence complete), this is then true on all of C. We conclude that
g(C) ⊂ D∆ and that π∆ ◦ g = π. On the other hand, g(C) is a genus one normal
curve of degree p2. Its homogeneous ideal can be generated by a K̄-vector space of
quadrics of dimension p2(p2−3)/2. We have already found a set of p2(p2−3)/2 linearly
independent quadrics vanishing on D∆ in lemma 7.3, so we must have g(C) = D∆.
Thus (D∆, π∆) is a twist of (C, π). This completes the proof. 2

Alternate proof of Theorem 7.1. The second proof involves a more direct exam-
ination of the defining equation(s) of D∆. Again we work over K̄ with the basis given by
characteristic functions. We will also suppress the base field from the notation, writing
H̃ and H for H̃K̄ and HK̄ .

The linear form ˜̀ splits completely over H̄ as ˜̀= (˜̀
y)y∈Y , the ˜̀

y being linear forms
defining the hyperplanes y ∈ Y . The equation

˜̀= a∆∂(z)

used to define D∆ becomes the system of equations (indexed by y ∈ Y )

˜̀
y(u1, . . . , up) = a∆y

∏
x∈y

zx ,

where as usual the product is to be taken with appropriate multiplicities. We will also
use the index x to denote the factor of H̄ corresponding to the hyperplane in Y1 ⊂ Y
which cuts out the divisor p[x] on C. Recall also that in this basis, the action of F̄×

on Pp2−1 is simply coordinate-wise multiplication.
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Construction of Dδ. Let ∆ ∈ H̄×. Under the splitting H̄ ' F̄ × H̄2, we will write
∆ = (δ, ε). In terms of the basis over K̄, δ = (δx)x∈X and ε = (εy)y∈Y2 . The p2 hyper-
plane sections of C supported on a single point (i.e. the p[x] for x ∈ X), correspond to
equations

˜̀
x = aδxz

p
x , x ∈ X .

In completely analogous fashion to the construction of D∆ at the beginning of this
section, one can use these p2 equations, together with the homogeneous polynomials
defining C ⊂ Pp−1, to define a C-scheme, Dδ ⊂ Pp2−1.

For p = 3, Dδ is given by 6 cubic forms and one form of degree 9. For larger p it
is given by p2 − p forms of degree p and p(p − 3)/2 forms of degree 2p. In both cases
the map πδ : Dδ → C is given by p forms of degree p. The construction works for any
δ = (δx) ∈ F̄× and (Dδ, πδ) can be defined over the minimal field of definition of δ and
only depends on the class of δ modulo K×.

Lemma 7.7. Dδ is a curve3 in Pp2−1. The map πδ : Dδ → C is of degree pp
2−1. It

ramifies only above the flex points of C where the ramification index is p.

Proof: For all of these statements it suffices to count preimages of points P ∈ C.
The points of Dδ above P ∈ C correspond to solutions to the system of equations
˜̀
x(P ) = δxz

p
x. Note that, since ˜̀

x defines a hyperplane meeting C only at the point x,
˜̀
x(P ) = 0 if and only if P = x.

For P /∈ X we get p choices for each zx (the p-th roots of ˜̀
x(P )/δx), which in

homogeneous coordinates correspond to pp
2−1 points on Dδ. For P ∈ X exactly one of

the ˜̀
x(P ) is 0, so we have a factor of p fewer solutions. 2

The splitting of Dδ. If ∆ = (δ, ε) ∈ F̄× × H̄×2 , then D∆ is a (possibly empty)
subscheme of Dδ. The following lemma shows that it is those (δ, ε) ∈ H̃ that provide
something interesting.

Lemma 7.8. Let (δ, ε) ∈ H̄×. If (δ, ε) /∈ H̃, then D(δ,ε) consists of finitely many

points lying above the flex points of C. If (δ, ε) ∈ H̃, then any Q ∈ Dδ is contained in
D(δ,ε′) for some (δ, ε′) ∈ H̃.

Proof: Suppose Q ∈ Dδ lies over P /∈ X. If Q ∈ D(δ,ε), then (for an appropriate choice

of homogeneous coordinates for P and Q) we have ˜̀(P ) = (δ, ε)∂(Q). By definition,
this implies (δ, ε) ∈ H̃, which proves the first statement.

If (δ, ε) is in H̃, we can write (δ, ε) = (d, e) · ∂(α) where (d, e) = ˜̀(P ) and α ∈ F̄×.

Then for all x ∈ X, ˜̀
x(P ) = δxQ

p
x = dx(αxQx)

p. The divisors on C cut out by ∂(˜̀
x)y

and (˜̀
y)
p are equal, so there are constants βy ∈ K̄× (see lemma 5.5) such that for all

y ∈ Y2, ∂2(˜̀
x(P ))y = βy ˜̀

y(P )p and ∂2(dx)y = βye
p
y.

Applying ∂2 to the equations ˜̀
x(P ) = dx(αxQx)

p gives:

βy ˜̀
y(P )p = βye

p
y∂2(αxQx)

p
y , for y ∈ Y2.

Canceling βy and taking a p-th root of this relation, we see that there is some e′ =
(e′y) ∈ H̄×2 such that

˜̀
y(P ) = e′y∂(αxQx)y .

3We are not claiming Dδ is irreducible nor that it is smooth.
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From this it is clear that Q ∈ D(d,e′)·∂(α) . Since Q does not lie above a flex, the first

part of the lemma implies that (d, e′) · ∂(α) ∈ H̃.
This proves the second statement under the assumption that Q does not lie above

any flex point. The statement for the finitely many remaining Q is given in the proof
of 7.14 below. One can check that the logical dependence is not circular. 2

Over K̄, the fibers of the projection pr1 : H → F̄×/K̄×F̄×p are trivial (since both
groups are in fact trivial). At the level of representatives we have the following.

Lemma 7.9. Let δ ∈ F̄×. The preimage of δ in H̃ is either empty, or is a coset of
∂(µp(F̄ )) ⊂ H̄×. In particular, the number of preimages is either 0 or pp

2−3.

Proof: We have an exact sequence

1 // ∂(µp(F̄ )) // ∂F̄×
pr1 //

� _

��

F̄× // 1

H̄×
pr1 // H̄×1

where the map on the right is projection onto the first factor. But H̃ is a coset of
∂F̄× = H̃0, so the first statement is clear.

For the second statement, recall that ∂ was chosen so that its kernel is the Fp-vector
space of affine maps Aff(X,µp). Hence

dimFp ∂(µp(F̄ )) = dimFp µp(F̄ )− dimFp Aff(X,µp) = p2 − 3 ,

as required. 2

The numerology suggests that Dδ, which is of degree pp
2−1 over C, should split into

pp
2−3 = #∂(µp(F̄ )) components each of degree p2 over C and corresponding to some

(δ, ε) in the fiber over δ. For this to work out, we first need to check that the D(δ,ε) are in
fact distinct. For this we make use of the action of µp(F̄ )/µp. Recall that F̄×/K̄× acts

on Pp2−1 by automorphisms. In terms of the basis given by the characteristic functions,
this is just coordinate-wise multiplication.

Given (δ, ε) ∈ H̃, the fiber over δ is {∂(η) · (δ, ε) : η ∈ µp(F̄ )} ⊂ H̃. By lemma
7.4, the corresponding C-schemes, D∂(η)·(δ,ε), are permuted transitively by the action

of µp(F̄ )/µp ⊂ F̄×/K̄× on Pp2−1.

Lemma 7.10. Under the action of µp(F̄ )/µp, η ·D(δ,ε) = D(δ,ε) if and only if ∂(η) =
1. If η ·D(δ,ε) 6= D(δ,ε), then η ·D(δ,ε)∩D(δ,ε) is contained in the union of the hyperplanes
{zx = 0} for x ∈ X.

Proof: Suppose Q ∈ D(δ,ε) with homogeneous coordinates (Qx)x∈X . In order that
Q ∈ D∂(η)·(δ,ε) it is necessary and sufficient that

εy
∏
x∈y

Qx = ∂(η)yεy
∏
x∈y

Qx = εy
∏
x∈y

ηxQx

for each y ∈ Y (up to a constant in K̄×, uniform in y). This is equivalent to requiring
that ∂(η) take the same value at all y ∈ Y such that

∏
x∈yQx 6= 0.

If Q does not lie above a flex point,
∏

x∈yQx is nonzero for all y, and so the above

holds if and only if ∂(η) is constant. Since ∂1(η) = ηp = 1, this implies ∂(η) = 1.
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This proves the first statement. The second statement follows from the fact that these
hyperplanes contain the fibers above the flex points. 2

Definition 7.11. We call a class in µp(F̄ )/µp a pseudo-reflection about the hy-
perplane {zx = 0} if it is represented by a map η ∈ µp(F̄ ) = Map(X,µp) with value
equal to 1 at all flex points not equal to x, and equal to a nontrivial p-th root of unity
at x.

Remark: The terminology comes from the fact that the action of a pseudo-reflection
about {zx = 0} on Pp2−1 leaves the hyperplane fixed and has order p. A pseudo-
reflection of order 2 is a reflection.

Lemma 7.12. µp(F̄ )/µp acts on Dδ by automorphisms (as a C-scheme). A point
Q ∈ Dδ is fixed by η ∈ µp(F̄ )/µp if and only if Q lies above the flex point x and η is a
pseudo-reflection about the hyperplane {zx = 0}.

Proof: The fact that µp(F̄ )/µp acts by automorphisms on Dδ is clear from the defining

equations, ˜̀
x = δxz

p
x.

For the second statement, let Q = (Qx) ∈ D. If η represents some class η̃ ∈
µp(F̄ )/µp, then η̃Q = Q if and only if there is some c ∈ K̄× such that cQx = ηxQx for
all x ∈ X. This happens if and only if the value of η is the same at all x where Qx 6= 0.
But Qx = 0 if and only if Q is in the fiber above x ∈ X. So the statement is clear. 2

Corollary 7.13. If P ∈ C is any point, then µp(F̄ )/µp acts transitively on the
fiber π−1

δ (P ).

Proof: The stabilizer SP of any fiber is either trivial (if P /∈ X) or of order p (if
P ∈ X). Comparing with 7.7 we see that in either case

#π−1
δ (P ) ·#SP = #µp(F̄ )/µp .

So the action is transitive. 2

Proposition 7.14. Let (δ, ε′) ∈ H̃. Then Dδ splits as a union of distinct C-schemes

Dδ =
⋃

D(δ,ε) ,

the union running over the pp
2−3 elements (δ, ε) ∈ H̃ in the fiber above δ. Moreover,

each D(δ,ε) is an unramified covering of C of degree p2.

