Number of k-polyominoes for small parameters
A k-polyomino is a non-overlapping union of n regular unit k-gons.
k/n |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
3 |
1 |
1 |
1 |
3 |
4 |
12 |
24 |
66 |
160 |
448 |
1186 |
4 |
1 |
1 |
2 |
5 |
12 |
35 |
108 |
369 |
1285 |
4655 |
17073 |
5 |
1 |
1 |
2 |
7 |
25 |
118 |
551 |
2812 |
14445 |
76092 |
403976 |
6 |
1 |
1 |
3 |
7 |
22 |
82 |
333 |
1448 |
6572 |
30490 |
143552 |
7 |
1 |
1 |
2 |
7 |
25 |
118 |
558 |
2876 |
14982 |
80075 |
431889 |
8 |
1 |
1 |
3 |
11 |
50 |
269 |
1605 |
10102 |
65323 |
430302 |
|
9 |
1 |
1 |
3 |
14 |
82 |
585 |
4418 |
34838 |
280014 |
|
|
10 |
1 |
1 |
4 |
19 |
127 |
985 |
8350 |
73675 |
|
|
|
11 |
1 |
1 |
4 |
23 |
186 |
1750 |
17507 |
181127 |
|
|
|
12 |
1 |
1 |
5 |
23 |
168 |
1438 |
13512 |
131801 |
|
|
|
13 |
1 |
1 |
4 |
23 |
187 |
1765 |
17775 |
185297 |
|
|
|
14 |
1 |
1 |
5 |
29 |
263 |
2718 |
30467 |
352375 |
|
|
|
15 |
1 |
1 |
5 |
35 |
362 |
4336 |
55264 |
|
|
|
|
16 |
1 |
1 |
6 |
42 |
472 |
6040 |
83252 |
|
|
|
|
17 |
1 |
1 |
6 |
48 |
614 |
8814 |
134422 |
|
|
|
|
18 |
1 |
1 |
7 |
47 |
566 |
7678 |
112514 |
|
|
|
|
19 |
1 |
1 |
6 |
48 |
615 |
8839 |
135175 |
|
|
|
|
20 |
1 |
1 |
7 |
57 |
776 |
11876 |
195122 |
|
|
|
|
21 |
1 |
1 |
7 |
64 |
972 |
16410 |
294091 |
|
|
|
|
22 |
1 |
1 |
8 |
74 |
1179 |
20970 |
397852 |
|
|
|
|
23 |
1 |
1 |
8 |
82 |
1437 |
27720 |
566007 |
|
|
|
|
24 |
1 |
1 |
9 |
81 |
1347 |
24998 |
|
|
|
|
|
25 |
1 |
1 |
8 |
82 |
1439 |
27787 |
|
|
|
|
|
26 |
1 |
1 |
9 |
93 |
1711 |
34763 |
|
|
|
|
|
27 |
1 |
1 |
9 |
103 |
2045 |
44687 |
|
|
|
|
|
28 |
1 |
1 |
10 |
115 |
2376 |
54133 |
|
|
|
|
|
29 |
1 |
1 |
10 |
125 |
2786 |
67601 |
|
|
|
|
|
30 |
1 |
1 |
11 |
123 |
2641 |
62252 |
|
|
|
|
|
31 |
1 |
1 |
10 |
125 |
2790 |
67777 |
|
|
|
|
|
32 |
1 |
1 |
11 |
139 |
3204 |
81066 |
|
|
|
|
|
33 |
1 |
1 |
11 |
150 |
3707 |
99420 |
|
|
|
|
|
34 |
1 |
1 |
12 |
165 |
4193 |
116465 |
|
|
|
|
|
35 |
1 |
1 |
12 |
177 |
4790 |
140075 |
|
|
|
|
|
36 |
1 |
1 |
13 |
175 |
4575 |
130711 |
|
|
|
|
|
37 |
1 |
1 |
12 |
177 |
4796 |
140434 |
|
|
|
|
|
38 |
1 |
1 |
13 |
193 |
5380 |
163027 |
|
|
|
|
|
39 |
1 |
1 |
13 |
207 |
6089 |
193587 |
|
|
|
|
|
40 |
1 |
1 |
14 |
224 |
6760 |
221521 |
|
|
|
|
|
41 |
1 |
1 |
14 |
238 |
7578 |
259396 |
|
|
|
|
|
42 |
1 |
1 |
15 |
235 |
7282 |
244564 |
|
|
|
|
|
43 |
1 |
1 |
14 |
238 |
7584 |
259838 |
|
|
|
|
|
44 |
1 |
1 |
15 |
257 |
8373 |
295558 |
|
|
|
|
|
45 |
