length n = 173
dimension k = 8
alphabet length q = 4

minimum distance d = 106

generator matrix:
00000001000000000000000000000111111111111111111111111111111111110000000000000011111111111111111111111111111111111111111101111111111111111111111111111111111111111111111111111
00000010000000111111111111111000000000000000111111112222223333330011111111111100000000000011111111111122222222233333333310111111111111123111111231111111111112222222233333333
00000100011111000001111222333000001111222333000012330001220001131100111122233300111122233300001122233300011122200011133311011111111111213111113211111222233331111222211113333
00001000102233011230013022013011230013022013123300000022010010312311002312213311002312213322332300100101201201201301301311101111111112113111131212233112211331122112211331133
00010000131201102132331002100323200103201101300102031202000113001111232320130123230011211302032312013012102120013103130011110111111121113111311212233121213132211121233111313
00100000312013132012030120310301212300210031023030102100021031002323112321031023231102103121310020230310222011010333011011111011111211113113111211213222133312212112133131131
01000000310231310212300201031123012030102310020330010210203100102323231102103123112321031012130002203321020210131030310111111101112111113131111212131221233131222211113333111
10000000132110332200103210101120132331020100301002302020101300011123230011211311232320130120302321031022110002133110003111111110121111113311111212233212131312121221131313311

projective group of automorphisms generated by:
10000000
00010000
00000010
01000000
00000001
00000100
00100000
00001000

01000000
00010000
00000001
00100000
00000100
10000000
00000010
00001000