Further fullerenes
In [6] and [5] huge tables with
numbers of isomers and of chiral isomers of substituted fullerenes
from C20 to C70 are computed, but the
corresponding cycle indices are not given. In [9] an even greater list of fullerene
structures can be found. The cycle indices of the symmetry groups
of these fullerenes can be computed by determining the permutation
representation of the symmetry groups of these fullerenes acting on
their sets of vertices, edges or faces. Here we want to present a
list of the 3-dimensional cycle indices for these fullerenes.
The point group of C24 is D6d which leads
to the following cycle indices.
Z3(R(C24))= .. |
1
12
|
( 2 e66
f12 f62
v64+ 2 e312
f12 f34
v38+ e218
f12 f26
v212+ 6 e12
e217 f27
v212+ e136
f114 v124).. |
Z3(S(C24))= .. |
1
2
|
Z3(R(C24))
+ .. |
1
24
|
( 4 e123
f2 f12 v122+ 2
e49 f2 f43
v46 + 6 e14
e216 f14
f25 v14
v210 )... |
Since the C26 has a symmetry group of the form
D3h we have
Z3(R(C26))= .. |
1
6
|
( 3 e1
e219 f1 f27
v213+ 2 e313
f35 v12
v38 + e139
f115 v126 ) .. |
Z3(S(C26))= .. |
1
2
|
Z3(R(C26))
+ .. |
1
12
|
( 2 e3
e66 f3 f62
v2 v32 v63 +
3 e15 e217
f15 f25
v14 v211 +
e13 e218
f13 f26
v16 v210)... |
The fullerene C28 is of tetrahedral symmetry
Td so the cycle indices can be computed as
Z3(R(C28))= .. |
1
12
|
( 8 e314
f1 f35 v1
v39 + 3 e12
e220 f28
v214 + e142
f116 v128 ).. |
Z3(S(C28))= .. |
1
2
|
Z3(R(C28))
+ .. |
1
24
|
( 6 e2
e410 f44
v47 + 6 e14
e219 f14
f26 v16
v211 )... |
The cycle index of R(C28) acting on its set of vertices
can be found in [4]
as well.
The C30 has D5h symmetry and the cycle
indices for the action on the sets of edges, faces and vertices
are
Z3(R(C30))= .. |
1
10
|
( 4 e59
f12 f53
v56 + 5 e1
e222 f1 f28
v215 + e145
f117 v130).. |
Z3(S(C30))= .. |
1
2
|
Z3(R(C30))
+ .. |
1
20
|
( 4 e5
e104 f2 f5
f10 v103 + 5
e15 e220
f15 f26
v16 v212 +
e15 e220
f15 f26
v215 ). .. |
The symmetry group of C32 is D3, so it
consists only of rotations and we have
Z3(R(C32))= .. |
1
6
|
( 2 e316
f36 v12
v310 + 3 e12
e223 f29
v216 + e148
f118 v132 ).
.. |
Since C34 has C3v symmetry the cycle indices
are
Z3(R(C34))= .. |
1
3
|
( 2 e317
f1 f36 v1
v311 + e151
f119 v134).. |
Z3(S(C34))= .. |
1
2
|
(Z3(R(C34)) + e15
e223 f15
f27 v14
v215 ). .. |
The point group of C36 is D6h, from which the
following cycle indices can be computed.
Z3(R(C36))= .. |
1
12
|
( 2 e69
f2 f63 v66 +
2 e318 f12
f36 v312 + 4
e227 f12
f29 v218 + 3
e12 e226
f210 v218 +
e154 f120
v136 ) .. |
Z3(S(C36))= .. |
1
2
|
Z3(R(C36))
+ .. |
1
24
|
( 2 e32
e68 f2 f32
f62 v66 +
e227 f210
v218 + 2 e69
f12 f63
v66 + 3 e14
e225 f14
f28 v18
v214 + 3 e16
e224 f16
f27 v14
v216 + e16
e224 f16
f27 v218 ). .. |
C38 is of C3v symmetry so we have
Z3(R(C38))= .. |
1
3
|
( 2 e319
f37 v12
v312 + e157
f121 v138) .. |
Z3(S(C38))= .. |
1
6
|
( 2 e319
f37 v12
v312 + 3 e15
e226 f15
f28 v16
v216 + e157
f121 v138). .. |
For the C40 two possible symmetry groups are given,
namely Td and D5d. In the first case the
cycle indices are
Z3(R(C40))= .. |
1
12
|
( 3 e230
f12 f210
v220 + 8 e320
f1 f37 v1
v313 + e160
f122 v140 ).. |
Z3(S(C40))= .. |
1
2
|
Z3(R(C40))
+ .. |
1
24
|
( 6 e415
f2 f45 v410
+ 6 e16 e227
f16 f28
v14 v218 )... |
For the symmetry group D5d we compute
Z3(R(C40))= .. |
1
10
|
( 4 e512
f12 f54
v58 + 5 e12
e229 f211
v220 + e160
f122 v140 ).. |
Z3(S(C40))= .. |
1
2
|
Z3(R(C40))
+ .. |
1
20
|
( 4 e106
f2 f102 v104
+ e230 f211
v220 + 5 e16
e227 f16
f28 v14
v218 )... |
Since the point group of C42 is D3 we have
Z3(R(C42))= .. |
1
6
|
( 2 e321
f12 f37
v314 + 3 e1
e231 f1 f211
v221 + e163
f123 v142 ).
