design clan: 9_36_12
9-(36,12,m*15), 1 <= m <= 97; (46/239) lambda_max=2925, lambda_max_half=1462
the clan contains 46 families: 
- family 0, lambda = 15 containing 1 designs:
minpath=(0, 4, 0) minimal_t=5
 - family 1, lambda = 30 containing 1 designs:
minpath=(0, 4, 0) minimal_t=5
 - family 2, lambda = 105 containing 7 designs:
minpath=(0, 2, 0) minimal_t=5
- 
7-(34,10,105) 
 - 
 6-(34,10,735) (#12691) 6-(33,10,630) 
 6-(33,9,105) (#12431) 
 - 
 5-(34,10,4263) (#12692)  5-(33,10,3528) (#12693) 5-(32,10,2898) 
 5-(33,9,735) (#12432)  5-(32,9,630) (#12433) 
 5-(32,8,105) (#8213) 
 
 - family 3, lambda = 120 containing 4 designs:
minpath=(0, 3, 0) minimal_t=5
 - family 4, lambda = 165 containing 4 designs:
minpath=(0, 3, 0) minimal_t=5
 - family 5, lambda = 210 containing 1 designs:
minpath=(0, 4, 0) minimal_t=5
 - family 6, lambda = 240 containing 7 designs:
minpath=(0, 2, 0) minimal_t=5
- 
7-(34,10,240) 
 - 
 6-(34,10,1680) (#12696) 6-(33,10,1440) 
 6-(33,9,240) (#12545) 
 - 
 5-(34,10,9744) (#12697)  5-(33,10,8064) (#12698) 5-(32,10,6624) 
 5-(33,9,1680) (#12546)  5-(32,9,1440) (#12547) 
 5-(32,8,240) (#8235) 
 
 - family 7, lambda = 255 containing 1 designs:
minpath=(0, 4, 0) minimal_t=5
 - family 8, lambda = 285 containing 7 designs:
minpath=(0, 2, 0) minimal_t=5
- 
7-(34,10,285) 
 - 
 6-(34,10,1995) (#12701) 6-(33,10,1710) 
 6-(33,9,285) (#12551) 
 - 
 5-(34,10,11571) (#12702)  5-(33,10,9576) (#12703) 5-(32,10,7866) 
 5-(33,9,1995) (#12552)  5-(32,9,1710) (#12553) 
 5-(32,8,285) (#8245) 
 
 - family 9, lambda = 330 containing 1 designs:
minpath=(0, 4, 0) minimal_t=5
 - family 10, lambda = 345 containing 7 designs:
minpath=(0, 2, 0) minimal_t=5
- 
7-(34,10,345) 
 - 
 6-(34,10,2415) (#12714) 6-(33,10,2070) 
 6-(33,9,345) (#12565) 
 - 
 5-(34,10,14007) (#12715)  5-(33,10,11592) (#12716) 5-(32,10,9522) 
 5-(33,9,2415) (#12566)  5-(32,9,2070) (#12567) 
 5-(32,8,345) (#8258) 
 
 - family 11, lambda = 420 containing 7 designs:
minpath=(0, 2, 0) minimal_t=5
- 
7-(34,10,420) 
 - 
 6-(34,10,2940) (#12729) 6-(33,10,2520) 
 6-(33,9,420) (#12583) 
 - 
 5-(34,10,17052) (#12730)  5-(33,10,14112) (#12731) 5-(32,10,11592) 
 5-(33,9,2940) (#12584)  5-(32,9,2520) (#12585) 
 5-(32,8,420) (#8274) 
 
 - family 12, lambda = 435 containing 1 designs:
minpath=(0, 4, 0) minimal_t=5
 - family 13, lambda = 465 containing 7 designs:
minpath=(0, 2, 0) minimal_t=5
- 
7-(34,10,465) 
 - 
 6-(34,10,3255) (#12734) 6-(33,10,2790) 
 6-(33,9,465) (#12589) 
 - 
 5-(34,10,18879) (#12735)  5-(33,10,15624) (#12736) 5-(32,10,12834) 
 5-(33,9,3255) (#12590)  5-(32,9,2790) (#12591) 
 5-(32,8,465) (#8284) 
 
