Some numerical results
A system of representatives of the conjugacy classes of subgroups
of D12 together with the numbers of
U-invariant partitions and the numbers of
D12-orbits of stabilizer type Ũ is
given in the table 3: T stands for the permutation
(0,1,2,..., 11) and I stands for the permutation
(0)(1,11)(2,10)(3,9)(4,8)(5,7)(6). In table 4 a list of
all the 54 conjugacy classes of subgroups of Aff
(1,Z12) together with the number of
U-invariant partitions and the number of U-strata is
given. (The subgroup lattice of Aff (1,Z12) was
computed with GAP [6].) The
permutation Q is given by
(0)(1,5)(2,10)(3)(4,8)(6)(7,11)(9).
U-invariant partitions and
U-strata for D12-mosaics
group |
order |
| Ũ | |
|(Π12)U| |
|Ũ
\\\Π12| |
U1=
〈1〉 |
1 |
1 |
4213597 |
172037 |
U2=
〈T6〉 |
2 |
1 |
6841 |
416 |
U3=
〈I〉 |
2 |
6 |
6841 |
3227 |
U4=
〈TI〉 |
2 |
6 |
6841 |
3242 |
U5=
〈T4〉 |
3 |
1 |
268 |
11 |
U6=
〈T3〉 |
4 |
1 |
111 |
2 |
U7=
〈T6,I〉 |
4 |
3 |
349 |
150 |
U8=
〈T6,TI〉 |
4 |
3 |
319 |
136 |
U9=
〈T2〉 |
6 |
1 |
28 |
0 |
U10=
〈T4,I〉 |
6 |
2 |
56 |
19 |
U11=
〈T4,TI〉 |
6 |
2 |
54 |
19 |
U12=
〈T3,I〉 |
8 |
3 |
37 |
31 |
U13=
〈T2,I〉 |
12 |
1 |
18 |
6 |
U14=
〈T2,TI〉 |
12 |
1 |
16 |
5 |
U15=
〈T〉 |
12 |
1 |
6 |
0 |
U16=
〈T,I〉 |
24 |
1 |
6 |
6 |
U-invariant partitions and
U-strata for Aff (1,Z12)-mosaics
group |
order |
| Ũ | |
|(Π12)U| |
|Ũ
\\\Π12| |
group |
order |
| Ũ | |
|(Π12)U| |
|Ũ
\\\Π12| |
〈1〉 |
1 |
1 |
4213597 |
83267 |
〈T3,IQ〉 |
8 |
1 |
81 |
1 |
〈T6〉 |
2 |
1 |
6841 |
140 |
〈T6,I,Q〉 |
8 |
3 |
245 |
102 |
〈IQ〉 |
2 |
2 |
43693 |
3109 |
〈T6,T2Q,T3IQ〉 |
8 |
3 |
91 |
29 |
〈T3IQ〉 |
2 |
2 |
6841 |
395 |
〈T3,T2Q〉 |
8 |
3 |
31 |
1 |
〈Q〉 |
2 |
3 |
14325 |
1407 |
〈T3,I〉 |
8 |
3 |
37 |
4 |
〈T2Q〉 |
2 |
3 |
6841 |
592 |
〈T3Q,I〉 |
8 |
3 |
37 |
4 |
〈I〉 |
2 |
6 |
6841 |
1244 |
〈TQ,TI〉 |
8 |
3 |
81 |
25 |
〈TI〉 |
2 |
6 |
6841 |
1474 |
〈TQ,T2〉 |
12 |
1 |
8 |
0 |
〈T4〉 |
3 |
1 |
268 |
3 |
〈T〉 |
12 |
1 |
6 |
0 |
〈T3〉 |
4 |
1 |
111 |
0 |
〈T2IQ,T6〉 |
12 |
1 |
20 |
0 |
〈T6,IQ〉 |
4 |
1 |
1913 |
88 |
〈T2,I〉 |
12 |
1 |
18 |
0 |
〈T6,T3IQ〉 |
4 |
1 |
319 |
3 |
〈T2,TI〉 |
12 |
1 |
16 |
1 |
〈TQ〉 |
4 |
3 |
111 |
5 |
〈TIQ,T6〉 |
12 |
1 |
10 |
0 |
〈T6,TI〉 |
4 |
3 |
319 |
41 |
〈T2,Q〉 |
12 |
1 |
22 |
0 |
〈T6,Q〉 |
4 |
3 |
469 |
40 |
〈TI,Q〉 |
12 |
2 |
22 |
6 |
〈T6,I〉 |
4 |
3 |
349 |
22 |
〈TI,T2Q〉 |
12 |
2 |
16 |
3 |
〈T4Q,TI〉 |
4 |
6 |
469 |
183 |
〈T2I,Q〉 |
12 |
2 |
34 |
8 |
〈T10Q,TI〉 |
4 |
6 |
319 |
111 |
〈T2Q,I〉 |
12 |
2 |
28 |
5 |
〈I,Q〉 |
4 |
6 |
1159 |
449 |
〈T10Q,TI,IQ〉 |
16 |
3 |
29 |
23 |
〈IQ,T2Q〉 |
4 |
6 |
835 |
290 |
〈T6,T2Q,I〉 |
24 |
1 |
18 |
6 |
〈T4,Q〉 |
6 |
1 |
94 |
2 |
〈T3Q,TI〉 |
24 |
1 |
8 |
1 |
〈T4,T2Q〉 |
6 |
1 |
54 |
0 |
〈T3,TIQ〉 |
24 |
1 |
6 |
0 |
〈T2〉 |
6 |
1 |
28 |
0 |
〈T6,T2Q,TI〉 |
24 |
1 |
10 |
2 |
〈TIQ〉 |
6 |
2 |
28 |
0 |
〈TQ,I〉 |
24 |
1 |
6 |
0 |
〈T4,TI〉 |
6 |
2 |
54 |
5 |
〈T,Q〉 |
24 |
1 |
6 |
0 |
〈T4,I〉 |
6 |
2 |
56 |
3 |
〈T,I〉 |
24 |
1 |
6 |
0 |
〈T2IQ〉 |
6 |
2 |
58 |
3 |
〈T,I,Q〉 |
48 |
1 |
6 |
6 |
The number of all U1-invariant partitions is
just the number of all partitions of 12 which is the
Bell-number B(12). The Burnside matrix of
D12 was derived by inverting the table of marks
of D12 computed with the computer algebra system
GAP. It is 1/24 time the following matrix:
1 |
-1 |
-6 |
-6 |
-1 |
. |
6 |
6 |
1 |
6 |
6 |
. |
-6 |
-6 |
. |