.. |
For the D3h symmetry group of C44 we can
compute
Z3(R(C44))= .. |
1
6
|
( 2 e322
f38 v12
v314 + 3 e12
e232 f212
v222 + e166
f124 v144) .. |
Z3(S(C44))= .. |
1
2
|
Z3(R(C44))
+ .. |
1
12
|
( 2 e32
e610 f32
f63 v2 v32
v66 + 4 e16
e230 f16
f29 v16
v219 ). .. |
A second form of C44 is chiral and has T as its symmetry
group which gives the following cycle index:
Z3(R(C44))= .. |
1
12
|
( 3
e12e232
f212 v222 + 8
e322 f38
v12v314 +
e166 f124
v144 ). .. |
The symmetry group of C46 is C3 so we compute
Z3(R(C46))= .. |
1
3
|
( 2 e323
f1 f38 v1
v315 + e169
f125 v146 ).
.. |
The C48 has D3 as its symmetry group, so we
have
Z3(R(C48))= .. |
1
6
|
( 2 e324
f12f38
v316 + 3 e12
e235 f213
v224 + e172
f126 v148 ).
.. |
For the D5h symmetry of C50 we derive
Z3(R(C50))= .. |
1
10
|
( 4 e515
f12 f55
v510 + 5 e1
e237 f1 f213
v225 + e175
f127 v150 ).. |
Z3(S(C50))= .. |
1
2
|
Z3(R(C50))
+ .. |
1
20
|
( 4 e5
e107 f2 f5
f102 v52
v104 + 5 e17
e234 f17
f210 v14
v223 + e15
e235 f15
f211 v110
v220 ) ... |
The symmetry group of C52 is T, which consists only of
rotational symmetries.
Z3(R(C52))= .. |
1
12
|
( 3
e12e238
f214 v226 + 8
e326 f1 f39
v1 v317 +
e178 f128
v152 ). .. |
C54 has point group D3, so we compute
Z3(R(C54))= .. |
1
6
|
( 3 e1
e240 f1 f214
v227 + 2 e327
f12 f39
v318 + e181
f129 v154 ).
.. |
For the D3d symmetry group of C56 the cycle
indices are
Z3(R(C56))= .. |
1
6
|
( 2 e328
f310 v12
v318 + 3 e12
e241 f215
v228 + e184
f130 v156 ).. |
Z3(S(C56))= .. |
1
2
|
Z3(R(C56))
+ .. |
1
12
|
( 2 e614
f65 v2 v69 +
3 e16 e239
f16 f212
v18 v224 +
e242 f215
v228 ) ... |
The symmetry group of C58 is C3v so we have
Z3(R(C58))= .. |
1
3
|
( 2 e329
f1 f310 v1
v319 + e187
f131 v158).. |
Z3(S(C58))= .. |
1
2
|
(Z3(R(C58)) + e17
e240 f17
f212 v16
v226 ). .. |
C80 is the next fullerene with Ih symmetry.
Its cycle index is
Z3(R(C80))=.. |
1
60
|
( 24
e524f12f58v516+
20
e340f314v12
v326+ 15
e260f12
f220v240+
e1120f142v180)
.. |
Z3(S(C80))=.. |
1
2
|
Z3(R(C80))
+ .. |
1
120
|
(
e260f221v240
+
20e620f67v2v613
+
e18e256f18f21715v18v236
+
24e1012f2f104v108)... |
The first fullerene with symmetry group I is the C140.
Its cycle index is
Z3(R(C140))=.. |
1
60
|
( 24
e542f12f514v528+
20
e370f324v12v346+
15
e12e2104f236v270+
e1210f172v1140)
.. |
We could go on listing the cycle indices of many more
fullerenes. In many cases it is possible to arrange the v vertices
of Cv in several different ways leading to different
symmetry groups and to different cycle indices. For instance for
the fullerene C78 there are 4 possible isomers given in
[9]. So from chemical properties
we first have to determine the actual shape of the molecule. In
[11] it is shown that
C76 is of D2 symmetry and not of
Td symmetry which would be possible as well.
harald.fripertinger "at" uni-graz.at, May 10,
2016