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A chemical motivation

A chemical compound ...
cyclohexane

. may appear in different conformations

el g

chair form twisted form

How do we get an overview over the conformation space? J
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Generation of abstract order types

Catalogues of abstract order types were generated:

@ In dimension 2, nondegenerate configurations:
Aichholzer, Aurenhammer, Krasser (2003)
@ In dimension 3 (among others), also degenerate cases:

L. Finschi, K. Fukuda (2001,/2003).

n: ‘ 4 5 6 7 8 9
isom. classes: | 1 5 55 5083 10775236 —

@ It is not practical to store full catalogues for larger n's.

@ Generate chirotopes on purpose with individual parameters
and restrictions!
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The general situation

Let A:={1,...,n}.
Let D be a set of words (tuples) over A.

Let G be a group acting on A. (Hence G < S,,.)

Consider the induced action of G on the set of mappings
D — R.

@ The orbits define isomorphism classes of mappings.

Problem:
Generate a transversal of these isomorphism classes of mappings.

°
°
@ We consider mappings from D into a set R.
°
°
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Generation strategy

@ Backtrack generation
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Generation of isomorphism classes

o Let Dj:={x € D | xisawordover {1,...,i}}

o Let fj :==fl|p, for f : D — R.

o Let G;:=GnNS;.

@ Let n; be maximal, s.t. x; is a word over {1,...,i}.

Thus, on level n; the restricted mapping f; is complete.

Idea: On level n;, test, if f; is canonic.

Problem: Do the canonic f;'s have canonic ancestors on level n;_17?
Solution: Do not select the canonic elements, but another
transversal.



Generation of mappings

Homomorphism principle (Laue, 1993)

Let G act on X and T be a G-transversal of X. Let further
¢ : Y — X be a G-homomorphism (i.e. (g - x) = g - p(x)).

We obtain a G-transversal of Y as the union of Gy-transversals of
©~1(y), where the union is over all x € T.
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Let G act on X and T be a G-transversal of X. Let further
¢ : Y — X be a G-homomorphism (i.e. (g - x) = g - p(x)).

We obtain a G-transversal of Y as the union of Gy-transversals of
©~1(y), where the union is over all x € T.

Application: The mapping ¢ : f; — f;_1 is a G;_1-homomorphism.

1. f; is canonic w.r.t. the stabilizer group (Gi—1)f_,. J
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Theorem (McKay 1998, Schmalz 1993)

Let G act on X and T be a G-transversal of X. Let further
@ : X — Y be a G-homomorphism and ¢ : Y — X a mapping

Wth poy(y)=y  and  u(g-y)€g- Gy ().
We obtain a G-transversal of Y by taking ¢(x) for all x € T with:
Pop(x) e G@(X) - X

Application: Take the marked mappings as X, the unmarked ones
as Y, ¢ : X — Y removes the mark, and ¢ : Y — X be the
mapping which marks the label ¢;(f;) := (g,S_G"))*1 -1, which gets 1
in the G;-canonic representant of f; I

2. Select f; iff c1(f;) € (G)r. - 1. J

i
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Canonicity test during generation

Algorithm:

On level n; of backtrack-tree, i =2, ..., n, proceed with f; iff
1. f; is canonic w.r.t. the stabilizer group (Gj_1)f_,.

2. ci(f) € (G)g - i, where c1(f) = (g{%))1 - 1.

It remains a transversal of isomorphism classes of mappings.
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The generator of chirotopes

http://www.mathe2.uni-bayreuth.de:/ralfg/origen.php J

@ Computation times for full catalogues of reorientation classes:

nn|3 4 5 6 7 8 9 10
rank 4: 1 3 12 206 181472 — —
Finschi (2001): 10.0s 250m
origen (2006): 2.3s 17m
factor: 1:4 1:15
rank 3: 1 2 4 17 143 4890 461053 95052532
Finschi (2001): 3.0s 130s 220m ~ 1700h
origen (2006): 0.6s 13s 13m 33h
factor: 1:5 1:10 1:17 1:52
@ Individual generations for specific molecules:
molecule: ‘ CoHs GCH; GgHs CoHy CioHio
origen (2006): 13 18 30 46 78
time: 0.2s 4.9s 62s
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Conclusions

Thank Youl )
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