Construction of block codes Top Introduction Enumeration of block codes

Enumeration of block codes

Usually when enumerating or constructing under the action in form of the exponentiation we can apply Lehmann's Lemma ([14],[15]) which reduces the action of a wreath product HXG on YX to the action of the group G on the set of all functions from X into the set of all orbits of H on Y. As a matter of fact it can't be applied in this situation since SA Sn acts on the set of all m-subsets or more generally on the powerset
2(An)..
of An. For enumerating the isometry classes of block codes each [n,m] code C can be identified with its characteristic function
χC: An→ {0,1}..
χC(f)=1 if f∈ C,        χC(f)=0 if f∉ C,..
which fulfils |f-1({1})|=m. The other way round, each function f from An to {0,1} with |f-1({1})|=m is the characteristic function of an [n,m] block code over A. Using Pólya's Theorem [18] we can determine the number of classes of block codes:
Theorem: The number of classes of [n,m] block codes over the alphabet A is the coefficient of xm in the expansion of the substitution xi := 1+xi into the cycle index of the exponentiation SA Sn. In short it is the coefficient of xm in
Z(SA Sn,An|xi := 1+xi)...
It is well known how to compute the cycle index of the exponentiation from the cycle indices of SA and Sn. See [11][17][16]. Using the computer algebra system SYMMETRICA [22] the following tables were computed:

 

Number of classes of [n,m] block codes over an alphabet of size 2.
n\m 0 1 2 3 4 5 6 7 8 9 10
1 1 1 1
2 1 1 2 1 1
3 1 1 3 3 6 3 3 1 1
4 1 1 4 6 19 27 50 56 74 56 50
5 1 1 5 10 47 131 472 1326 3779 9013 19963
6 1 1 6 16 103 497 3253 19735 120843 681474 3.561696
7 1 1 7 23 203 1606 18435 221778 2773763 33.297380 375.158732
8 1 1 8 32 373 4647 91028 2074059 51.107344 1245.930065 28900.653074
9 1 1 9 43 649 12320 404154 16.957301 805.174011 38921.113842 1.816451.773537
10 1 1 10 56 1079 30493 1646000 124.727148 11244.522420 1.063289.204514 98.630203.059528
 
Number of classes of [n,m] block codes over an alphabet of size 3.
n\m 0 1 2 3 4 5 6 7 8 9 10
1 1 1 1 1
2 1 1 2 4 5 5 4 2 1 1
3 1 1 3 10 34 105 321 846 1984 4023 7074
4 1 1 4 20 144 1245 12473 120213 1067757 8.508432 60.801152
5 1 1 5 35 490 11075 334678 10.274578 293.142769 7563.157341 176207.637611
6 1 1 6 57 1470 82918 7.194272 664.545445 57778.060974 4.570181.600483 327.615878.641570
 
Number of classes of [n,m] block codes over an alphabet of size 4.
n\m 0 1 2 3 4 5 6 7 8 9 10
1 1 1 1 1 1
2 1 1 2 4 10 13 23 26 32 26 23
3 1 1 3 10 55 254 1643 10164 63488 364843 1930906
4 1 1 4 20 223 3227 77194 2097080 57.796870 1502.295684 36065.804158
5 1 1 5 35 759 32970 2877651 311.400852 34630.385050 3.667889.498353 360.865277.628727
6 1 1 6 57 2309 292103 90.647411 37593.032352 16.429342.163157 6925.787777.638463 2.729333.815881.686935

harald.fripertinger "at" uni-graz.at, May 10, 2016

Construction of block codes Top Introduction Uni-Graz Mathematik UNIGRAZ online Enumeration of block codes Valid HTML 4.0 Transitional Valid CSS!