design clan: 8_31_10
8-(31,10,m*1), 1 <= m <= 126; (109/576) lambda_max=253, lambda_max_half=126
the clan contains 109 families: 
- family 0, lambda = 1 containing 1 designs:
minpath=(0, 3, 0) minimal_t=5
 - family 1, lambda = 3 containing 3 designs:
minpath=(0, 1, 1) minimal_t=5
 - family 2, lambda = 4 containing 3 designs:
minpath=(0, 1, 1) minimal_t=5
 - family 3, lambda = 5 containing 1 designs:
minpath=(0, 2, 1) minimal_t=5
 - family 4, lambda = 6 containing 1 designs:
minpath=(0, 2, 1) minimal_t=5
 - family 5, lambda = 7 containing 3 designs:
minpath=(0, 2, 0) minimal_t=5
 - family 6, lambda = 8 containing 3 designs:
minpath=(0, 2, 0) minimal_t=5
 - family 7, lambda = 9 containing 1 designs:
minpath=(0, 2, 1) minimal_t=5
 - family 8, lambda = 10 containing 3 designs:
minpath=(0, 1, 1) minimal_t=5
 - family 9, lambda = 12 containing 3 designs:
minpath=(0, 1, 1) minimal_t=5
 - family 10, lambda = 13 containing 3 designs:
minpath=(0, 1, 1) minimal_t=5
 - family 11, lambda = 14 containing 3 designs:
minpath=(0, 2, 0) minimal_t=5
 - family 12, lambda = 15 containing 7 designs:
minpath=(0, 1, 0) minimal_t=5
- 
7-(30,9,15) 
 - 
6-(30,9,120)  6-(29,9,105) (#12073) 
6-(29,8,15) 
 - 
 5-(30,9,750) (#8134)  5-(29,9,630) (#8133)  5-(28,9,525) (#8132) 
 5-(29,8,120) (#7773)  5-(28,8,105) (#7772) 
 5-(28,7,15) (#7742) 
 
 - family 13, lambda = 16 containing 3 designs:
minpath=(0, 1, 1) minimal_t=5
 - family 14, lambda = 17 containing 1 designs:
minpath=(0, 2, 1) minimal_t=5
 - family 15, lambda = 18 containing 4 designs:
minpath=(0, 1, 1) minimal_t=5
 - family 16, lambda = 19 containing 3 designs:
minpath=(0, 1, 1) minimal_t=5
 - family 17, lambda = 20 containing 1 designs:
minpath=(0, 2, 1) minimal_t=5
 - family 18, lambda = 21 containing 6 designs:
minpath=(0, 1, 0) minimal_t=5
- 
7-(30,9,21) 
 - 
6-(30,9,168) 6-(29,9,147) 
6-(29,8,21) 
 - 
 5-(30,9,1050) (#8143)  5-(29,9,882) (#8142)  5-(28,9,735) (#8141) 
 5-(29,8,168) (#7780)  5-(28,8,147) (#7779) 
 5-(28,7,21) (#7743) 
 
 - family 19, lambda = 24 containing 3 designs:
minpath=(0, 1, 1) minimal_t=5
 - family 20, lambda = 25 containing 3 designs:
minpath=(0, 1, 1) minimal_t=5
 - family 21, lambda = 26 containing 1 designs:
minpath=(0, 2, 1) minimal_t=5
 - family 22, lambda = 27 containing 3 designs:
minpath=(0, 1, 1) minimal_t=5
 - family 23, lambda = 28 containing 6 designs:
minpath=(0, 1, 0) minimal_t=5
- 
7-(30,9,28) 
 - 
6-(30,9,224) 6-(29,9,196) 
6-(29,8,28) 
 - 
 5-(30,9,1400) (#8156)  5-(29,9,1176) (#8155)  5-(28,9,980) (#8154) 
 5-(29,8,224) (#7790)  5-(28,8,196) (#7789) 
 5-(28,7,28) (#7746) 
 
 - family 24, lambda = 29 containing 3 designs:
minpath=(0, 2, 0) minimal_t=5
 - family 25, lambda = 30 containing 6 designs:
minpath=(0, 1, 0) minimal_t=5
- 
7-(30,9,30) 
 - 
6-(30,9,240) 6-(29,9,210) 
6-(29,8,30) 
 - 
 5-(30,9,1500) (#7967)  5-(29,9,1260) (#7966)  5-(28,9,1050) (#7965) 
 5-(29,8,240) (#7795)  5-(28,8,210) (#7794) 
 5-(28,7,30) (#7720) 
 