We prove the proposition below. First we give two important corollaries and some
discussion of how this relates to the descent map.

Corollary 7.15. Suppose ∆ ∈ H̃K. If D∆ is connected, then (D∆, π∆) is a p-

covering of C representing a class in Cov
(p)
0 (C/k) and its image under the descent map

is the class of ∆.

Proof: We know that π∆ : D∆ → C is an unramified covering of degree p2 defined
over K. Lemma 7.10 shows that

E[p] ' ker
(
µp(F̄ )/µp

∂2−→ µp(H̄2)
)
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acts on D∆ by automorphisms which are simply transitive on each fiber. It follows that
(D∆, π∆) represents a class in Cov(p)(C/K). Since we have exhibited a model of degree

p2 in Pp2−1, this class is in Cov
(p)
0 (C/K). By construction, the image of this class under

the descent map is the class of ∆ in HK (cf. 7.2). 2

Assume δ is as in the proposition and in addition that δ ∈ F×. Then Dδ is defined
over K. The splitting in the proposition occurs over K̄. The set of components defined
over K is in one to one correspondence with the preimage of δ in H̃K . This preimage
is either empty (in which case δ does not represent the image of any p-covering under
the fake descent map) or is a coset of (∂2(µp(F̄ )))GK (cf. lemma 7.9 and the diagrams
of section 6). The GK-invariant subgroup of µp(F̄ )/µp acts on these K-defined compo-
nents, its orbits being the K-isomorphism classes. This gives a geometric interpretation
of the group KK appearing in the diagrams of section 6. Namely it parametrizes the
K-isomorphism classes of the K-defined components of Dδ under the splitting given
in the proposition. These components, in turn, represent the isomorphism classes of
p-coverings of C defined over K whose image under the fake descent map is equal to
the class of δ.

We have seen in lemma 7.12 that AutC(Dδ) ' µp(F̄ )/µp. By the twisting principle,
the twists of Dδ are parameterized by the group H1(K,µp(F̄ )/µp) appearing in the

diagrams of section 6. Using the explicit description of the action µp(F̄ )/µp on Pp2−1

we can write down matrices in PGLp2 giving the action of E[p] on D(δ,ε). This will likely
be useful when trying to perform minimization and reduction to obtain ‘nicer’ models.

As a second corollary, we have a proof of lemma 5.2 above.

Corollary 7.16. Suppose ∆ ∈ H× and K ⊂ L is any extension of fields. If
∆⊗ 1L ∈ H̃L, then ∆ ∈ H̃K.

Proof: Lemma 7.8 and the proposition show that D∆ has positive dimension if and
only if ∆ ∈ H̃K . But this is a geometric property. In particular, D∆⊗1L = D∆ ×Spec(K)

Spec(L) can only be of positive dimension if D∆ is as well. 2

Now we prove the proposition.

Proof of Proposition 7.14: That Dδ splits as in the statement follows from
lemma 7.8, but the proof of this lemma is not complete. It remains to show that points
in the fiber above a flex point lie on some D(δ,ε) in the union. For this note that each
D(δ,ε) appearing is a curve with a non-constant hence surjective map to C. Hence, given
x ∈ X, there exists some Q ∈ D(δ,ε) above x. By 7.13, the fiber above x in Dδ is the
orbit of x under the action of µp(F̄ )/µp. But each point in this orbit lies on some D(δ,ε)

appearing in the union.
We have seen in lemma 7.9 that the union runs over a set of size pp

2−3. If P /∈ X,
then the fibers above P on distinct D(δ,ε) are disjoint (7.10). The action of µp(F̄ )/µp
then shows that fiber above P on any D(δ,ε) must have size pp

2−1/pp
2−3 = p2. So each

D(δ,ε) is of degree p2 over C.
The only possible branch points are the flex points, since these are the only branch

points of Dδ. On Dδ all the ramification points have index p. So it suffices to show that
at least p distinct D(δ,ε) come together at each Q ∈ Dδ lying above a flex. It is easy to
see that if η is a pseudo-reflection about {zx = 0}, then ∂(η) 6= 1. Now using lemmas
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7.10 and 7.12, this shows that the orbit of any D(δ,ε) under η consists of p distinct
curves, which all share a common fiber over x. This completes the proof. 2

In order to complete the proof of Theorem 7.1 (without using lemma 7.6) one
would need to show that the curve D∆ associated to some ∆ ∈ H̃K is (geometrically)
connected. Let us suppose for the moment that D∆ splits (over K̄) into n irreducible

components Di. Since D∆ is non-singular, the Di are necessarily disjoint inside Pp2−1.
The action of E[p] ⊂ µp(F̄ )/µp must permute the components transitively, so there are
three possibilities: n ∈ {1, p, p2}. If n = 1, then D∆ is connected. If n = p2, then as D∆

is a curve of degree p2, we see that each irreducible component is a genus one curve of
degree one in Pp2−1. This is absurd since it would imply the existence of a very ample
divisor of degree one on a curve of genus one.

The case remaining to be ruled out is that D∆ splits as a union of p genus one
curves of degree p. If this is the case, then each Di is a Galois covering of C with Galois
group isomorphic to a cyclic subgroup of E[p]. It is not difficult to see that in fact all
p of these coverings have the same automorphism group and, consequently, that this
subgroup is defined over K (as a whole, not necessarily point-wise). In general, E[p]
need not contain any K-rational cyclic subgroup, so ‘generically’ this case does not
occur. Nevertheless, it seems difficult to turn this into a proof (without resorting to
something along the lines of 7.6).



CHAPTER III

Computing the p-Selmer Set

We shift our focus now to the arithmetic situation. We specialize to the case that
K = k is a number field. We assume that C is an everywhere locally solvable genus one
normal curve of degree p defined over k, with a fixed model as described in the begin-
ning of the previous chapter. Recall that local solvability implies that Pic(C) = Pick(C)

and that Cov(p)(C/k) 6= ∅. Thus all of the material of the previous section applies to
C (see the discussion at the beginning of Chapter II).

An element in an étale k-algebra A '
∏

iKi will be called integral if its image in

each Ki is integral. We assume that the linear form ˜̀ defining the descent map and
all polynomials appearing in the model for C have integral coefficients. We further
assume that the constants c ∈ k× and β ∈ H×2 given by II.5.5 are integral. All of
this can be achieved by scaling. We denote the completion of k at a prime v by kv.
We attach a subscript v to any object defined over k to denote the corresponding ob-
ject over kv obtained by extension of scalars. For example Hv = H ⊗ kv, H̃v = H̃kv ,
Picv(C) = Pickv(C), and so on.

1. The algebraic Selmer set

The descent map allows us to identify Sel(p)(C/k) with its image in H×/k×∂F×.
We now determine the image. This gives an algebraic presentation of the p-Selmer set,
which can be computed fairly directly.

Consider the following diagram:

Pick(C)
Φ //

��

H×/k×∂F×Q
resv

��∏
v Picv(C)

Q
Φv //

∏
vH

×
v /k

×
v ∂F

×
v

If (D, π) ∈ Sel(p)(C/k) is an everywhere locally solvable p-covering of C, then its image,
Φ̃((D, π)) ∈ H×/k×∂F×, has the property that it maps under

∏
v resv into the subset∏

v Φv(Pic1
v(C)) ⊂

∏
vHv. This suggests the following definition.

Definition 1.1. The algebraic p-Selmer set of C associated to Φ is the set

Sel
(p)
alg(C/k) = {∆ ∈ H×/k×∂F× : resv(∆) ∈ Φv(Pic1

v(C)) for all v } .

Theorem 1.2. The descent map gives a one to one correspondence between the
p-Selmer set of C and the algebraic p-Selmer set of C.

Proof: The defining property of the descent map shows that the image of Sel(p)(C/k)

is equal to Sel
(p)
alg(C/k) ∩ Hk. We know that the descent map is injective by II.4.2, so

85
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it suffices to show that Sel
(p)
alg(C/k) ⊂ Hk. This follows from II.5.2; any element of

H×/K×∂F× which restricts into Hv (for some v) is an element of Hk. 2

One can formulate the same definition for divisor classes of degree 0.

Definition 1.3. The algebraic p-Selmer group of E = Jac(C) is

Sel
(p)
alg(E/k) = {∆ ∈ H×/k×∂F× : resv(∆) ∈ Φv(Pic0

v(C)) for all v } .

Note that by II.5.2, Sel
(p)
alg(E/k) ⊂ H0

k. Since Hk is a principal homogeneous space

for H0
k, the same is true of the corresponding Selmer objects.

Lemma 1.4. If the algebraic p-Selmer set of C is nonempty, then it is a coset of
the algebraic p-Selmer group of E inside H×/k×∂F×.

Proof: By assumption C is everywhere locally solvable. So everywhere locally, the
group of kv-rational divisor classes of degree 1 on C is a coset of the group of kv-
rational divisor classes of degree 0. Since Φv is a homomorphism, the same is true of
their images in H×v /k

×
v ∂F

×
v . If the algebraic p-Selmer set of C is nonempty, then these

cosets can be simultaneously defined by some global element of Hk. 2

In section II.1 we defined the fake Selmer set. If it is empty, then so is the p-Selmer
set. Using the previous lemma, one can do slightly better. The group Kk was defined
in section II.6.

Corollary 1.5. If # Sel
(p)
fake(C/k) < # Sel(p)(E/k)

#Kk
, then Sel(p)(C/k) = ∅.

Proof: The projection H×
pr1−→ F× ×H×2 induces maps

Sel
(p)
alg(C/k)

pr1 //
� _

��

Sel
(p)
fake(C/k)

� _

��
H0
k

pr1 // F×/K×F×p

where the kernel of the lower map is Kk. This gives a bound on the size of the fibers

of the upper map. On the other hand, the lemma shows that # Sel
(p)
alg(C/k) is equal to

0 or # Sel(p)(E/k). 2

Although it is not reflected in the notation, Sel
(p)
alg(C/k) depends on our choice of

linear form ˜̀ used to define the descent map and the algebraic p-Selmer group of E

depends on C. The next proposition shows, however, that the image of Sel
(p)
alg(E/k) in

H1(k,E[p]) does not.

Proposition 1.6. The inclusion H0
k ' C⊥ ↪→ H1(k,E[p]) identifies the algebraic

p-Selmer group of E with the p-Selmer group of E.

Proof: We identify H0
k with its image in H1(k,E[p]) and E with Pic0

k(C). To show
that the algebraic Selmer group is contained in the Selmer group we use lemma II.4.5.
This says that the images of Φv|Pic0

v(C) and the connecting homomorphism δv from
the Kummer sequence of E/kv are the same. So clearly the algebraic Selmer group is
contained in the Selmer group.