. |
. |
2 |
. |
. |
. |
-2 |
-6 |
-6 |
-2 |
. |
. |
12 |
6 |
6 |
2 |
-12 |
. |
. |
12 |
. |
. |
. |
-12 |
. |
. |
-12 |
. |
. |
12 |
. |
. |
. |
. |
. |
. |
12 |
. |
. |
. |
-12 |
. |
. |
-12 |
. |
. |
12 |
. |
. |
. |
. |
. |
. |
3 |
. |
. |
. |
-3 |
-6 |
-6 |
. |
6 |
6 |
. |
. |
. |
. |
. |
. |
. |
4 |
. |
. |
. |
. |
. |
-12 |
. |
. |
-4 |
12 |
. |
. |
. |
. |
. |
. |
12 |
. |
. |
. |
. |
-12 |
-12 |
. |
. |
12 |
. |
. |
. |
. |
. |
. |
. |
12 |
. |
. |
. |
-12 |
. |
-12 |
. |
12 |
. |
. |
. |
. |
. |
. |
. |
. |
6 |
. |
. |
. |
-6 |
-6 |
-6 |
12 |
. |
. |
. |
. |
. |
. |
. |
. |
. |
12 |
. |
. |
-12 |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
12 |
. |
. |
-12 |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
24 |
. |
. |
. |
-24 |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
12 |
. |
. |
-12 |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
12 |
. |
-12 |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
12 |
-12 |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
24 |
The Burnside matrix of the group Aff (1,Z12)
is 1/48 times the matrix given by:
1 |
-1 |
-2 |
-2 |
-3 |
-3 |
-6 |
-6 |
-1 |
. |
2 |
2 |
. |
6 |
6 |
6 |
12 |
12 |
12 |
12 |
3 |
3 |
1 |
2 |
6 |
6 |
2 |
. |
-24 |
-24 |
. |
. |
. |
. |
. |
. |
-2 |
-6 |
-6 |
-2 |
-6 |
-12 |
-12 |
-12 |
-12 |
. |
24 |
. |
. |
24 |
. |
. |
. |
. |
. |
2 |
. |
. |
. |
. |
. |
. |
. |
-2 |
-2 |
-2 |
-6 |
-6 |
-6 |
-6 |
. |
. |
. |
. |
. |
. |
-2 |
. |
. |
. |
. |
4 |
12 |
12 |
12 |
12 |
12 |
12 |
6 |
2 |
2 |
6 |
6 |
2 |
6 |
. |
. |
. |
. |
-48 |
-12 |
-12 |
-4 |
-12 |
-12 |
-12 |
-12 |
48 |
. |
. |
4 |
. |
. |
. |
. |
. |
. |
. |
-4 |
. |
. |
. |
. |
. |
. |
. |
-12 |
-12 |
. |
. |
. |
. |
. |
. |
-4 |
. |
24 |
. |
. |
. |
. |
. |
. |
. |
4 |
. |
. |
. |
. |
. |
. |
12 |
12 |
. |
-24 |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
4 |
. |
. |
. |
. |
. |
. |
. |
-4 |
. |
. |
. |
. |
-12 |
-12 |
. |
. |
. |
. |
. |
-4 |
. |
. |
. |
. |
. |
24 |
. |
. |
. |
. |
. |
. |
. |
. |
. |
4 |
. |
12 |
12 |
. |
. |
. |
. |
. |
. |
-24 |
. |
. |
. |
. |
. |
. |
. |
. |
6 |
. |
. |
. |
. |
. |
. |
. |
. |
. |
-6 |
. |
-12 |
. |
-12 |
. |
-6 |
. |
. |
. |
. |
. |
. |
. |
12 |
12 |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
6 |
12 |
. |
12 |
. |
. |
-12 |
. |
. |
-12 |
. |
. |
. |
. |
. |
. |
. |
. |
. |
6 |
. |
. |
. |
. |
. |
. |
. |
. |
-6 |
. |
. |
-12 |
. |
-12 |
. |
-6 |
. |
. |
. |
. |
. |
. |
12 |
12 |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
6 |
. |
12 |
. |
12 |
. |
-12 |
. |
. |
-12 |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
12 |
. |
. |
. |
. |
. |
. |
. |
. |
-12 |
. |
. |
-12 |
-12 |
. |
. |
. |
. |
. |
-12 |
. |
. |
24 |
. |
. |
. |
. |
. |
. |
. |
. |
12 |
. |
. |
. |
. |
. |
12 |
12 |
. |
-24 |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
12 |
. |
. |
. |
. |
. |
-12 |
. |
. |
-12 |
-12 |
. |
. |
. |
. |
. |
. |
-12 |
. |
. |
. |
. |
24 |
. |
. |
. |
. |
. |
. |
. |
. |
12 |
. |
. |
12 |
12 |
. |
. |
. |
. |
. |
. |
-24 |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
3 |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
-3 |
-3 |
-3 |
-6 |
-6 |
-6 |
-6 |
. |
. |
. |
. |
. |
. |
. |
. |
. |
6 |
6 |
6 |
6 |
6 |
12 |
12 |
12 |
12 |
. |
-24 |
. |
. |
