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History of ring-linear codes

I 1967: John Robinson, electrical engineer at the University
of Iowa: Talk for pupils about coding theory

I Discussed research problem:
For length 16 and minimum distance 6:

I Optimum size of a linear code is 27.
I For unrestricted block codes:

Optimum size is in {27, . . . ,28}.

I Pupil Alan W. Nordstrom
Constructed a (16,28,6)2-code!
Higher minimum distance than all linear codes of equal
length and size.
We say: It is BTL (better than linear)
 Famous Nordstrom-Robinson code (1967)
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History of ring-linear codes (cont.)

I Generalization of the Nordstrom-Robinson-code:
I 1968: Infinite series of the Preparata-codes

1993: All BTL.
I 1972: Infinite series of the Kerdock-codes

All BTKL (better than known linear), conjecture: BTL.
(Research Problem 15.4 in MacWilliams, Sloane)

I 1994: All these non-linear codes
are Gray images of Z4-linear codes!

I Intensive study of ring-linear codes.
However: No new Z4-linear BTL-parameters.
Only sporadic examples of new BTKL-codes.

I Johannes Zwanzger:
heuristic search for ring-linear codes.
2009: First examples of new BTL-parameters over Z4.
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Results

I Four new infinite series of ring-linear codes.
I All codes BTL or BTKL (in the table range).
I Found by analysis of the computer examples.
I „Tool”: Projective Hjelmslev geometry.
I base rings: Galois rings of characteristic 4.

(Smallest member: Z4)
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Galois rings

I Finite rings, „close” to the finite fields.
I Symbol: GR(c, r) (characteristic c, rank r ).
I From now on: Let R = GR(4, r) and q = 2r .

ideals of R size
R q2

|
2R q
|
{0} 1

I residue class field R/2R ∼= Fq.
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Linear codes over Galois-rings

Definition
I R-linear code C: submodule of the R-module Rn

I n is length of C
I #C is size of C

Experience
For R-linear codes: Hamming distance not interesting!
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Definition (homogeneous weight)

I Idea:
I w(0) = 0.
I associated ring elements have the same weight.
I ideals 6= zero ideal: Same average weight 6= 0.

I  homogeneous weight over R:

whom(a) =


0 if a = 0
q if a ∈ 2R \ {0}
q − 1 if a ∈ R∗

Example (Homogeneous weight on Z4 = GR(22,1))
Here q = 2.

whom(0) = 0 whom(1) = 1
whom(2) = 2 whom(3) = 1

Better known as the Lee weight wLee!
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Example (Heptacode)
The Z4-linear Heptacode H is the row space of1 0 0 1 2 3 1

0 1 0 1 1 2 3
0 0 1 1 3 1 2


Lee weight (=homogeneous weight) of the first row:

wLee((1,0,0,1,2,3,1)) = 1 + 0 + 0 + 1 + 2 + 1 + 1 = 6.

minimum weight wLee(H) = 6.

 H is a (7,26,6)Z4-code.
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Connection to traditional coding theory

I Define homogeneous distance dhom(c,c′) = whom(c− c′).
I minimum distance = minimum weight.
I ∃ distance-preserving embedding

ψ : (Rn,dhom)→ (Fnq
q ,dHam).

generalized Gray map
I So: R-linear (n,#C,d)R-code C

gives (qn,#C,d)q-code ψ(C) in the Hamming metric
(generally: non-linear).

Example (Heptacode (cont.))

I Gray image of the (7,26,6)Z4 Heptacode:
 binary non-linear (14,26,6)2-code ψ(O).

I Shortest Gray image which is BTL!
I Related to the (16,28,6)2 Nordstrom-Robinson code.
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Projective Hjelmslev geometry
Let k ≥ 2.

Definition
Projective Hjelmslev geometry PHG(Rk ):
Lattice of submodules of Rk .
I Points: Free submodules of Rk of rank 1.
I Lines: Free submodules of Rk of rank 2
I hyperplanes: Free submodules of Rk of rank k − 1.

Duality

I The lattice PHG(Rk ) is self-dual.
I Duality interchanges points and hyperplanes.
I  construction principle for two series.

Warning
Two different lines may meet in more than one point!
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Connection between codes and geometry
Let C be an R-linear code of length n, free of rank k .

I C is the row space of a matrix

G =

 | | |
v1 v2 · · · vn
| | |

 ∈ Rk×n

I If C fat (projection to each coordinate is onto):
⇒ Rvi is a point in PHG(Rk ).

I  multiset P of points,
spanning the full geometry

I We get a bijection
isomorphism classes of free, fat codes C

l
isomorphism classes of multisets P of points,

spanning the full geometry.
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Connection between codes and geometry (conn.)
I Bijection:

isomorphism classes of free, fat codes C
l

isomorphism classes of multisets P of points,
spanning the full geometry.