 - family 14, lambda = 480 containing 7 designs:
minpath=(0, 2, 0) minimal_t=5
- 
7-(34,10,480) 
 - 
 6-(34,10,3360) (#12739) 6-(33,10,2880) 
 6-(33,9,480) (#12595) 
 - 
 5-(34,10,19488) (#12740)  5-(33,10,16128) (#12741) 5-(32,10,13248) 
 5-(33,9,3360) (#12596)  5-(32,9,2880) (#12597) 
 5-(32,8,480) (#8287) 
 
 - family 15, lambda = 555 containing 1 designs:
minpath=(0, 4, 0) minimal_t=5
 - family 16, lambda = 570 containing 1 designs:
minpath=(0, 4, 0) minimal_t=5
 - family 17, lambda = 615 containing 1 designs:
minpath=(0, 4, 0) minimal_t=5
 - family 18, lambda = 645 containing 10 designs:
minpath=(0, 2, 0) minimal_t=5
- 
 7-(34,10,645) (#16353) 
 - 
 6-(34,10,4515) (#12757)  6-(33,10,3870) (#16354) 
 6-(33,9,645) (#12618) 
 - 
 5-(34,10,26187) (#12758)  5-(33,10,21672) (#12759)  5-(32,10,17802) (#16358) 
 5-(33,9,4515) (#12619)  5-(32,9,3870) (#12620) 
 5-(32,8,645) (#8322) 
 
 - family 19, lambda = 660 containing 10 designs:
minpath=(0, 2, 0) minimal_t=5
- 
 7-(34,10,660) (#16360) 
 - 
 6-(34,10,4620) (#12762)  6-(33,10,3960) (#16361) 
 6-(33,9,660) (#12624) 
 - 
 5-(34,10,26796) (#12763)  5-(33,10,22176) (#12764)  5-(32,10,18216) (#16365) 
 5-(33,9,4620) (#12625)  5-(32,9,3960) (#12626) 
 5-(32,8,660) (#8327) 
 
 - family 20, lambda = 690 containing 1 designs:
minpath=(0, 4, 0) minimal_t=5
 - family 21, lambda = 705 containing 10 designs:
minpath=(0, 2, 0) minimal_t=5
- 
 7-(34,10,705) (#16367) 
 - 
 6-(34,10,4935) (#12767)  6-(33,10,4230) (#16368) 
 6-(33,9,705) (#12630) 
 - 
 5-(34,10,28623) (#12768)  5-(33,10,23688) (#12769)  5-(32,10,19458) (#16372) 
 5-(33,9,4935) (#12631)  5-(32,9,4230) (#12632) 
 5-(32,8,705) (#8338) 
 
 - family 22, lambda = 735 containing 10 designs:
minpath=(0, 2, 0) minimal_t=5
- 
 7-(34,10,735) (#16380) 
 - 
 6-(34,10,5145) (#12777)  6-(33,10,4410) (#16382) 
 6-(33,9,735) (#16381) 
 - 
 5-(34,10,29841) (#12778)  5-(33,10,24696) (#12780)  5-(32,10,20286) (#16389) 
 5-(33,9,5145) (#12779)  5-(32,9,4410) (#16386) 
 5-(32,8,735) (#8344) 
 
 - family 23, lambda = 795 containing 5 designs:
minpath=(0, 2, 0) minimal_t=5
- 
7-(34,10,795) 
 - 
 6-(34,10,5565) (#12803) 6-(33,10,4770) 
6-(33,9,795) 
 - 
 5-(34,10,32277) (#12804)  5-(33,10,26712) (#12806) 5-(32,10,21942) 
 5-(33,9,5565) (#12805) 5-(32,9,4770) 
 5-(32,8,795) (#8357) 
 
