Preliminaries Enumeration formulae for mosaics Some numerical results

Some numerical results

In order to apply this Theorem one has to know the cycle indices of G and Sk. The formulae for the cycle indices of Cn, Dn and Sk are well known. (See [2][10].) The cycle index of Aff (1,Zn) is computed in [17]. All these cycle index methods are implemented in SYMMETRICA [16], a computer algebra system devoted to combinatorics and representation theory of the symmetric group and of related groups. Using this program system for twelve tone music the numbers of C12, D12 and Aff (1,Z12)-mosaics of size k were computed. (See table 1.)

 

Number of mosaics in twelve tone music.
G\k 1 2 3 4 5 6 7 8 9 10 11 12
C12 1 179 7254 51075 115100 110462 52376 13299 1873 147 6 1
D12 1 121 3838 26148 58400 56079 26696 6907 1014 96 6 1
Aff (1,Z12) 1 87 2155 13730 30121 28867 13835 3667 571 63 5 1
In conclusion there are 351773 C12-mosaics, 179307 D12-mosaics and 93103 Aff (1,Z12)-mosaics in twelve tone music. A SYMMETRICA program for computing these numbers can be written in the following way:
main()
{
OP a,b,c,d,e,f,g;
INT i;
anfang();
a=callocobject(); b=callocobject(); c=callocobject();
d=callocobject(); e=callocobject(); f=callocobject();
g=callocobject();
scan(INTEGER,a);
zykelind_Cn(a,b);
/*
zykelind_Dn(a,b);
zykelind_aff1Zn(a,b);
*/
m_i_i(0L,f);
for (i=1L;i<=S_I_I(a);++i)
{
  m_i_i(i,c);
  zykelind_Sn(c,d);
  debruijn_all_functions(b,d,e);
  sub(e,f,g);
  printf("Number of %d mosaics in an %d-scale: ",i,S_I_I(a));
  println(g);
  copy(e,f);
}
printf("Number of mosaics in an %d-scale: ",S_I_I(a));
println(f);
freeall(a); freeall(b); freeall(c); freeall(d);
freeall(e); freeall(f); freeall(g);
ende();
}

harald.fripertinger "at" uni-graz.at, May 10, 2016

Preliminaries Enumeration formulae for mosaics Uni-Graz Mathematik UNIGRAZ online Some numerical results Valid HTML 4.0 Transitional Valid CSS!