The cycle indices of the symmetry groups of platonic solids |
The routines for computing the 3-dimensional cycle indices of the symmetry groups (or rotational symmetry groups) of the platonic solids are:
INT zykelind_tetraeder(a) OP a; INT zykelind_tetraeder_extended(a) OP a; INT zykelind_cube(a) OP a; INT zykelind_cube_extended(a) OP a; INT zykelind_dodecahedron(a) OP a; INT zykelind_dodecahedron_extended(a) OP a;
The _extended
versions are the cycle indices of the
groups of all symmetries (this means rotations and reflections). In
all these cases a
is the 3-dimensional cycle index for
the action on the sets of vertices, edges and faces.
Extracting a single family of indeterminates leads to:
INT zykelind_tetraeder_vertices(a) OP a; INT zykelind_tetraeder_edges(a) OP a; INT zykelind_tetraeder_faces(a) OP a; INT zykelind_tetraeder_vertices_extended(a) OP a; INT zykelind_tetraeder_edges_extended(a) OP a; INT zykelind_tetraeder_faces_extended(a) OP a; INT zykelind_cube_vertices(a) OP a; INT zykelind_cube_edges(a) OP a; INT zykelind_cube_faces(a) OP a; INT zykelind_cube_vertices_extended(a) OP a; INT zykelind_cube_edges_extended(a) OP a; INT zykelind_cube_faces_extended(a) OP a; INT zykelind_dodecahedron_vertices(a) OP a; INT zykelind_dodecahedron_edges(a) OP a; INT zykelind_dodecahedron_faces(a) OP a; INT zykelind_dodecahedron_vertices_extended(a) OP a; INT zykelind_dodecahedron_edges_extended(a) OP a; INT zykelind_dodecahedron_faces_extended(a) OP a;
The cycle indices for the actions on the sets of vertices, edges, etc. were computed from the 3-dimensional cycle indices by extracting some families of indeterminates.
The cycle indices of the symmetry groups of platonic solids |