 - family 24, lambda = 840 containing 10 designs:
minpath=(0, 2, 0) minimal_t=5
- 
 7-(34,10,840) (#16411) 
 - 
 6-(34,10,5880) (#12817)  6-(33,10,5040) (#16412) 
 6-(33,9,840) (#12661) 
 - 
 5-(34,10,34104) (#12818)  5-(33,10,28224) (#12819)  5-(32,10,23184) (#16416) 
 5-(33,9,5880) (#12662)  5-(32,9,5040) (#12663) 
 5-(32,8,840) (#8368) 
 
 - family 25, lambda = 870 containing 7 designs:
minpath=(0, 2, 0) minimal_t=5
- 
7-(34,10,870) 
 - 
6-(34,10,6090)  6-(33,10,5220) (#12397) 
6-(33,9,870) 
 - 
 5-(34,10,35322) (#12405)  5-(33,10,29232) (#12398)  5-(32,10,24012) (#12400) 
 5-(33,9,6090) (#12404)  5-(32,9,5220) (#12399) 
 5-(32,8,870) (#8374) 
 
 - family 26, lambda = 885 containing 10 designs:
minpath=(0, 2, 0) minimal_t=5
- 
 7-(34,10,885) (#16418) 
 - 
 6-(34,10,6195) (#16419)  6-(33,10,5310) (#16420) 
 6-(33,9,885) (#12667) 
 - 
 5-(34,10,35931) (#16424)  5-(33,10,29736) (#16425)  5-(32,10,24426) (#16428) 
 5-(33,9,6195) (#12668)  5-(32,9,5310) (#12669) 
 5-(32,8,885) (#8378) 
 
 - family 27, lambda = 915 containing 1 designs:
minpath=(0, 4, 0) minimal_t=5
 - family 28, lambda = 930 containing 1 designs:
minpath=(0, 4, 0) minimal_t=5
 - family 29, lambda = 960 containing 10 designs:
minpath=(0, 2, 0) minimal_t=5
- 
 7-(34,10,960) (#16441) 
 - 
 6-(34,10,6720) (#16442)  6-(33,10,5760) (#16443) 
 6-(33,9,960) (#12685) 
 - 
 5-(34,10,38976) (#16447)  5-(33,10,32256) (#16448)  5-(32,10,26496) (#16451) 
 5-(33,9,6720) (#12686)  5-(32,9,5760) (#12687) 
 5-(32,8,960) (#8394) 
 
 - family 30, lambda = 1005 containing 10 designs:
minpath=(0, 2, 0) minimal_t=5
- 
 7-(34,10,1005) (#16453) 
 - 
 6-(34,10,7035) (#16454)  6-(33,10,6030) (#16455) 
 6-(33,9,1005) (#12419) 
 - 
 5-(34,10,40803) (#16459)  5-(33,10,33768) (#16460)  5-(32,10,27738) (#16463) 
 5-(33,9,7035) (#12420)  5-(32,9,6030) (#12421) 
 5-(32,8,1005) (#8404) 
 
 - family 31, lambda = 1020 containing 10 designs:
minpath=(0, 2, 0) minimal_t=5
- 
 7-(34,10,1020) (#16465) 
 - 
 6-(34,10,7140) (#16466)  6-(33,10,6120) (#16467) 
 6-(33,9,1020) (#12425) 
 - 
 5-(34,10,41412) (#16471)  5-(33,10,34272) (#16472)  5-(32,10,28152) (#16475) 
 5-(33,9,7140) (#12426)  5-(32,9,6120) (#12427) 
 5-(32,8,1020) (#8407) 
 
 - family 32, lambda = 1065 containing 10 designs:
minpath=(0, 2, 0) minimal_t=5
- 
 7-(34,10,1065) (#16477) 
 - 
 6-(34,10,7455) (#16478)  6-(33,10,6390) (#16480) 
 6-(33,9,1065) (#16479) 
 - 
 5-(34,10,43239) (#16484)  5-(33,10,35784) (#16486)  5-(32,10,29394) (#16493) 
 5-(33,9,7455) (#16485)  5-(32,9,6390) (#16490) 
 5-(32,8,1065) (#8417) 
 