1. THE ALGEBRAIC SELMER SET 87

For the reverse inclusion it suffices to show that Sel(p)(E/k) ⊂ H0
k ' C⊥. So we

need to show that elements of the Selmer group are orthogonal to C with respect to the
Weil pairing induced cup product of level p. Using that the cup product is the bilinear
form associated to the obstruction map we have

C ∪p C ′ = Obp(C + C ′)−Obp(C)−Obp(C
′) ,

for any C ′ ∈ H1(k,E[p]). If C ′ is everywhere locally solvable then so is C + C ′ (be-
cause the Selmer group is a group). Having points everywhere locally implies trivial
obstruction, so all the terms on the right-hand side vanish as required. 2

Computable description. In order to compute the algebraic Selmer set explicitly,
we need a method for determining these local images. For a given v, this is relatively
straight-forward (see section 2). But there are infinitely many primes to deal with. As
is the case for p-descent on elliptic curves, algebraic number theory gives us a means
for handling all but finitely many ‘bad primes’ simultaneously.

For a completion kv of k at a non-archimedean prime, we use kunr
v to denote the

maximal unramified extension of kv. If ξ is an element of some object defined over
k, we say that ξ is unramified at v if ξ becomes trivial upon extension of scalars to
kunr
v . For Galois cohomology groups H1(k,−), this coincides with the usual definition

that ξ be in the kernel of the restriction map to H1(kunr
v ,−). For example, a class in

F×/k×F×p represented by δ is unramified at v if δ ∈ kunr×
v (F⊗kunr

v )×p or, equivalently if
its image under the map F×/k×F×p ↪→ H1(k, µp(F̄ )/µp)→ H1(kunr

v , µp(F̄v)/µp) is zero.

The first step is to identify a suitable finite set of ‘bad primes’. To that end, let F ′

denote the field extension of k obtained by adjoining the coordinates of all flex points
of C. We refer to F ′ as the splitting field of X. In case F is a field (i.e. the action of
Gk on X is transitive), F ′ is the normal closure of F . In general1, we can write F as
a quotient of the polynomial ring k[τ ] by some polynomial f(τ) for which F ′ is the
splitting field.

Write the linear form used to define the descent map as ˜̀ = (˜̀
1, ˜̀

2) under the

splitting H ' F × H2. Here ˜̀
1 defines a hyperplane section meeting C at a generic

flex point with multiplicity p. Over F ′, all flex points are defined, and so ˜̀
1 splits as

a p2-tuple, (˜̀
x)x∈X of linear forms with coefficients in F ′ each defining the hyperplane

meeting C only at the flex x ∈ X.
At any non-archimedean prime w of F ′, we can reduce the ˜̀

x modw. Since this lin-
ear form may vanish modw, it may fail to define a hyperplane section of the reduction
of C modw. In some sense this is a situation we would like to avoid. We will refer to a
prime v of k as a prime of bad reduction (resp. good reduction) for ˜̀ if there is some
(resp. no) prime w|v of F ′ for which this occurs.

Remark: Even when working over Q it may not be possible to choose ˜̀ in such a way
that it has good reduction everywhere, since F can have nontrivial class group. In any
event, such bad primes can be detected quite easily.

1i.e. over any infinite field. This is not true of every étale algebra over a finite field.
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Recall the constant c ∈ K× from lemma II.5.5 defined, up to p-th powers, by the
property that NF/k(δ) ≡ c mod k×p for any (δ, ε) ∈ Hk. We may scale to ensure that c
is integral.

Lemma 1.7. Let v be a non-archimedean prime of k which is of good reduction for
both C and ˜̀ and which is prime to both p and c. Then Φv(Pic1

v(C)) ⊂ H×v /k
×
v ∂F

×
v is

contained in the unramified subgroup.

Proof: Let F ′ be the splitting field of X. By the criterion of Neron-Ogg-Shafarevich,
the primes which ramify in the extension F ′/k are either primes of bad reduction for
C or lie above p. In particular, if v is as in the lemma, then it does not ramify in F ′.

Now we claim that if v does not ramify in F ′, then for all (δ, ε) ∈ Hv we have

(δ, ε) ∈ Hv is unramified ⇔ δ ∈ F×v /K×v F×pv is unramified.

This follows from the fact that for these ‘good primes’ the map

Hkunr
v
→ F unr×/Kunr×F unr×p

induced by projection onto the first factor of H ' F × H2 is injective. To see the
injectivity recall that the fibers of this map (see the diagrams in II.6) are parameterized
by

Kv :=
H0
(
kunr
v , (∂2(µpF̄ ))

)
∂2

(
H0
(
kunr
v , µp(F̄ )

µp

)) .
As v does not ramify in F ′, all flex points are defined over kunr

v , so the action on the
modules appearing here is trivial. Since µp ⊂ ker ∂2, we have ∂2(µp(F̄ )) = ∂2(µp(F̄ )/µp).
So the quotient is trivial.

To prove the lemma, it now suffices to show that the image of the composition

Φfake,v : Pic1
v(C)

Φv−→ Hv
pr1−→ F×v /k

×
v F
×p
v

is unramified. For this it will be enough to show that this is true of any point P ∈ C(kv)
which is neither a zero nor a pole of `1. For this we can choose primitive integral
coordinates for P (i.e. homogeneous coordinates with valuations that are non-negative

but not all positive) and consider ˜̀
1(P ) ∈ (F ⊗ kv)×. The flex algebra F ⊗ kv splits as

a product of extensions of kv. Since v - p, in order that the image of P be unramified

it is sufficient that the valuation of ˜̀
1(P ) in each of these factors is a multiple of p.

Fix some factor Kv. For any prime w of F ′ extending v, we get an unramified
tower of fields kv ⊂ Kv ⊂ F ′w. Let νw be the normalized valuation on F ′w. Over F ′, ˜̀

1

splits as (˜̀
x)x∈X and, since the extensions are all unramified, it suffices to show that

νw(˜̀
x(P )) ≡ 0 mod p for each x ∈ X.

For this we make use of the norm condition. Since v - c, its valuation satisfies the
congruence νw(c) ≡ 0 mod p. Hence,∑

x∈X

νw(˜̀
x(P )) = νw

(∏
x∈X

˜̀
x(P )

)
≡ νw(c) ≡ 0 mod p .

Each summand appearing on the left is nonnegative. To complete the proof it suffices
to show that at most one can be positive.

Since v is of good reduction for ˜̀, the reduction of each ˜̀
x defines a hyperplane

meeting C̃ only at the image x̃ of x on C̃. So νw(˜̀
x(P )) > 0 if and only if P and x have

the same image under the reduction map. On the other hand, the images of the flex
points modulo w are all distinct since v is of good reduction for C and is prime to p
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(the images of these flex points are the flex points of the reduced curve). So νw(˜̀
x(P ))

can be positive for at most one x ∈ X. This completes the proof. 2

Proposition 1.8. Let S be the set of primes of k containing all non-archimedean
primes dividing p or c, all primes of bad reduction for C or ˜̀ and all archimedean
primes if p = 2. Let HS denote the subgroup of Hk consisting of elements that are
unramified outside S. Then

Sel
(p)
alg(C/k) = {∆ ∈ HS : resv(∆) ∈ Φv(Pic1

v(C)), for all v ∈ S } .

Proof: Let Z denote the set in the statement. The previous lemma shows that Z

contains Sel
(p)
alg(C/k). To show that the reverse inclusion holds, we may assume that Z

is nonempty. Let ∆ ∈ Z and v /∈ S. To show that ∆ ∈ Sel
(p)
alg(C/k) we must show that

resv(∆) ∈ Φv(Pic1
v(C)). Choose any P ∈ Pic1

v(C). Then both Φv(P ) and resv(∆) are
unramified, so Φv(P ) · resv(∆)−1 is in the unramified subgroup of H0

v.
Since v is a prime of good reduction for C, it is also a prime of good reduction

for its Jacobian. By I.4.7, the image of the connecting homomorphism δv : E(kv) →
H1(kv, E[p]) is equal to the unramified subgroup. On the other hand, II.4.5 says that
Φv : Pic0

v(C)→ H0
v ⊂ H1(kv, E[p]) coincides with connecting homomorphism. It follows

that Φv(Pic0
v(C)) is equal to the unramified subgroup of H0

v. Hence there exists some
Q ∈ Pic0

v(C) such that Φv(Q) = Φv(P ) resv(∆)−1. Since Φv is a homomorphism we
have resv(∆) = Φv(P −Q), which completes the proof since P −Q ∈ Pic1

v(C). 2

Remark: Let S be as in the proposition and let S1 be the set of primes dividing p
together with the primes where the Tamagawa number of the Jacobian is divisible by p.
Arguing as in the proof we see that, for primes v in S \S1, the local image Φ(Pic1

v(C))
is a coset of the unramified subgroup of H0

v. This observation can be used to improve
the efficiency of the algorithm presented in section 3.

2. The local image

In order to use the description above to compute the algebraic Selmer set we need
to be able to compute the image of the map

C(kv) = Pic1
v(C)

Φv−→ Hv

for a prime v ∈ S. Our primary interest is when p is an odd prime, the situation for
p = 2 having received adequate attention elsewhere. For this reason we will ignore
the archimedean primes. Even for odd p, the methods here should be familiar from
p-descent on elliptic curves (or other objects). Perhaps the only substantial difference
is that we work with Hv rather than its image in F×v /k

×
v F
×p
v .

If (D, π) ∈ Cov(p)(C/kv) is a p-covering of C defined over kv with D(kv) 6= ∅, then
the image in C(kv) of the set of kv-rational points on D is an orbit under the action of
pPic0

v(C) = pE(kv). On the other hand, Φv has the property that it takes a constant
value on π(D(kv)). Thus, Φv factors as

Φv : Pic1
v(C)→ Pic1

v(C)/pPic0
v(C) ↪→ Hv .
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The second map is injective because the descent map is injective. Recall also that H0
v

sits in an exact sequence of Fp-vector spaces

1→
(
∂2(µp(F̄ ))

)Gv
∂2

((
µp(F̄ )/µp

)Gv) → H0
v →

F×v
k×v F

×p
v

,

that Hv is a coset and that the space on the left is finite.
All of this is actually valid over any perfect field of characteristic not equal to p.

Over kv the sets Pic1
v(C)/pPic0

v(C) and Hv are finite as well. As in the case of p-descent
on elliptic curves, we can a priori determine the size of the former, and hence the size
of the local image.

Lemma 2.1. For a non-archimedean prime v of k, # Pic1
v(C)

pPic0
v(C)

= pd ·#E(kv)[p], where

d is either [kv : Qp] or 0, correspondingly as v does or does not lie over p.

