Connected Regular Matroids

n=8, k=3

The regular matroids are given as matrix matroids over GF(2) in reduced form, i.e. the identity matrix of rank k must be put in front of each matrix.

[1:1:1:1:1:]
[0:0:0:0:1:]
[0:0:0:0:1:]


[1:1:1:1:1:]
[0:0:0:1:0:]
[0:0:0:0:1:]


[1:1:1:0:1:]
[0:0:0:1:1:]
[0:0:0:0:1:]


[1:1:1:1:0:]
[0:0:0:1:1:]
[0:0:0:0:1:]


[1:1:0:1:1:]
[0:0:1:1:0:]
[0:0:0:0:1:]


[1:1:0:0:1:]
[0:0:1:1:1:]
[0:0:0:0:1:]


[1:1:0:1:0:]
[0:0:1:1:1:]
[0:0:0:0:1:]


[1:1:0:1:1:]
[0:0:1:1:1:]
[0:0:0:0:1:]


[1:0:1:1:1:]
[0:1:1:1:0:]
[0:0:0:0:1:]


[1:1:0:0:1:]
[0:0:1:0:1:]
[0:0:0:1:1:]


[1:1:0:1:0:]
[0:0:1:0:1:]
[0:0:0:1:1:]


[1:0:1:0:1:]
[0:1:1:0:0:]
[0:0:0:1:1:]


[1:1:1:1:0:]
[0:0:1:0:1:]
[0:0:0:1:1:]


[1:0:1:0:1:]
[0:1:1:0:1:]
[0:0:0:1:1:]


[1:0:1:1:0:]
[0:1:1:0:1:]
[0:0:0:1:1:]


[1:0:0:1:1:]
[0:1:0:1:1:]
[0:0:1:1:1:]


[1:0:1:0:1:]
[0:1:0:1:1:]
[0:0:1:1:1:]

There is 1 non-regular matroid among all 18 connected matrix matroids.