 - family 33, lambda = 1095 containing 1 designs:
minpath=(0, 4, 0) minimal_t=5
 - family 34, lambda = 1110 containing 1 designs:
minpath=(0, 4, 0) minimal_t=5
 - family 35, lambda = 1140 containing 10 designs:
minpath=(0, 2, 0) minimal_t=5
- 
 7-(34,10,1140) (#16517) 
 - 
 6-(34,10,7980) (#16518)  6-(33,10,6840) (#16519) 
 6-(33,9,1140) (#12450) 
 - 
 5-(34,10,46284) (#16523)  5-(33,10,38304) (#16524)  5-(32,10,31464) (#16527) 
 5-(33,9,7980) (#12451)  5-(32,9,6840) (#12452) 
 5-(32,8,1140) (#8433) 
 
 - family 36, lambda = 1155 containing 1 designs:
minpath=(0, 4, 0) minimal_t=5
 - family 37, lambda = 1185 containing 10 designs:
minpath=(0, 2, 0) minimal_t=5
- 
 7-(34,10,1185) (#16529) 
 - 
 6-(34,10,8295) (#16530)  6-(33,10,7110) (#16531) 
 6-(33,9,1185) (#12456) 
 - 
 5-(34,10,48111) (#16535)  5-(33,10,39816) (#16536)  5-(32,10,32706) (#16539) 
 5-(33,9,8295) (#12457)  5-(32,9,7110) (#12458) 
 5-(32,8,1185) (#8443) 
 
 - family 38, lambda = 1230 containing 1 designs:
minpath=(0, 4, 0) minimal_t=5
 - family 39, lambda = 1245 containing 10 designs:
minpath=(0, 2, 0) minimal_t=5
- 
 7-(34,10,1245) (#16541) 
 - 
 6-(34,10,8715) (#16542)  6-(33,10,7470) (#16543) 
 6-(33,9,1245) (#12475) 
 - 
 5-(34,10,50547) (#16547)  5-(33,10,41832) (#16548)  5-(32,10,34362) (#16551) 
 5-(33,9,8715) (#12476)  5-(32,9,7470) (#12477) 
 5-(32,8,1245) (#8456) 
 
 - family 40, lambda = 1290 containing 1 designs:
minpath=(0, 4, 0) minimal_t=5
 - family 41, lambda = 1320 containing 10 designs:
minpath=(0, 2, 0) minimal_t=5
- 
 7-(34,10,1320) (#16565) 
 - 
 6-(34,10,9240) (#16566)  6-(33,10,7920) (#16567) 
 6-(33,9,1320) (#12493) 
 - 
 5-(34,10,53592) (#16571)  5-(33,10,44352) (#16572)  5-(32,10,36432) (#16575) 
 5-(33,9,9240) (#12494)  5-(32,9,7920) (#12495) 
 5-(32,8,1320) (#8474) 
 
 - family 42, lambda = 1335 containing 1 designs:
minpath=(0, 4, 0) minimal_t=5
 - family 43, lambda = 1380 containing 10 designs:
minpath=(0, 2, 0) minimal_t=5
- 
 7-(34,10,1380) (#16589) 
 - 
 6-(34,10,9660) (#16590)  6-(33,10,8280) (#16591) 
 6-(33,9,1380) (#12505) 
 - 
 5-(34,10,56028) (#16595)  5-(33,10,46368) (#16596)  5-(32,10,38088) (#16599) 
 5-(33,9,9660) (#12506)  5-(32,9,8280) (#12507) 
 5-(32,8,1380) (#8488) 
 
 - family 44, lambda = 1410 containing 1 designs:
minpath=(0, 4, 0) minimal_t=5
 - family 45, lambda = 1455 containing 1 designs:
minpath=(0, 4, 0) minimal_t=5
 
created: Fri Oct 23 11:20:58 CEST 2009