length n = 193
dimension k = 8
alphabet length q = 4

minimum distance d = 124

generator matrix:
0000000100000000000000000000000000000000000000000000000000000000111111111111111111111111111111111111111111111111111111110111111111111111111111111111111111111111111111111111111111111111111111111
0000001000000000000000000000000011111111111111111111111111111111000000000000000000000000000000001111111111112222223333331011111111111112311111111111111222222222222222222222333333333333333333333
0000010000000000111111111111111100000000000000001111111122223333000000000000000011111111222233330000000011330000220000111101111111111121311222222333333111111222222333333333111111222222222333333
0000100011111111000000001111223300000000111122330000113300220011000000001111223300001133002200110000113300000022000011001110111111111211323133333122222122233111233112233333122333112222233111223
0001000011112233000011230013020111112233000000000013030102020101000011230013020111330000220011000013030100000202000101001111011111112111323312223212333212323333323121311123323123131112312222232
0010000000130201112313211300201011332211001302010000301000200010112300001331221103010000020001001300000003012000021000011111101111121111332223331331222233312123313232312311331222321231132123212
0100000013002010132131210031020103010201133122111300000020001000132113213100201000000301000200010031000030100200200100101111110111211111332231233322123323132333112313123122232312213123321222311
1000000031312211312100003100201030102010310020103131000022001100312131210000000030103010202010103100301000002020001010001111111012111111323323122233231333331231131321222231212222233331213312121

projective group of automorphisms generated by:
10000000
00010000
00000010
01000000
00000001
00000100
00100000
00001000

01000000
00010000
00000001
00100000
00000100
10000000
00000010
00001000