Footnotes Top Random generation of linear codes References

References

 [1]
A. Betten, H. Fripertinger, A. Kerber, A. Wassermann, and K.-H. Zimmermann. Codierungstheorie -- Konstruktion und Anwendung Linearer Codes. Springer, Berlin, Heidelberg, New York, 1998. ISBN 3-540-64502-0.
 [2]
A.E. Brouwer. Bounds on the minimum distance of linear codes,
http://www.win.tue.nl/math/dw/voorlincod.html.
 [3]
J.D. Dixon and H.S. Wilf. The random selection of unlabeled graphs. J. Algorithms, 4: 205 - 213, 1983.
 [4]
H. Fripertinger. Enumeration of isometry classes of linear (n,k)-codes over GF(q) in SYMMETRICA. Bayreuth. Math. Schr., 49: 215 - 223, 1995. ISSN 0172-1062.
 [5]
H. Fripertinger. Zyklenzeiger linearer Gruppen und Abzählung linearer Codes. Sém. Lothar. Combin., Actes 33: 1 - 10, 1995. ISSN 0755-3390.
 [6]
H. Fripertinger. Enumeration of Linear Codes by Applying Methods from Algebraic Combinatorics. Grazer Math. Ber., 328: 31 - 42, 1996.
 [7]
H. Fripertinger. Cycle Indices of Linear, Affine and Projective Groups. Linear Algebra Appl., 263: 133 - 156, 1997.
 [8]
H. Fripertinger and A. Kerber. Isometry Classes of Indecomposable Linear Codes. In G. Cohen, M. Giusti, and T. Mora, (Eds.), Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, 11th International Symposium, AAECC-11, Paris, France, July 1995, volume 948 of Lecture Notes in Comput. Sci., pages 194-204. Springer, 1995.
 [9]
W. Heise and P. Quattrocchi. Informations- und Codierungstheorie. Springer Verlag, Berlin, Heidelberg, New York, Paris, Tokio, 1989. second edition.
 [10]
A. Kerber. Algebraic Combinatorics via Finite Group Actions. B.I. Wissenschaftsverlag, Mannheim, Wien, Zürich, 1991. ISBN 3-411-14521-8.
 [11]
A. Kerber. Algebraic Combinatorics in Bayreuth. Sém. Lothar. Combin., B34j, 1995. http://cartan.u-strasbg.fr/~slc/.
 [12]
J.P.S. Kung. The Cycle Structure of a Linear Transformation over a Finite Field. Linear Algebra Appl., 36: 141 - 155, 1981.
 [13]
H. Lehmann. Das Abzähltheorem der Exponentialgruppe in gewichteter Form. Mitt. Math. Sem. Giessen, 112: 19 - 33, 1974.
 [14]
H. Lehmann. Ein vereinheitlichender Ansatz für die REDFIELD - PÓLYA - de BRUIJNSCHE Abzähltheorie. PhD thesis, Universität Giessen, 1976.
 [15]
SYMMETRICA. A program system devoted to representation theory, invariant theory and combinatorics of finite symmetric groups and related classes of groups. Copyright by "Lehrstuhl II für Mathematik, Universität Bayreuth, 95440 Bayreuth".
/axel/symneu_engl.html.

harald.fripertinger "at" uni-graz.at, November 17, 2011

Footnotes Top Random generation of linear codes Uni-Graz Mathematik References Valid HTML 4.0 Transitional Valid CSS!