Connected Regular Matroids
n=8, k=3
The regular matroids are given as matrix matroids over GF(2) in
reduced form, i.e. the identity matrix of rank k must be put in
front of each matrix.
[1:1:1:1:1:]
[0:0:0:0:1:]
[0:0:0:0:1:]
[1:1:1:1:1:]
[0:0:0:1:0:]
[0:0:0:0:1:]
[1:1:1:0:1:]
[0:0:0:1:1:]
[0:0:0:0:1:]
[1:1:1:1:0:]
[0:0:0:1:1:]
[0:0:0:0:1:]
[1:1:0:1:1:]
[0:0:1:1:0:]
[0:0:0:0:1:]
[1:1:0:0:1:]
[0:0:1:1:1:]
[0:0:0:0:1:]
[1:1:0:1:0:]
[0:0:1:1:1:]
[0:0:0:0:1:]
[1:1:0:1:1:]
[0:0:1:1:1:]
[0:0:0:0:1:]
[1:0:1:1:1:]
[0:1:1:1:0:]
[0:0:0:0:1:]
[1:1:0:0:1:]
[0:0:1:0:1:]
[0:0:0:1:1:]
[1:1:0:1:0:]
[0:0:1:0:1:]
[0:0:0:1:1:]
[1:0:1:0:1:]
[0:1:1:0:0:]
[0:0:0:1:1:]
[1:1:1:1:0:]
[0:0:1:0:1:]
[0:0:0:1:1:]
[1:0:1:0:1:]
[0:1:1:0:1:]
[0:0:0:1:1:]
[1:0:1:1:0:]
[0:1:1:0:1:]
[0:0:0:1:1:]
[1:0:0:1:1:]
[0:1:0:1:1:]
[0:0:1:1:1:]
[1:0:1:0:1:]
[0:1:0:1:1:]
[0:0:1:1:1:]
There is 1 non-regular matroid among all 18 connected matrix
matroids.