1 |
1 |
15 |
272 |
9321 |
342841 |
|
|
|
|
|
46 |
1 |
1 |
16 |
292 |
10207 |
385546 |
|
|
|
|
|
47 |
1 |
1 |
16 |
308 |
11282 |
442543 |
|
|
|
|
|
48 |
1 |
1 |
17 |
305 |
10890 |
420154 |
|
|
|
|
|
49 |
1 |
1 |
16 |
308 |
11290 |
443178 |
|
|
|
|
|
50 |
1 |
1 |
17 |
329 |
12309 |
495988 |
|
|
|
|
|
51 |
1 |
1 |
17 |
347 |
13532 |
565225 |
|
|
|
|
|
52 |
1 |
1 |
18 |
369 |
14663 |
627172 |
|
|
|
|
|
53 |
1 |
1 |
18 |
387 |
16029 |
|
|
|
|
|
|
54 |
1 |
1 |
19 |
383 |
15527 |
|
|
|
|
|
|
55 |
1 |
1 |
18 |
387 |
16037 |
|
|
|
|
|
|
56 |
1 |
1 |
19 |
411 |
17321 |
|
|
|
|
|
|
57 |
1 |
1 |
19 |
430 |
18849 |
|
|
|
|
|
|
58 |
1 |
1 |
20 |
455 |
20257 |
|
|
|
|
|
|
59 |
1 |
1 |
20 |
475 |
21948 |
|
|
|
|
|
|
60 |
1 |
1 |
21 |
471 |
21327 |
|
|
|
|
|
|
61 |
1 |
1 |
20 |
475 |
21959 |
|
|
|
|
|
|
62 |
1 |
1 |
21 |
501 |
23534 |
|
|
|
|
|
|
63 |
1 |
1 |
21 |
523 |
25411 |
|
|
|
|
|
|
64 |
1 |
1 |
22 |
550 |
27117 |
|
|
|
|
|
|
65 |
1 |
1 |
22 |
572 |
|
|
|
|
|
|
|
66 |
1 |
1 |
23 |
567 |
|
|
|
|
|
|
|
67 |
1 |
1 |
22 |
572 |
|
|
|
|
|
|
|
68 |
1 |
1 |
23 |
601 |
|
|
|
|
|
|
|
69 |
1 |
1 |
23 |
624 |
|
|
|
|
|
|
|
70 |
1 |
1 |
24 |
654 |
|
|
|
|
|
|
|
71 |
1 |
1 |
24 |
678 |
|
|
|
|
|
|
|
72 |
1 |
1 |
25 |
673 |
|
|
|
|
|
|
|
73 |
1 |
1 |
24 |
678 |
|
|
|
|
|
|
|
74 |
1 |
1 |
25 |
709 |
|
|
|
|
|
|
|
75 |
1 |
1 |
25 |
735 |
|
|
|
|
|
|
|
76 |
1 |
1 |
26 |
767 |
|
|
|
|
|
|
|
77 |
1 |
1 |
26 |
793 |
|
|
|
|
|
|
|
78 |
1 |
1 |
27 |
787 |
|
|
|
|
|
|
|
79 |
1 |
1 |
26 |
793 |
|
|
|
|
|
|
|
80 |
1 |
1 |
27 |
827 |
|
|
|
|
|
|
|
81 |
1 |
1 |
27 |
854 |
|
|
|
|
|
|
|
82 |
1 |
1 |
28 |
889 |
|
|
|
|
|
|
|
83 |
1 |
1 |
28 |
917 |
|
|
|
|
|
|
|
84 |
1 |
1 |
29 |
911 |
|
|
|
|
|
|
|
85 |
1 |
1 |
28 |
917 |
|
|
|
|
|
|
|
86 |
1 |
1 |
29 |
953 |
|
|
|
|
|
|
|
87 |
1 |
1 |
29 |
983 |
|
|
|
|
|
|
|
88 |
1 |
1 |
30 |
1020 |
|
|
|
|
|
|
|
89 |
1 |
1 |
30 |
1050 |
|
|
|
|
|
|
|
90 |
1 |
1 |
31 |
1043 |
|
|
|
|
|
|
|
91 |
1 |
1 |
30 |
1050 |
|
|
|
|
|
|
|
92 |
1 |
1 |
31 |
1089 |
|
|
|
|
|
|
|
93 |
1 |
1 |
31 |
1120 |
|
|
|
|
|
|
|
94 |
1 |
1 |
32 |
1160 |
|
|
|
|
|
|
|
95 |
1 |
1 |
32 |
1192 |
|
|
|
|
|
|
|
96 |
1 |
1 |
33 |
1185 |
|
|
|
|
|
|
|
97 |
1 |
1 |
32 |
1192 |
|
|
|
|
|
|
|
98 |
1 |
1 |
33 |
1233 |
|
|
|
|
|
|
|
99 |
1 |
1 |
33 |
1267 |
|
|
|
|
|
|
|
100 |
1 |
1 |
34 |
1309 |
|
|
|
|
|
|
|
For more information have a look at this Preprint.
Back to the
LS MATHE II Homepage.
Sascha Kurz, February 2005.