Proof: Since C(kv) 6= ∅, Pic1
v(C)

pPic0
v(C)

is a coset of Pic0
v(C)

pPic0
v(C)

, the size of which was given by

lemma I.4.5. 2

To compute the local image it will thus suffice to find the images of sufficiently many
independent points. It will actually be easier to determine independence by considering
the images in Hv. This is valid since the descent map is injective. Moreover, since the
descent map is affine it suffices to find a set of images inHv which span a(n affine) space
of the appropriate dimension. In practice we simply compute the images of random
points until their images generate a large enough space. Using the fact that C(kv) is
locally compact, one could also develop a deterministic algorithm for doing this (see for
example, [St1] where the analogous situation is considered for 2-descent on Jacobians
of hyperelliptic curves).

When working with objects defined over kv (e.g. a point P ∈ C(kv), an element
of Hv, etc.) in practice, we of course mean that we work up to some finite precision.
To find a random point, we first choose a random solution to the defining equations of
C modulo (some small power of) v. We then attempt to (randomly) lift to a solution
modulo some higher power of v, applying Hensel’s lemma along the way to guarantee
that we are on the right track. This works quite well in practice. One can very quickly
compute points up to very high precision.

Thus we can reduce the problem of computing the local image to the problem of
deciding whether two points P,Q ∈ C(kv) (represented up to arbitrary precision) have

the same image in Hv. Evaluating ˜̀ on a tuple of v-integral elements in k representing
homogeneous coordinates for a point P ∈ C(kv) up to some precision yields an element
of H× which is v-adically close to some element of H̃v representing Φv(P ) ∈ Hv. That
this is sufficient for our purposes follows from Hensel’s lemma. The prototypical result
in this direction is the following lemma.

Lemma 2.2. Suppose that q and r are rational primes and that v|q with ramification
index e. If v | r, then let n be the greatest integer ≤ e/(q − 1) + e + 1. Otherwise let
n = 1. Then a v-adic unit α ∈ k×v is an r-th power if and only if it is a r-th power
modulo vn.

Proof: This is [DSS, Lemma 13]. Note that this follows directly from Hensel’s lemma
when v - r. When v | r, Hensel’s lemma would lead to a bound n = 2e+ 1. 2
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Corollary 2.3. F×v /F
×p
v is a finite-dimensional Fp-vector space. The restriction

map F× → F×v /F
×p
v is surjective and any two elements of F× which are sufficiently

v-adically close to one another will have the same image.

Proof: This is an obvious consequence once one notes that Fv splits as a product of
completions of extensions of k at primes above v. Surjectivity then follows from the
Chinese remainder theorem. 2

The image of k×v in F×v /F
×p
v is a subspace (whose dimension can be computed

using the lemma). In practice, we ‘represent’ F×v /k
×
v F
×p
v as an Fp-vector space W1 and

a homomorphism ψ1 : F× → W1 giving the restriction map. In other words, the kernel
of ψ1 is the group of elements in F× which are of the form adp for some a ∈ k×v , d ∈ F×v .
It remains to deal with the second component of Hv.

The kernel of the projection of H×v /k
×
v ∂F

×
v onto F×v /k

×
v F
×p
v is the finite Fp-vector

space

Kv =

(
∂2(µp(F̄ ))

)Gv
∂2

((
µp(F̄ )/µp

)Gv) ⊂ µp(H2,v)

∂2

((
µp(F̄ )/µp

)Gv) .
To deal with this, we write down a map ψ2 : H2 → W2 to an Fp-vector space W2 that
is isomorphic to µp(H2,v)/∂2((µp(F̄ )/µp)

Gv), with the following property. If η ∈ H2

is sufficiently v-adically close to a p-th root of unity η̃ ∈ µp(H2,v), then ψ2(η) is the
corresponding element of W2.

Together the maps ψ1 and ψ2 allow us to test whether an element (δ, ε) ∈ H̃0
v,

represented up to sufficiently high precision by an element of H×, is trivial modulo
k×v ∂F

×
v . First we check if ψ1(δ) = 0 ∈ W1. If not, then (δ, ε) is nontrivial. If yes, then

there exist a ∈ k×v , d ∈ F×v (which we can compute up to sufficiently high precision)
such that δ = adp. Then

εp = ∂2(δ) = ∂2(adp) = ap∂2(d)p .

It follows that η := a∂2(d)/ε is a p-th root of unity. Then (δ, ε) is trivial modulo k×v ∂F
×
v

if and only if ψ2(η) = 0 ∈ W2.
To determine whether or not P,Q ∈ C(kv) have the same image under Φv, we check

if ˜̀(P )/˜̀(Q) is trivial modulo k×v ∂F
×
v . Since ˜̀(P )/˜̀(Q) ∈ H̃0

v, this can be done using ψ1

and ψ2 as above. In practice, we store the image ˜̀(P0) ∈ H× of a single point, together
with ψ1, ψ2 and subspaces of W1, W2 from which we can recover the local image. This
allows us to manipulate the local image using linear algebra. At any step in the process
it is a simple matter to determine the space spanned by the images found up to that
point. In particular, having computed the local image we can easily check whether a
given element of H× restricts into Φv(Pic1

v(C)).

3. Algorithms

The theory above gives rise to the following algorithm for computing a set of rep-
resentatives for the algebraic p-Selmer set of C. The output is a collection of elements
in H×. Using the methods of section II.7, these can then be turned quite easily into
explicit models as genus one normal curves of degree p2. Thus we have an algorithm for
performing explicit second p-descents. For p = 3 and k = Q, this has been implemented
by the author in MAGMA and appears to perform quite well.
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For larger p this is currently impractical for two reasons. The first of these is the,
largely unavoidable, computation of S-class and -unit group information in F . Generi-
cally, the running time here is (at least) exponential in p2 (see the discussion in section
I.2). With the current state of the art, this becomes somewhat prohibitive already for
p = 5. There is hope, however, that this will become feasible for larger p in the near
future as computing power and algorithms in algebraic number theory improve.

The second arises from the fact that the algebra H2 is simply too large. Generically
it is a number field of degree p2(p2 − 1)/2 over k. The algorithm does not, however,
require class and unit group information in H2. The most expensive operations required
are the extraction of p-th roots. Even so, this quickly becomes impractical.

Compute Sel
(p)
alg(C/k).

(1) Compute the algebras F and H2, the map ∂2 : F → H2, the linear form ˜̀, the
constants c ∈ k×, β ∈ H×2 , and the set S of bad primes.

(2) Let V1 ⊂ F× be a (finite) set of representatives for the unramified outside S
subgroup of F×/k×F×p.

(3) Let V2 = {δ ∈ V1 : NF/k(δ) ≡ c mod Q×p} .

(4) For each v ∈ S, determine the local image Φ(Pic1
v(C)) ⊂ Hv.

(5) Let V3 = {δ ∈ V2 : ∀ v ∈ S, resv(δ) ∈ pr1(Φ(Pic1
v(C))) } .

(6) Let V4 be the set of (δ, ε) ∈ F× ×H×2 such that δ ∈ V3 and ε ∈ H×2 is a p-th
root of ∂2(δ)/β, modulo the equivalence

(δ, ε) ∼ (δ, ε′) ⇔ ε/ε′ ∈ ∂2((µp(F̄ )/µp)
Gk) .

(7) Let V5 = {(δ, ε) ∈ V4 : ∀ v ∈ S, resv(δ, ε) ∈ Φ(Pic1
v(C)) } .

(8) return V5.

Remark: The reason for including steps (3) and (5) is to reduce the size of V1 as much
as possible before proceeding to step (6) where one has to extract p-th roots. Note

that V3 contains (but is not necessarily equal to) Sel
(p)
fake(C/k). Using 1.5 we see that if

#Vi ·#Kk < # Sel(p)(E/k) for some i ∈ {1, 2, 3}, then Sel(p)(C/k) = ∅. In the typical

applications #Kk = 1 and # Sel(p)(E/k) ≥ p2. In this way one can often confirm that

Sel(p)(C/k) = ∅ without running the full algorithm (cf. examples 2 and 3 in section 4).

Let us prove that the algorithm returns a set of representatives for the algebraic
Selmer set. The equivalence in step (6) is included to ensure that the (δ, ε) ∈ V5 repre-
sent distinct classes modulo k×∂F×. In the proof of 1.7 we have seen that, for primes
not in S, a class in H×/k×∂F× is unramified if and only if its image in F×/k×F×p

is unramified. Moreover the elements of V5 are in H̃k by lemma II.5.2, since they re-
strict to H̃v for some v ∈ S 6= ∅. It follows that V5 is a set of representatives for

{∆ ∈ HS : resv(∆) ∈ Pic1
v(C),∀ v ∈ S }, which is equal to Sel

(p)
alg(C/k) by Proposition
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1.8.

Remark: As remarked at the end of section 1 it may be possible to get away with
a smaller set of bad primes. Prior to step (2) one can perform the following check.
For each v ∈ S that does not lie above p and for which the Tamagawa number of the
Jacobian is not divisible by p, take any point on C(kv) and compute its image under
Φv. Check if the image is unramified. If yes, then as the earlier remark indicated, the
local image at v is equal to the unramified subgroup. So v can be removed from the
set of bad primes.

Let us describe each step in more detail.

Step 1. It is clear what needs to be done in principle. We give the details for
p = 3 assuming that the action of Gk on X is generic (by which we mean that the
representation Gk → AGL(X) giving the action is surjective). There are finitely many
other cases (for p = 3) which can all be handled similarly.

We store the algebras as quotients of the polynomial ring k[τ ], so to compute them
means to find a defining polynomial. Under the assumption that X is generic, F and H2

are number fields of degrees 9 and 12 over k, respectively. We find a defining polynomial
f(τ) for F by looking for the common zeros of U and hU , where U is the cubic form
defining C and hU is the determinant of the Hessian matrix of U . This also gives a
generic flex point x with coordinates in F . We choose a linear form ˜̀

1 ∈ F [u1, u2, u3]
defining the tangent line to C at x and scale appropriately to make its coefficients
integral (and reduce the number of common divisors if possible).

To compute H2, we adjoin a second root of f(τ) to F . This gives a field M1 of
degree 72 over k which contains the coordinates of a second flex x′. We then write
down a linear form ˜̀

2 with coefficients in M1 defining the line through x and x′. We
choose some affine patch of P2 containing both x and x′ in which the slope m ∈M1 of
˜̀
2 is well-defined. Since the action on X is generic, the twelve conjugates of this line

all have distinct slopes. It follows that H2 can be defined by the minimal polynomial
of m over k.