-24 |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
4 |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
-4 |
. |
. |
-12 |
-12 |
. |
. |
. |
-4 |
. |
. |
. |
. |
. |
. |
. |
. |
. |
24 |
. |
. |
4 |
. |
. |
12 |
12 |
-24 |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
4 |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
-4 |
-12 |
. |
. |
. |
. |
-12 |
. |
. |
-4 |
. |
. |
. |
. |
. |
. |
. |
. |
24 |
12 |
12 |
4 |
. |
. |
. |
. |
-24 |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
4 |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
-4 |
. |
-12 |
. |
. |
-12 |
. |
. |
. |
. |
. |
. |
-4 |
. |
. |
. |
. |
. |
24 |
. |
. |
4 |
12 |
12 |
. |
. |
-24 |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
12 |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
-12 |
. |
-12 |
-12 |
-12 |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
24 |
. |
12 |
. |
. |
12 |
12 |
. |
-24 |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
12 |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
-12 |
. |
-12 |
. |
-12 |
. |
. |
. |
. |
-12 |
. |
. |
. |
. |
. |
. |
24 |
. |
12 |
. |
12 |
. |
. |
12 |
-24 |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
12 |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
-12 |
-12 |
-12 |
. |
. |
. |
. |
. |
. |
. |
. |
. |
-12 |
. |
. |
. |
. |
24 |
12 |
. |
. |
12 |
. |
12 |
. |
-24 |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
12 |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
-12 |
. |
. |
-12 |
-12 |
. |
. |
. |
. |
-12 |
. |
. |
. |
. |
. |
. |
. |
24 |
12 |
. |
. |
. |
12 |
. |
12 |
-24 |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
24 |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
-24 |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
-24 |
. |
. |
. |
. |
. |
. |
. |
24 |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
24 |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
-24 |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
-24 |
. |
. |
. |
. |
. |
. |
24 |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
24 |
. |
. |
. |
. |
. |
. |
. |
. |
. |
-24 |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
-24 |
. |
. |
24 |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
24 |
. |
. |
. |
. |
. |
. |
. |
. |
-24 |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
-24 |
. |
24 |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
6 |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
-6 |
-12 |
. |
-12 |
. |
. |
12 |
. |
. |
12 |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
6 |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
-6 |
. |
-12 |
. |
-12 |
. |
12 |
. |
. |
12 |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
6 |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
-6 |
-6 |
-6 |
-6 |
-6 |
-6 |
-6 |
. |
. |
. |
. |
. |
12 |
12 |
12 |
12 |
12 |
12 |
12 |
-48 |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
12 |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
-12 |
. |
-12 |
-12 |
. |
. |
. |
. |
. |
. |
24 |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
12 |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
-12 |
. |
. |
-12 |
-12 |
. |
. |
. |
. |
. |
. |
24 |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