 - family 26, lambda = 31 containing 3 designs:
minpath=(0, 1, 1) minimal_t=5
 - family 27, lambda = 32 containing 1 designs:
minpath=(0, 2, 1) minimal_t=5
 - family 28, lambda = 34 containing 3 designs:
minpath=(0, 1, 1) minimal_t=5
 - family 29, lambda = 35 containing 3 designs:
minpath=(0, 2, 0) minimal_t=5
 - family 30, lambda = 36 containing 14 designs:
minpath=(0, 0, 0) minimal_t=5
- 
8-(31,10,36) 
 - 
7-(31,10,288) 7-(30,10,252) 
7-(30,9,36) 
 - 
 6-(31,10,1800) (#12194)  6-(30,10,1512) (#12189) 6-(29,10,1260) 
 6-(30,9,288) (#12088)  6-(29,9,252) (#12085) 
 6-(29,8,36) (#12021) 
 - 
 5-(31,10,9360) (#12195)  5-(30,10,7560) (#12190)  5-(29,10,6048) (#12191) 5-(28,10,4788) 
 5-(30,9,1800) (#7978)  5-(29,9,1512) (#7977)  5-(28,9,1260) (#7976) 
 5-(29,8,288) (#7805)  5-(28,8,252) (#7804) 
 5-(28,7,36) (#7749) 
 
 - family 31, lambda = 37 containing 3 designs:
minpath=(0, 1, 1) minimal_t=5
 - family 32, lambda = 38 containing 1 designs:
minpath=(0, 2, 1) minimal_t=5
 - family 33, lambda = 39 containing 3 designs:
minpath=(0, 1, 1) minimal_t=5
 - family 34, lambda = 40 containing 6 designs:
minpath=(0, 1, 0) minimal_t=5
- 
7-(30,9,40) 
 - 
6-(30,9,320) 6-(29,9,280) 
6-(29,8,40) 
 - 
 5-(30,9,2000) (#7987)  5-(29,9,1680) (#7986)  5-(28,9,1400) (#7985) 
 5-(29,8,320) (#7811)  5-(28,8,280) (#7810) 
 5-(28,7,40) (#7723) 
 
 - family 35, lambda = 41 containing 1 designs:
minpath=(0, 2, 1) minimal_t=5
 - family 36, lambda = 42 containing 14 designs:
minpath=(0, 0, 0) minimal_t=5
- 
8-(31,10,42) 
 - 
7-(31,10,336) 7-(30,10,294) 
7-(30,9,42) 
 - 
 6-(31,10,2100) (#12202)  6-(30,10,1764) (#12197) 6-(29,10,1470) 
 6-(30,9,336) (#12093)  6-(29,9,294) (#12090) 
 6-(29,8,42) (#12025) 
 - 
 5-(31,10,10920) (#12203)  5-(30,10,8820) (#12198)  5-(29,10,7056) (#12199) 5-(28,10,5586) 
 5-(30,9,2100) (#7990)  5-(29,9,1764) (#7989)  5-(28,9,1470) (#7988) 
 5-(29,8,336) (#7814)  5-(28,8,294) (#7813) 
 5-(28,7,42) (#7750) 
 
 - family 37, lambda = 43 containing 7 designs:
minpath=(0, 1, 0) minimal_t=5
- 
7-(30,9,43) 
 - 
6-(30,9,344) 6-(29,9,301) 
 6-(29,8,43) (#12029) 
 - 
 5-(30,9,2150) (#7993)  5-(29,9,1806) (#7992)  5-(28,9,1505) (#7991) 
 5-(29,8,344) (#7816)  5-(28,8,301) (#7815) 
 5-(28,7,43) (#7724) 
 
 - family 38, lambda = 45 containing 3 designs:
minpath=(0, 1, 1) minimal_t=5
 - family 39, lambda = 47 containing 1 designs:
minpath=(0, 2, 1) minimal_t=5
 - family 40, lambda = 48 containing 3 designs:
minpath=(0, 1, 1) minimal_t=5
 - family 41, lambda = 49 containing 7 designs:
minpath=(0, 1, 0) minimal_t=5
- 
7-(30,9,49) 
 - 
6-(30,9,392) 6-(29,9,343) 
 6-(29,8,49) (#12033) 
 - 
 5-(30,9,2450) (#8002)  5-(29,9,2058) (#8001)  5-(28,9,1715) (#8000) 
 5-(29,8,392) (#7823)  5-(28,8,343) (#7822) 
 5-(28,7,49) (#7751) 
 