For whatever reason, it tends to be much faster (in MAGMA) to first compute the
minimal polynomial of m over F . This defines an extension M of F of relative degree
4. It is the étale algebra corresponding to the Gk-set of the 36 pairs2 (x, y) ∈ X × Y2

consisting of a flex point x lying on a line y. We then compute the minimal polynomial
of m ∈ M over k, which gives a polynomial defining H2. Adjoining a root of f(τ) to

H2 gives M as an extension of H2. We may now coerce the coefficients of ˜̀
2 into H2.

The computation of these minimal polynomials is somewhat expensive, but it has
the advantage that we obtain ∂2 along the way. It is the composition F ↪→ M → H2,
where the second map is the norm of M/H2. The constant β ∈ H×2 is given by the

image of ∂2(˜̀
1)/˜̀3

2 in the coordinate ring H2[C] (i.e. modulo the ideal in H2[u1, u2, u3]
generated by U = U(u1, u2, u3)). Similarly, the constant c can be computed as the

image of NF/k(˜̀)/h3
U modulo the ideal in k[u1, u2, u3] generated by U .

2Note that this algebra also plays a role in obtaining defining equations for the corresponding
p-covering. See section II.7
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The set of bad primes is the set of primes dividing c, the discriminant3 of U , or the
discriminant of F , together with the primes above which there is a prime of F which
divides all coefficients of ˜̀

1.

Step 2. This step is the main bottle-neck in the computation. Let FS denote the
unramified outside S subgroup of F×/k×F×p. It fits into an exact sequence

k(S, p)→ F (S, p)→ FS →
Cl(Ok,S)

pCl(Ok,S)
→ Cl(OF,S)

pCl(OF,S)
.

For a derivation of this sequence and a description of how to compute FS see [PS,
12.8]. To compute it in practice we use the function pSelmerGroup() in MAGMA. Us-
ing this we compute a finite-dimensional Fp-vector space V1 ' FS together with a set
of representatives in F×.

Step 3. Since we have already computed k(S, p), this can be accomplished very
quickly using linear algebra over Fp.

Step 4. Computing the Local Images. This was described in the previous section.

Step 5. The restriction map FS → F×v /k
×
v F
×p
v is linear and given explicitly by ψ1

(defined in the previous section), so this can be accomplished using linear algebra of Fp.

Step 6. Extracting the p-th roots is straightforward (if a bit costly - it is here that
the degree of H2 becomes a problem). By ‘modulo the equivalence...’ we mean that
we keep one (δ, ε) in each equivalence class. To determine equivalence, one needs to
determine (µp(F̄ )/µp)

Gk and its image under ∂2. When p = 3, we are fortunate in
that ∂2(µp(F )) = ∂2

(
(µp(F̄ )/µp)

Gk
)

for all but one of the 46 possible Galois types4

(i.e. conjugacy classes of subgroups of AGL2(F3)). So usually one need only determine
µp(F ) and its image under ∂2, which is easy. In the one exceptional case, the map
Hk → F×/k×F×p is injective. So after all is said and done one can simply identify all
pairs of the form (δ, ε) and (δ, ε′). It is also worth mentioning that this exceptional case
does not occur unless k contains the cube roots of unity. In particular it can be ignored
when working over Q.

Step 7. This is accomplished as in step (5) and as described in the previous section.

4. Examples

Full second 3-descent. We consider the elliptic curve

E : y2 = x3 + 3844x− 238328

labelled 61504bq1 in Cremona’s database. The torsion subgroup of E(Q) is trivial, one
quickly finds the point (93, 961) ∈ E(Q) of infinite order so the rank is at least 1. A
2-descent shows that the rank is at most 1. This is in accordance with the analytic
information coming from the L-series. The conjecture of BSD predicts that the order
of X(E/Q) is 9. The action of GQ on E[3] is given by the full general linear group

3This is the discriminant of the model as a genus one normal curve. It is somewhat unclear how
one would go about computing this for an arbitrary prime p.

4This is also useful when writing down the map ψ2 used to determine the local images.
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GL2(F3). In particular, descent by 3-isogeny is not possible. A full 3-descent on E

produces a list of 13 = 33−1
2

plane cubics each representing an inverse pair of non-

trivial elements in Sel(3)(E/Q) ' Z/3Z× Z/3Z× Z/3Z,

C1 : 0 = u3
1 + 2u3

2 + 2u3
3 + 3u2

1u2 − 8u2
1u3 + 2u1u

2
2 + 2u1u2u3 + 23u1u

2
3 + 27u2u

2
3 ,

C2 : 0 = u3
1 + 2u3

2 + 10u3
3 + 11u2

1u2 − 6u2
1u3 + 4u1u

2
2 − 8u1u2u3 − 10u1u

2
3 − 2u2

2u3 + 4u2u
2
3 ,

C3 : 0 = u3
1 + 2u3

2 + 30u3
3 + 4u2

1u2 − 5u2
1u3 + 4u1u2u3 + 2u1u

2
3 − 2u2

2u3 + 12u2u
2
3 ,

C4 : 0 = u3
1 + 2u3

2 + 59u3
3 + 2u2

1u2 + u2
1u3 − 3u1u

2
2 + 5u1u

2
3 + 5u2

2u3 − 4u2u
2
3 ,

C5 : 0 = u3
1 + 3u3

2 + 19u3
3 − 3u2

1u2 + 2u2
1u3 + 7u1u

2
2 + 4u1u2u3 − 5u1u

2
3 − 7u2u

2
3 ,

C6 : 0 = u3
1 + 6u3

2 + 14u3
3 + u2

1u2 + 5u2
1u3 − 6u1u

2
2 + 4u1u2u3 − 8u1u

2
3 + 2u2

2u3 ,

C7 : 0 = u3
1 + 7u3

2 + 7u3
3 − 3u2

1u2 + 7u2
1u3 + 4u1u

2
2 + 4u1u2u3 − 6u1u

2
3 + 7u2

2u3 + 3u2u
2
3 ,

C8 : 0 = 2u3
1 + 0u3

2 + 9u3
3 + 8u2

1u2 + 4u2
1u3 + 8u1u

2
2 − 4u1u2u3 − 2u1u

2
3 + 7u2

2u3 + 2u2u
2
3 ,

C9 : 0 = 2u3
1 + 2u3

2 + 9u3
3 + 2u2

1u3 + 10u1u
2
2 − 4u1u2u3 − u1u

2
3 − 2u2

2u3 + 8u2u
2
3 ,

C10 : 0 = 2u3
1 + 2u3

2 + 13u3
3 + 2u2

1u3 + 2u1u
2
2 + 8u1u2u3 + 19u1u

2
3 − 8u2

2u3 + 6u2u
2
3 ,

C11 : 0 = 2u3
1 + 4u3

2 + 6u3
3 − 4u2

1u2 + 14u2
1u3 − u1u

2
2 − 8u1u

2
3 − 3u2

2u3 + 2u2u
2
3 ,

C12 : 0 = 2u3
1 + 4u3

2 + 6u3
3 + 6u2

1u2 + 12u2
1u3 − 9u1u

2
2 + 2u1u

2
3 + 5u2

2u3 + 4u2u
2
3 ,

C13 : 0 = 3u3
1 + 3u3

2 + 13u3
3 − 4u2

1u2 + 2u2
1u3 + 5u1u

2
2 + 2u1u2u3 − 7u1u

2
3 − 3u2

2u3 + 3u2u
2
3 .

Since we know the rank, the 3-descent implies thatX(E/Q)[3] ' Z/3Z × Z/3Z.
Moreover, exactly one of these cubics has a Q-rational point. It is not hard to spot the
point (0 : 1 : 0) on the curve C8 (the coefficient 0 is not a typographical error). The other
12 curves are counter-examples to the Hasse principle (each class in (X(E/Q)[3] \
{0} )/{±1} is represented by exactly 3 of these). We can verify this with a second
3-descent. This will also show that the 3-primary part ofX(E/Q) is isomorphic to

Z/3Z×Z/3Z as predicted by BSD. Note that it is enough to show that Sel(3)(Ci/Q) = ∅
for a single i (see lemma I.5.7).

The curve C := C10 has the flex algebra of smallest discriminant, so we start there.
A defining polynomial for F is

f(t) = t9 − 15t8 + 12t7 − 144t6 − 12t5 − 72t4 + 390t3 − 6t2 − 570t+ 354 ,

and the discriminant is 216 · 39 · 296 · 3114 (the prime 29 does not actually ramify in F ).
The flex points are given by

(1/1798(−12τ8 + 179τ7 − 119τ6 + 1575τ5 + 301τ4 − 854τ3 − 6174τ2 − 3478τ + 6412) : τ : 1) ,

where τ is a root of f(t). The tangent line to C at this flex is defined by the linear
form

˜̀
1 =

(
5565τ8 − 77078τ7 − 24148τ6 − 799062τ5 − 943144τ4

− 1168972τ3 + 1426282τ2 + 1938104τ − 1717796
)
u1

+
(
50τ8 − 766τ7 + 782τ6 − 6614τ5

+ 2232τ4 + 6404τ3 + 26402τ2 + 29152τ − 39538
)
u2

+
(
8351τ8 − 123761τ7 + 72967τ6 − 1121941τ5 − 275125τ4

+ 237690τ3 + 4395686τ2 + 2301490τ − 5326066
)
u3 ,
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which is integral and has good reduction5 outside {2, 29, 31}. The constant c ∈ Q×
is determined by taking the ratio of NF/Q(˜̀

1) and the cube of the Hessian of C and
considering its image modulo the ideal generated by the cubic defining C. We find
that c is congruent to 22 · 31 modulo cubes. So the set of ‘bad primes’ is the set
S = {2, 3, 29, 31}.

Using FS to denote the unramified outside S part of F×/Q×F×3 it follows that the
image of the 3-Selmer set of C under the fake descent map is contained in the affine
space

Vc,S = {δ ∈ FS : NF/Q(δ) ≡ 124 mod Q×3}
(this is the set labelled V2 in step (3) of the algorithm in section 3). Since the action
of GQ on the flex points is generic, we know that the projection HQ → F×/Q×F×3 is
injective. So, in fact, HS is mapped injectively to the set

Vβ,S = {δ ∈ FS : ∂2(δ) ≡ β modH×3
2 } ⊂ Vc,S .

Computing Vc,S using MAGMA’s pSelmerGroup() function takes about a minute. We
find that it is an affine space of dimension 6 over F3.

One now has options for moving forward. The algorithm outlined in the previous
section would proceed to compute local images at the primes of S. The alternative
would be to compute the set Vβ,S. This would require either computing H2(S, 3) and
doing some linear algebra or checking whether or not lots of elements in H×2 are cubes.
The latter is feasible and leads to the conclusion6 that HS = ∅. This means that there
are no 3-coverings of C (with trivial obstruction) which are locally solvable everywhere
outside S. In particular, the 3-Selmer set is empty.

