length n = 174
dimension k = 8
alphabet length q = 4

minimum distance d = 106

generator matrix:
000000010000000000000000000001111111111111111111111111111111111100000000000000111111111111111111111111111111111111111111011111111111111111111111111111111111111111111111111111
000000100000001111111111111110000000000000001111111122222233333300111111111111000000000000111111111111222222222333333333101111111111111123111111231111111111112222222233333333
000001000111110000011112223330000011112223330000123300012200011311001111222333001111222333000011222333000111222000111333110111111111111213111113211111222233331111222211113333
000010001022330112300130220130112300130220131233000000220100103123110023122133110023122133223323001001012012012013013013111011111111112113111131212233112211331122112211331133
000100001312011021323310021003232001032011013001020312020001130011112323201301232300112113020323120130121021200131031300111101111111121113111311212233121213132211121233111313
001000003120131320120301203103012123002100310230301021000210310023231123210310232311021031213100202303102220110103330110111110111111211113113111211213222133312212112133131131
010000003102313102123002010311230120301023100203300102102031001023232311021031231123210310121300022033210202101310303101111111011112111113131111212131221233131222211113333111
100000001321103322001032101011201323310201003010023020201013000111232300112113112323201301203023210310221100021331100031111111101121111113311111212233212131312121221131313311

projective group of automorphisms generated by:
10000000
00010000
00000010
01000000
00000001
00000100
00100000
00001000

01000000
00010000
00000001
00100000
00000100
10000000
00000010
00001000