C −→ pts(C)

cde(P) ←− P

I Codewords correspond to hyperplanes.
I spectrum of a point set P:

information about the position of the points in P to the
hyperplanes.

I The spectrum of P
determines the minimum distance of cde(P)!
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Example (Simplex-code)

I Chose P as the complete point set of PHG(Rk ).
I As a linear code: Gray image of cde(P) would be optimal.
I However not BTL, since these optimum linear codes do

exist.

Example (Heptacode (cont.))
Look again at the Heptacode H:1 0 0 1 2 3 1

0 1 0 1 1 2 3
0 0 1 1 3 1 2


Yields 7 points pts(H) in PHG(Z3

4).
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Teichmüller codes
I Consider ring extension

R = GR(4, r)
k
⊂ GR(4, rk) =: S.

I S∗ has a unique subgroup of order qk − 1
(Teichmüller group T , cyclic, q = 2r )
Teichmüller group t of R∗: order q − 1 and t < T .

I Consider elements of S as vectors v ∈ Rk .
Units in S∗ give points Rv in PHG(Rk ).

I coset representatives of T/t yield
Teichmüller point set Tq,k .

I T. Honold 2010: For k odd:
Tq,k is two-intersection.
(only two intersection numbers with the hyperplanes.)

I Teichmüller codes Tq,k = cde(Tq,k )
have very good parameters!
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Generalization of the Teichmüller codes

I Instead of T : Take supergroups Σ of T !
I Which groups Σ yield 2-intersection sets?
I By the structure of S∗ (Raghavendran 1969):

T ≤ Σ < S∗
bij.←→ F2-subspaces Fq ≤ UΣ < Fqk .

I trace form B : Fqk × Fqk → F2, (a,b) 7→ TrF2(ab)
is a symmetric bilinear form on the F2-vector space Fqk .

Theorem
Σ induces a two-intersection set in PHG(Rk ) if and only if

1. B|UΣ×UΣ
is non-degenerate or

2. B|U⊥Σ ×U⊥Σ
is alternate.

(i.e. U⊥Σ is totally isotropic.)
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Theorem (restated)
Σ induces a two-intersection set in PHG(Rk ) if and only if

1. B|UΣ×UΣ
is non-degenerate or

2. B|U⊥Σ ×U⊥Σ
is alternate.

(i.e. U⊥Σ is totally isotropic.)

Notes on the proof

I Adaption of the proof by T. Honold.
I Representation of S as truncated Witt vectors.
I Use theory of association schemes.
I Use properties of the trace form on UΣ.

Generated codes
I For good codes: Case 1.
I In which dimension exist suitable subspaces UΣ?
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Lemma
There is an F2-subspace U of Fqk with dim(U) = s + r , Fq ≤ U
and B|U×U non-degenerate, if and only if

s ∈

{
{0,2,4, . . . , (k − 1)r} for k odd,
{r , r + 2, r + 4, . . . , (k − 1)r} for k even.

Idea of the proof

I Fq ≤ U ≤ Fqk ⇐⇒ U⊥ ≤ F⊥q
I Use classification of bilinear forms over F2

(A. A. Albert 1938).

Definition
I Generated point set: Tq,k ,s

I Tq,k ,s = cde(Tq,k ,s)

For k odd: Tq,k ,0 = Tq,k .
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Theorem
The Gray image of Tq,k ,s has the parameters(

2sq · qk − 1
q − 1

, q2k , 2sqk − 2s/2q
k−1

2

)
q

.

Idea of the proof
Two intersection numbers of Tq,k ,s

 spec(Tq,k ,s)
 Minimum distance of Tq,k ,s.

Comment
Algorithm of T. Feulner:
Isomorphism Type of Tq,k ,s
generally depends on the choice of UΣ.
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Example

I T2,3,0 is the Heptacode, so BTL.
I Gray image of T2,4,1 has the BTL parameters

(60,28,28)2

(Same parameters as a doubly shortened Kerdock code.)
I Gray image of T2,5,2 has the BTKL parameters

(248,210,120)2

unknown!
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Overview
Constructed Series
I Generalized Teichmüller codes Tq,k ,s.
I Dualized generalized Teichmüller codes T ∗q,k ,s.

I Dualized Kerdock codes K̂∗k+1.

I Augmented Simplex codes Ŝq,k .

Examples

Code Gray image Status Comment
T2,5,2 (248,210,120)2 BTKL new
T4,3,0 (84,46,60)4 BTKL Hemme, Honold, Landjev 2000
T ∗

2,5,0 (372,210,184)2 BTL K., Zwanzger 2011
T ∗

4,3,0 (504,46,376)4 BTKL K., Kohnert 2007
K̂∗

3+1 (114,28,56)2 BTL Zwanzger 2009
Ŝ2,3 (58,27,28)2 BTL Zwanzger 2009
Ŝ2,4 (244,29,120)2 BTKL K., Zwanzger 2011
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