On the other hand, computing the local images is much faster since one can avoid
working too much with H2. By considering the decomposition of the primes in the
3-division field of E and using lemma 2.1 we determine that

#Φv(C(Qv)) =

{
1, for v ∈ {2, 31},
3, for v ∈ {3, 29}.

The defining polynomial of F has a linear factor over Q2, so there is a Q2-rational
flex point on C. Using lemma II.6.2 we conclude that the fake descent map is injective
over Q2. We compute that F×2 /Q×2 F×3

2 is a 1-dimensional F3-vector space and that
the restriction map res2 : Vc,S → F×2 /Q×2 F×3

2 is constant. We easily find a Q2-point
on C whose image under Φfake,2 is the same, so the prime 2 gives us no information.
Geometrically, this says that any7 3-covering of C which is locally solvable everywhere
outside S is also locally solvable at 2. Since there is a Q31-rational flex, the local
information at 31 can be collected similarly. In this case however, the subspace of Vc,S
restricting into the image of C(Q31) has codimension 2.

For v ∈ {3, 29}, the local images have size 3 and the projection pr1 in the following
commutative diagram is no longer injective.

C(Qv)

Φv
��

Φfake,v

))RRRRRRRRRRRRRR

Hv

pr1 // F×v /Q×v F×3
v

5By scaling it should actually be possible to obtain a linear form with good reduction at 29 as
well.

6One can show, however, that HQ 6= ∅.
7Since we know HS = ∅ this condition is vacuous.
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For v = 29, the kernel of the projection has dimension 1 and the image of C(Q29) in
H29 consists of a full fiber over a point in F×29/Q×29F

×3
29 . On the other hand, the image

of C(Q3) in H3 is spread across three fibers (i.e. the image in the lower-right space is of
size 3). In principle, one might have to now consider the fibers above elements of Vc,S
under the projection pr1 : HQ → F×/Q×F× (this would mean computing HS, which
would involve taking cube roots) and check their images in H3. In this case however,
the images of the Qv-points in F×v /Q×v F×3

v impose enough local conditions to show that

Sel
(3)
fake(C/Q) ⊂ {δ ∈ Vc,S : ∀ v ∈ S , resv(δ) ∈ Φfake,v(C(Qv))} = ∅ ,

which shows that Sel(3)(C/Q) is also empty.

In this example, the algorithm of section 3 terminates after step 5 without ever
having to extract cube roots. This somewhat fortuitous situation seems to occur quite
often (at least when the Selmer set in question is actually empty), but even when it
does one may still need to make use of H2. We needed it to compute the local image at
29. By way of a different example, we consider the curve C1. Here we find (somewhat

surprisingly) that the constant c ∈ Q× (coming from the condition on NF/Q(˜̀
1) ) is

actually a cube8. The action on X is again generic, so the fake descent map is globally
injective. This means we have bijections (cf. II.5.6)

Cov
(3)
0 (C1/Q) ' {δ ∈ F×/Q×F×3 : ∂2(δ)/β ∈ H×3

2 } , and

C⊥1 ' {δ ∈ F×/Q×F×3 : ∂2(δ) ∈ H×3
2 }

We can compute H2 and β, and check that β /∈ H×3
2 (so the sets above are distinct).

However, since c ∈ Q×3 both sets are contained in

{δ ∈ F×/Q×F×3 : NF/Q(δ) ∈ Q×3} .
This shows that the algebra H2 is needed to describe the image even when the fake
descent map is injective.

Producing elements of order 9 in X. Consider the curve

E : y2 + xy = x3 − 1479474x− 692765778

labelled 5514a3 in Cremona’s database. His tables indicate that the analytic rank of
E is 0 and that the analytic order of the Shafarevich-Tate group is 81. The torsion
subgroup is trivial and a 2-descent confirms that E(Q) = {0E}. A 3-descent produces
the 4 plane cubic curves

C1 : x3 + 6y3 + 919z3 = 53xyz ,

C2 : 2x3 + 3y3 + 919z3 = 53xyz ,

C3 : x3 + 3y3 + 1838z3 = 53xyz ,

C4 : x3 + 2y3 + 2757z3 = 53xyz .

These evidently correspond to the four ways of choosing an unordered triple {a, b, c}
of distinct9 positive integers such that abc = 2 · 3 · 919. Each Ci represents an inverse

8The analogous situation occurs for p = 2 if and only if the double cover of P1 has a pair of
rational points above ∞. However, the curve C1 has no rational points.

9The unique unordered triple of nondistinct positive integers with this property corresponds to
the curve C : x3 + y3 + 5514z3 = 55xyz which represents the trivial element in Sel(3)(E/Q). It has
the obvious (and unique) Q-point (1 : −1 : 0).
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pair of nontrivial elements in Sel(3)(E/Q), so

Sel(3)(E/Q) ' X(E/Q)[3] ' Z/3Z× Z/3Z
and each Ci is a counter-example to the Hasse principle.

Since the analytic order of X(E/Q) is 81, we expect that # Sel(3)(Ci/Q) = 9
for i = 1, . . . , 4. This is confirmed by performing a second 3-descent. Note that us-
ing lemma I.5.7 it suffices to do the computation for a single i. Each of the 9 ele-

ments computed in Sel
(3)
alg(Q, Ci) correspond to a pair of inverse elements of order 9 in

Sel(9)(E/Q) ' X(E/Q)[9] ' Z/9Z×Z/9Z. Using the methods of section II.7 we can
explicitly compute models for these coverings as genus one normal curves of degree
9 in P8 defined by the vanishing of 27 quadrics. To our knowledge this is the largest
prime power10 to date for which such examples have been produced. An example of
an everywhere locally solvable 3-covering of C1 is given on the opposite page. Our
algorithm orignally produced models with absurdly large coefficients. With the help
of Tom Fisher and Michael Stoll we have managed to get the coefficients down to a
reasonable size. While there is little room for improvement in this particular example,
it would be nice to develop better techniques of minimization and reduction for these
models (cf. section 5).

10Presumably Fisher can produce examples of order 12 by combining examples of orders 3 and 4.
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Defining equations for a curve in P8 representing an element of Sel(3)(C1/Q)

0 = z2z5 − z5z6 + 3z2
7 + z7z9 + 2z2

8 ,

0 = z1z2 + z2z6 + z2z7 + z4z9 + z5z7 + 2z5z8 ,

0 = −z1z7 + z2z8 + z4z5 + z2
5 + 2z6z7 + z6z8 − z2

7 ,

0 = z2
2 + z2z6 − 2z4z7 − z4z8 − 2z5z7 + 2z5z8 − z5z9 ,

0 = −z1z7 − z2z7 + z2z8 − z2
5 − 2z6z7 − z6z8 − z6z9 − z2

7 ,

0 = z1z8 + 3z2z7 − z2z8 + z3z5 + z4z5 + z2
5 + z5z7 + z7z8 ,

0 = −z1z6 + z2z6 + z3z7 + 2z4z7 − z4z8 − 2z5z8 − z6z7 + z2
7 ,

0 = −z2z5 + z3z6 + z5z6 + z6z7 + z2
7 + 2z7z8 + 2z7z9 − z8z9 ,

0 = −z1z5 + z3z6 + z5z6 − z5z7 + z6z7 − 2z2
7 − z7z8 + 2z7z9 + 2z2

8 ,

0 = −z1z4 − 2z1z5 + z2z3 + z2z4 − z2z5 + z2z7 − z4z7 + 3z5z6 − 2z5z7 ,

0 = −z1z7 − z1z8 + z2z7 − z2z8 − z2z9 + z3z5 − z2
5 + z5z7 − z2

7 − z7z8 ,

0 = z1z2 + z1z6 − z2z6 + z2z7 − z4z7 + z4z9 − 2z5z7 + z5z9 − z2
6 + z6z7 ,

0 = −z1z2 + z2
2 − z2z7 + z3z7 + 2z3z8 + z4z7 + z4z8 + z5z7 + z2

7 + 2z7z8 ,

0 = 3z1z5 − z3z6 + 3z4z6 + 2z5z6 + 3z5z7 − z6z7 − z2
7 + 3z7z8 − 2z7z9 + z2

8 ,

0 = z1z9 + z2z8 − 4z2z9 + z2
3 + z3z4 + 2z3z7 + z4z7 − z2

5 − z6z8 + 2z6z9 + z2
7 + z7z9 ,

0 = −z1z6 + z2
2 − z3z7 − z3z8 − z3z9 + 2z4z7 − z4z9 − z5z7 − 2z2

6 − z6z7 − z2
7 − z7z8 − z7z9 ,

0 = −2z1z8 − z1z9 + 2z2z7 − z2z8 + z2z9 − z3z5 + z2
4 + z2

5 − z5z7 − z6z8 + 2z6z9 − 2z7z8 − z7z9 ,

0 = z1z2 + z1z6 + z2z7 − z3z7 + z3z8 + z4z7 + z4z8 + z4z9 − z5z7 − 2z5z8 − 2z5z9 + z6z7 − z2
7 + z7z8 ,

0 = z1z5 + z2z3 + z2z4 − z2z5 + z2z7 + z3z6 + z4z6 + z5z7 + z6z7 + z2
7 − z7z8 + z7z9 − 2z2

8 + 2z8z9 − z2
9 ,

0 = −z1z8 + 2z1z9 − 2z2z7 − z2z9 + z3z4 + z3z5 + z4z7 + z2
5 + z5z7 + z6z7 − z6z8 − 2z6z9 − z7z8 + 2z7z9 ,

0 = −z2
1 + z1z2 + 2z1z6 − z1z7 − 2z2

2 + z2z6 + z2z7 − z2z8 − z4z5 − z4z7 − z2
5 + 2z5z7 − z5z8 − z2

6 − z6z8 ,

0 = −z1z7 + z1z8 − z1z9 − 3z2z7 − 2z2z8 − z3z4 − z3z5 + z4z5 − z4z7 − z5z7 − z6z7 + z6z8 − z2
7 + z7z8 − z7z9 ,

0 = −z1z3 − z1z4 − z1z5 − z1z7 − 2z2z4 − 3z2z5 − z3z7 − z4z7 + z5z6 − z5z7 + z2
7 − z7z8 − z7z9 − z2

8 − 2z8z9 + z2
9 ,

0 = −z1z8 + z1z9 + z2z8 + z2z9 + z3z4 + z3z5 + z2
4 + 2z4z5 + z4z7 + z2

5 + z5z7 − 2z6z7 + 2z6z8 − 2z6z9 − z7z8 + z7z9 ,

0 = z1z3 − z1z5 + z2z3 + 2z2z4 + z2z8 + z3z6 + z3z7 − z4z6 − z2
5 − z5z7 − z6z7 − z6z8 − z6z9 + z2

7 − z7z8 − z7z9 − z2
8

− 2z8z9 − 2z2
9 ,

0 = z2
1 − 2z1z2 − z1z6 − z1z8 + z2z6 − z2z7 − z2z9 + z3z5 + 2z3z7 + z3z9 + z4z5 + z4z8 − z5z7 + 2z5z8 + z2

6

+ z6z7 + z6z8 + z2
7 − z7z8 + z7z9 ,

0 = z1z2 − z1z8 − z2
2 + z2z3 − 2z2z5 − z2z7 + z2z8 − z3z5 − z3z7 − 2z3z8 − z4z5 − z4z7 − z4z8 − z2

5 − 2z5z7 + z2
7

+ 2z7z8 − 2z7z9 + 2z2
8 + 2z8z9 − z2

9 .
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An example of second 5-descent. Consider the genus one normal curve of de-
gree 5

C =


u2

1 − 7u3u4 + 2u2u5 = 0
u2

2 − 21u4u5 + u1u3 = 0
u2

3 − 3u1u5 + u2u4 = 0
7u2

4 − u1u2 + 2u3u5 = 0
6u2

5 − u2u3 + u1u4 = 0

 ⊂ P4 .