12 |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
-12 |
. |
. |
. |
. |
. |
-12 |
-12 |
. |
24 |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
12 |
. |
. |
. |
. |
. |
. |
. |
. |
. |
-12 |
. |
. |
. |
. |
. |
. |
-12 |
-12 |
. |
24 |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
8 |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
-24 |
. |
. |
-8 |
. |
. |
. |
. |
24 |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
24 |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
-24 |
-24 |
. |
. |
. |
. |
. |
. |
24 |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
24 |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
-24 |
. |
. |
. |
-24 |
. |
. |
. |
24 |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
24 |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
-24 |
. |
. |
. |
. |
. |
-24 |
. |
24 |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
24 |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
-24 |
. |
. |
. |
. |
. |
. |
-24 |
24 |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
24 |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
-24 |
. |
. |
. |
. |
-24 |
. |
. |
24 |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
24 |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
-24 |
. |
-24 |
. |
. |
. |
. |
. |
24 |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
12 |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
-12 |
. |
. |
-12 |
-12 |
. |
24 |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
12 |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
-12 |
. |
. |
-12 |
-12 |
24 |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
12 |
. |
. |
. |
. |
. |
. |
. |
. |
. |
-12 |
-12 |
-12 |
. |
. |
. |
. |
24 |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
12 |
. |
. |
. |
. |
. |
. |
. |
. |
-12 |
. |
. |
. |
-12 |
. |
-12 |
24 |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
12 |
. |
. |
. |
. |
. |
. |
. |
. |
-12 |
. |
-12 |
. |
. |
-12 |
24 |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
12 |
. |
. |
. |
. |
. |
. |
. |
. |
-12 |
-12 |
-12 |
. |
. |
24 |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
12 |
. |
. |
. |
. |
. |
-12 |
. |
. |
-12 |
. |
-12 |
. |
24 |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
24 |
. |
. |
. |
. |
. |
. |
. |
-24 |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
24 |
. |
. |
. |
. |
. |
. |
-24 |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
24 |
. |
. |
-24 |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
24 |
. |
-24 |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
48 |
. |
. |
. |
. |
. |
. |
. |
-48 |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
24 |
. |
. |
. |
. |
. |
. |
-24 |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
24 |
. |
. |
. |
. |
. |
-24 |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
24 |
. |
. |
. |
. |
-24 |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
24 |
. |
. |
. |
-24 |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
24 |
. |
. |
-24 |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
24 |
. |
-24 |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
24 |
-24 |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
. |
48 |
harald.fripertinger "at" uni-graz.at, May 10,
2016