It represents an inverse pair of elements inX(E/Q)[5], where E is the elliptic curve,

E : y2 + xy = x3 − 109388x− 13934358 .

labelled 1050o2 in Cremona’s database. This elliptic curve is somewhat special in that
it admits a rational 5-isogeny. Such curves were studied by Fisher in his PhD thesis
[Fi2]; we have taken C from his website. His computations show thatX(E/Q)[5] =

Sel(5)(E/Q) and that both are of dimension 2 over F5. We perform a 5-descent on C

to show that Sel(5)(C/Q) = ∅ and consequently thatX(E/Q)[5∞] = X(E/Q)[5], i.e.
that there is no higher-powered 5-torsion inX(E/Q).

The special GQ-structure of the set of flex points C makes the computations practi-
cal. The flex points of C split into 5 GQ-orbits, each consisting of 5 flexes. Each orbit is
the intersection of one of the coordinate hyperplanes, {ui = 0}, with C. For example,
the hyperplane {u5 = 0} intersects C in the points

(−θ3 : −θ2 : θ : 1 : 0)

where θ is a 5-th root of 7. The corresponding factor of F is Q(θ).
The splitting of the flex algebra also leads to a splitting of H2, the largest factors

being of degree 25. While there is a considerable amount of ‘book keeping’ involved in
keeping track of all the factors, computations in H2 should be entirely practical. This
would be necessary if one were to construct an explicit model of some 5-covering of C,
but to show that Sel(5)(C/Q) = ∅ it will be enough to work only with the fake descent
map.

Lemma 4.1. The projection HQ → F×/Q×F×5 is injective.

Proof: Of the 132 possible Galois actions on the flex points, the map fails to be
injective for only 28 (cf. the table at the end of section II.6). A direct computation
shows that the action on X is not of one of these 28 types. 2

Remark: For at least one of the 28 types for which injectivity fails, the action of
Galois factors through a cyclic subgroup of the Galois group of the splitting field of
X. Chebotarëv’s density theorem then implies that injectivity fails to hold over Qv for
infinitely many primes v.

From the lemma it follows that the 5-Selmer set of C maps injectively to the fake
5-Selmer set. Since the 5-Selmer group of the Jacobian has dimension 2, we know that
Sel(5)(C/Q) is either of dimension 2 or is empty (see prop. 1.4 and cor. 1.5). To show

that Sel(5)(C/Q) = ∅ it suffices to show that the image of Sel(5)(C/Q) under the fake
descent map has fewer than 25 elements.

Write F ' F1 × · · · × F5, each factor corresponding to the flex points on the
hyperplane {ui = 0}. Use Ni to denote the norm from Fi to Q. The linear form
˜̀
1 ∈ F [u1, . . . , u5] used to define the fake descent map splits as a tuple ˜̀

1 = (L1, . . . , L5)
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of linear forms, each defined over some Fi. It is easy to see that Ni(Li) and u5
i cut out

the same divisors on C. This leads to relations of the form Ni(Li) = ci · u5
i in the

coordinate ring of C, where ci ∈ Q× are some constants. Arguing as in section II.5 we

see that the image of Cov
(5)
0 (C/Q) under the fake descent map is contained in the set

Vc := {(δ1, . . . , δ5) = δ ∈ F×

Q×F×5
: Ni(δi) ≡ ci mod Q×5} .

Remark: This is slightly more restrictive than II.5 where we showed that the image of
the fake descent map is contained in the set {δ ∈ F×/Q×F×5 : N(δ) ≡

∏
i ci mod Q×5}.

For each i ∈ {1, ..., 5}, we can easily compute such an Li. For example, the hyper-
plane meeting (−θ3 : −θ2 : θ : 1 : 0) with multiplicity 5 is defined by the vanishing
of

L5 := 8θu1 + 5θ2u2 + 5θ3u3 + 56θ4u4 + 41u5 .

From this one can compute that c5 ≡ 7 mod Q×5. Similar computations for the other
i show that the only primes appearing in the factorization of some ci with multiplicity
prime to 5 are contained in the set S = {2, 3, 5, 7}. This set also contains all primes of
bad reduction for C and the Li. Hence, the fake Selmer set is unramified outside S.

Use FS to denote the unramified outside S part of F×/Q×F×5. From the discussion

above it follows that the image of Sel(5)(C/Q) under the fake descent map is contained
in the set

Vc,S := {(δ1, . . . , δ5) = δ ∈ FS : Ni(δi) ≡ ci mod Q×5} .

Since F splits, computation of the unramified outside S subgroup is fast. The subset
Vc,S is a translate11 of the space

V1,S := {(δ1, . . . , δ5) = δ ∈ FS : Ni(δi) ≡ 1 mod Q×5} .

This turns out to be a 2-dimensional F5-vector space, generated by the classes of the
elements d1, d2 ∈ F× ' F×1 × · · · × F×5 given by

d1 := (5, 5, 5, 5, 19 + 12θ − 4θ2 − 7θ3 − θ4) , and

d2 := (5, 5, 5, 5, 414744 + 314727θ − 58629θ2 − 169062θ3 − 43881θ4) ,

where θ is a 5-th root of 7.
In order to cut down the size any further we need to use information coming from

some prime in S. Considering the decomposition of the prime 2 in the constituent
fields of F one can see that there is exactly one flex point defined over Q2. Existence
of a Q2-rational flex point means that E[5] and X are isomorphic as GQ2-sets. Using
lemma 2.1 this tells us that the local image, Φfake,2(C(Q2)) ⊂ F×2 /Q×2 F×5

2 , consists of a
single element. In order that an element in Vc,S lie in the fake Selmer set it is necessary
that it restrict to this element. One can check, however, that the restrictions of d1 and
d2 above are nontrivial. This means that the image of Vc,S in F×2 /Q×2 F×5

2 is of size

at least 5. It follows that the image of the 5-Selmer set under Φ̃fake is a proper sub-

set of Vc,S. As such it has strictly fewer than 25 elements, proving that Sel(5)(C/Q) = ∅.

11One can check that Vc,S 6= ∅
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Verifying BSD. As a final example we offer the following theorem which, in ad-
dition to some very deep results regarding BSD, brings to bear many of the currently
available algorithms for explicit descents on curves of genus one.

Theorem 4.2. The full Birch and Swinnerton-Dyer conjecture holds for the elliptic
curves

E : y2 = x3 + 73 · 613 · 974 , and

E ′ : y2 = x3 − 33 · 73 · 613 · 974

defined over Q. In particular, X(E/Q) ' X(E ′/Q) ' Z/12Z× Z/12Z.

Remark: Along the lines of theorem I.1.1 it should be possible to explicitly write down
a list of 74 = 122−4

2
+ 4 genus one normal curves in projective space with the property

that if V/Q is any variety such that for all p ≤ ∞, V ⊗Qp is Qp-isomorphic to E⊗Qp,
then V is Q-isomorphic to exactly one curve in the list. The models for the elements
of order 2, 3 and 4 are produced by the descents described below. We would then need
Fisher’s method [Fi5] for combining these to produce models for the elements of order
6 and 12.

As in Theorem I.1.1, the hard part of the proof is taken care of by the existing
partial results in the direction of BSD. The role of descent is to compute the p-primary
parts of the Shafarevich-Tate groups at the primes 2 and 3. Note that these curves are
related by the 3-isogeny

h : E 3 (a, b) 7→
(
a3 + 2273613974

a2
,
a3b− 2373613974b

a3

)
∈ E ′ .

So the validity of BSD for either curve implies its validity for the other.
One can check that the values of the L-series of E and E ′ at s = 1 are (equal and)

approximately 5.5542. Results of Coates and Wiles then imply that the Mordell-Weil
groups are finite [CoWi]. One easily checks that there is no nontrivial torsion on either,
so the Mordell-Weil groups are trivial. The predicted orders ofX(E/Q) andX(E ′/Q)
are the numbers

Xan(E) =
LE(1)

Ω(E) ·
∏

p|∆(E)Cp(E)
and

Xan(E ′) =
LE′(1)

Ω(E ′) ·
∏

p|∆(E′) Cp(E
′)
,

where L(s) is the L-series, Ω is the real period, Cp denotes the Tamagawa number at p
and ∆ is the discriminant (note that the regulators and torsion subgroups are trivial).

The real period of E is Ω(E) ≈ 0.0096427 and the only Tamagawa number not
equal to 1 is C7(E) = 4. This gives

Xan(E) ≈ 5.5542

(0.0096427) · 4
≈ 144

The real period of E ′ satisfies Ω(E) = 3 ·Ω(E ′) and the nontrivial Tamagawa numbers
are C3(E ′) = 3 and C7(E ′) = 4. Thus Xan(E ′) ≈ 144 as well.

It is known thatXan(E) andXan(E ′) are rational numbers of (explicitly) bounded
denominator, so (taking the computations to sufficiently high precision) we conclude
that they are in fact equal to 144. Rubin’s result then implies thatX(E/Q)[p] = 0 for
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all primes p not dividingXan(E) or the order of the group of units in the ring of inte-
gers of the field of complex multiplication. The same holds forX(E ′/Q). These curves
have CM by

√
−3, so we conclude that both Shafarevich-Tate groups are annihilated

by some power of 6.

After applying these deep results, we are left only with the task of computing the 2-
and 3-primary parts ofX(E/Q) and X(E ′/Q). Since the validity of BSD for a given
elliptic curve is actually a property of its isogeny class, it will suffice to perform the
computations for either curve. We describe the computations for E. The computations
for E ′ are similar (and equally feasible).

The 2-primary part. One needs explicit first and second 2-descents to produce mod-
els for the elements of order dividing 4 and then a third 2-descent to show that there are
no elements of order 8. The 2-descent on E yields models for the 3 nontrivial elements
ofX(E/Q)[2] as double covers of P1:

C1 : u2
3 = 130174u4

1 − 71004u3
1 − 426024u2

1 + 2011780u1 − 390522 ,

C2 : u2
3 = 11834u4

1 + 260348u3
1 − 710040u2

1 + 1372744u1 + 3999892 ,

C3 : u2
3 = 5917u4

1 + 29585u3
1 − 177510u2

1 + 804712u1 + 562115 .

For each Ci a second 2-descent will produce a pair of quadric intersections, each rep-
resenting a pair of inverse elements of order 4 inX(E/Q). For example, Sel(2)(C3/Q)
is of order 4 and represented by the two curves

D1 =


2z2

1 + 14z1z2 − 3z2
2 + 4z1z3 − 2z2z3 + 5z2

3 + 8z1z4 + 2z2z4 − 8z3z4 − 15z2
4 = 0

24z2
1 + 8z1z2 − 22z2

2 + 36z1z3 + 18z2z3 + 63z2
3 − 54z1z4 − 24z2z4 + 42z3z4 + 14z2

4 = 0

ff
⊂ P3 ,

D2 =


3z2

1 + 2z1z2 + 3z2
2 + 6z1z3 − 2z2z3 − 8z2

3 + 6z1z4 + 24z2z4 − 13z2
4 = 0

6z2
1 + 86z1z2 − 20z2

2 − 18z1z3 + 2z2z3 + 13z2
3 − 18z1z4 − 22z2z4 − 6z3z4 − 42z2

4 = 0

ff
⊂ P3 .

One then uses Stamminger’s method for third 2-descent which shows that none of the
elements of order 4 lift to elements of order 8. It follows that the 2-primary part is
X(E/Q)[2∞] ' Z/4Z× Z/4Z.

The 3-primary part. For this we can make use of the 3-isogeny. A 3-isogeny descent
computes that Sel(h)(E/Q) ' Sel(h

′)(E ′/Q) ' Z/3Z. Since the Mordell-Weil groups
are trivial these Selmer groups are isomorphic to the corresponding torsion subgroups
of the Shafarevich-Tate groups. The exact sequence

0→ E′(Q)[h′]
h(E(Q)[3])

→ Sel(h)(E/Q)→ Sel(3)(E/Q) h→ Sel(h
′)(E′/Q)→ X(E′/Q)[h′]

h (X(E/Q)[p])
→ 0

reduces to

0→ Sel(h)(E/Q)→ Sel(3)(E/Q)→ Sel(h
′)(E ′/Q)→ 0 ,

which splits since Sel(3)(E/Q) is 3-torsion. We conclude thatX(E/Q)[3] ' Z/3Z ×
Z/3Z.

The 3-isogeny descent (implemented in MAGMA) is also explicit in that it produces
the projective plane cubic

C : u3
1 + 4u3

2 + 4017643u3
3 = 4u2

1u2 + 3u1u
2
2

representing the pair of nontrivial elements in Sel(h)(E/Q). This also represents an

inverse pair of nontrivial elements in Sel(3)(E/Q). In order to show thatX(E/Q)[3∞] '
Z/3Z× Z/3Z it will be enough to show that Sel(3)(C/Q) = ∅.
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For this we do a second 3-descent. The reducibility of E[3] translates into a splitting
of the flex algebra. We find that F is isomorphic to the product of the cubic and sextic
number fields with defining polynomials

f(t) = t3 − 4t2 − 3t+ 4 and

f(t) = t6 + 2408704t3 + 5533080062500

and the set of bad brimes is S = {2, 3, 5, 7, 61, 97}. Despite the splitting, computation
of F (S, 3) takes a couple hours of processor time. Having accomplished that however
the remaining computations are very fast. The fake 3-Selmer set is contained in the set
of all δ ∈ F×/Q×F×3 such that

(1) δ is unramified outside S,
(2) NF/Q(δ) ≡ 7261297 mod Q×3 and
(3) ∀ v ∈ S, resv(δ) ∈ Φfake,v(C(Qv)) .

This set can be computed without ever using H2 and turns out to be empty. It follows
that the 3-Selmer set of C is empty and thus that the 3-primary part ofX(E/Q) is
isomorphic to a product of two cyclic groups of order 3.

5. Directions for further work

Minimization and reduction. As we have noted, our algorithm currently pro-
duces models that may be utterly useless for finding rational points. The problem being
that we have not developed a systematic way of ensuring that the coefficients of these
models are of a reasonable size. While there is much room for both theoretical and
practical improvement, we have had some success in a few preliminary examples. The
primary source of inspiration is the paper of Cremona, Fisher and Stoll [CFS] where
the problem of obtaining nice models for genus one normal curves of degrees 2, 3 and
4 is solved.

The process breaks into two steps termed minimization and reduction. The first
works locally at a non-archimedean prime and aims to remove prime factors from
the invariants of the model. In practice we have had some success using the ad hoc
methods developed by Fisher when he was working with 6- and 12-coverings. But in
order to develop the theory in any comprehensive way, one would first need to develop
a theory of invariants for genus one normal curves of larger degree. At the moment this
seems difficult, partly because it is not entirely clear what the appropriate definition
of an integral genus one model of degree n should be. Naively one could define this
as a collection of n(n − 3)/2 quadrics in n variables with integral coefficients, but an
arbitrarily chosen collection has a poor chance of defining a genus one normal curve. In
any event, the invariants will be given as polynomials in the coefficients of the model
and should be related to the standard invariants, c4, c6 and the discriminant, of the
Jacobian. These polynomials will likely be too large to ever write down, so one may
also need a clever way of evaluating them.

In contrast, the outlook for reduction is somewhat more optimistic. After having
removed prime factors from the invariants, one wants to make a unimodular transfor-
mation to make the coefficients smaller (it is somewhat enlightening to think of this as
minimization at an archimedean prime). Here there is a clear theoretical description
over Q for arbitrary n, which reduces the problem to lattice reduction. The question
is how to go about doing it in practice. Fisher has explained to me how the method of
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reduction for 4-coverings generalizes to 9-coverings, though at the time of writing this
had not been implemented.

Even higher descents. Once one develops a reasonable method for producing
nice models of p2-coverings of elliptic curves one might try to do descent on these.
Stamminger’s method of third 2-descent could be used as a guide for a general method
for third p-descents. One step in his method involves solving a conic over a cubic
number field. The analog for larger p will likely require finding a rational point on a
p − 1 dimensional Brauer-Severi variety defined over a number field of degree p2 − 1.
Already for p = 3 this seems quite difficult. Even so a theoretical description would
be nice. Stamminger’s method actually computes a fake 2-Selmer set. As with second
descents, the naive generalization to odd p will likely omit too much information for
one to be able to recover the genuine p-Selmer set. So there will likely be a bit of work
involved in correcting for this.

In a different direction, one might try to combine the results of Stamminger’s third
2-descents with those of a second 3-descent. Fisher has devised a method for producing
explicit models for 6- and 12-coverings of an elliptic curve starting from a pair of 2- and
3- or 3- and 4-coverings [Fi5]. He has used this to find generators of the Mordell-Weil
group of unprecedentedly large height. It would seem that aspects of his method apply
to any pair of consecutive prime powers, so one might try combining 8- and 9-coverings
to produce 72-coverings of elliptic curves. For this to be useful (or even feasible) in
practice one would, of course, first need to deal with minimization and reduction of 8-
and 9-coverings.

Descent on higher genus curves. In retrospect, the criterion for choosing the
family of functions defining our descent map was that it could be used to perform a
p-descent on the Jacobian (cf. II.4.5). Namely, the induced map on Pic0

K(C) could be
identified with the connecting homomorphism in the Kummer sequence of multiplica-
tion by p on the Jacobian. For genus one curves it is likely to be easier to perform
descent on the Jacobian by using functions on the Jacobian itself. The point, however,
is that any family of functions on a curve C of arbitrary genus which are useful for
computing or bounding a Selmer group of the Jacobian should also allow one to obtain
information on coverings of C. This is implicit in the approach taken by Bruin and
Stoll [BS] who have used the u1 − θ map to perform (fake) 2-descent on hyperelliptic
curves, rather than on their Jacobians.

In the more general situation of cyclic covers of the projective line of the form
up3 = f(u1), Poonen and Schaefer [PS] use the u1− θ map to perform fake descents on
the Jacobian. Stoll and Van Luijk have suggested [StVL] that one can use additional
information coming from the function u3 ∈ κ(C)× to ‘unfake the fake Selmer group’.
They construct a homomorphism from the subgroup of Pic(C) consisting of divisors
whose degrees are divisible by p which eliminates the ambiguity in the fake descent. It
would seem the techniques of this thesis can be used to induce a similar homomorphism
on the full Picard group. This would then allow one to compute the corresponding
Selmer set of C or to study coverings of the torsor in H1(K, Jac(C)) corresponding to
Pic1(C).

Period-index questions. In addition to being able to compute a potential cov-
ering obstruction to the existence of rational points, such explicit descriptions of the
coverings could potentially be used to study subtle period-index questions for C. In the

genus one case, the image of the descent map gives a parameterization of Cov
(p)
0 (C/K).
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If this is nonempty, then C is divisible by p in the Weil-Châtelet group by an element
of index dividing p2. The explicit description of HK allows one to relate existence to
the solvability of certain norm equations (cf. II.5.4). We have been able to show, for an
elliptic curve E over a number field k, that every element ofX(E/k)[2] is 2-divisible
by an element in H1(k,E) of index dividing 4 (Theorem I.2.5). It would be interest-
ing to determine whether this remains true for odd primes and, if not, then use the
description to find a counterexample.

One could also study the analogous question for coverings of cyclic covers of the
projective line. In this situation the coverings parameterized by the analogous descent
map should be those for which the pull-back of a ramification point (which always
defines a K-rational divisor class) is linearly equivalent to a K-rational divisor. Using
the explicit description of the image of the (fake) descent map for hyperelliptic curves
given in [BS], we have been able to construct examples of everywhere locally solvable
hyperelliptic curves over Q for which no such coverings exist [Cr2]. It seems that this
somewhat unexpected result might be explained by the existence of everywhere locally
solvable hyperelliptic curves over Q which have no 2-coverings defined over Q.
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