 - family 42, lambda = 50 containing 3 designs:
minpath=(0, 2, 0) minimal_t=5
 - family 43, lambda = 51 containing 3 designs:
minpath=(0, 1, 1) minimal_t=5
 - family 44, lambda = 52 containing 3 designs:
minpath=(0, 1, 1) minimal_t=5
 - family 45, lambda = 53 containing 1 designs:
minpath=(0, 2, 1) minimal_t=5
 - family 46, lambda = 54 containing 10 designs:
minpath=(0, 0, 1) minimal_t=5
- 
 7-(30,10,378) (#15853) 
 - 
 6-(30,10,2268) (#15854)  6-(29,10,1890) (#15856) 
 6-(29,9,378) (#15855) 
 - 
 5-(30,10,11340) (#15860)  5-(29,10,9072) (#15861)  5-(28,10,7182) (#15867) 
 5-(29,9,2268) (#8008)  5-(28,9,1890) (#8007) 
 5-(28,8,378) (#7830) 
 
 - family 47, lambda = 56 containing 3 designs:
minpath=(0, 2, 0) minimal_t=5
 - family 48, lambda = 57 containing 7 designs:
minpath=(0, 1, 0) minimal_t=5
- 
7-(30,9,57) 
 - 
6-(30,9,456) 6-(29,9,399) 
 6-(29,8,57) (#12037) 
 - 
 5-(30,9,2850) (#8013)  5-(29,9,2394) (#8012)  5-(28,9,1995) (#8011) 
 5-(29,8,456) (#7835)  5-(28,8,399) (#7834) 
 5-(28,7,57) (#7754) 
 
 - family 49, lambda = 58 containing 4 designs:
minpath=(0, 1, 1) minimal_t=5
 - family 50, lambda = 59 containing 1 designs:
minpath=(0, 2, 1) minimal_t=5
 - family 51, lambda = 60 containing 17 designs:
minpath=(0, 0, 0) minimal_t=5
- 
8-(31,10,60) 
 - 
 7-(31,10,480) (#16068)  7-(30,10,420) (#15869) 
7-(30,9,60) 
 - 
 6-(31,10,3000) (#16069)  6-(30,10,2520) (#15870)  6-(29,10,2100) (#15872) 
 6-(30,9,480) (#16070)  6-(29,9,420) (#15871) 
6-(29,8,60) 
 - 
 5-(31,10,15600) (#15885)  5-(30,10,12600) (#15876)  5-(29,10,10080) (#15877)  5-(28,10,7980) (#15883) 
 5-(30,9,3000) (#8018)  5-(29,9,2520) (#8017)  5-(28,9,2100) (#8016) 
 5-(29,8,480) (#7840)  5-(28,8,420) (#7839) 
 5-(28,7,60) (#7725) 
 
 - family 52, lambda = 61 containing 3 designs:
minpath=(0, 1, 1) minimal_t=5
 - family 53, lambda = 62 containing 1 designs:
minpath=(0, 2, 1) minimal_t=5
 - family 54, lambda = 63 containing 10 designs:
minpath=(0, 1, 0) minimal_t=5
- 
 7-(30,9,63) (#16055) 
 - 
 6-(30,9,504) (#16056)  6-(29,9,441) (#16057) 
 6-(29,8,63) (#12041) 
 - 
 5-(30,9,3150) (#8023)  5-(29,9,2646) (#8022)  5-(28,9,2205) (#8021) 
 5-(29,8,504) (#7844)  5-(28,8,441) (#7843) 
 5-(28,7,63) (#7726) 
 
 - family 55, lambda = 64 containing 15 designs:
minpath=(0, 0, 0) minimal_t=5
- 
8-(31,10,64) 
 - 
7-(31,10,512) 7-(30,10,448) 
 7-(30,9,64) (#16064) 
 - 
 6-(31,10,3200) (#12210)  6-(30,10,2688) (#12205) 6-(29,10,2240) 
 6-(30,9,512) (#12102)  6-(29,9,448) (#12099) 
 6-(29,8,64) (#12045) 
 - 
 5-(31,10,16640) (#12211)  5-(30,10,13440) (#12206)  5-(29,10,10752) (#12207) 5-(28,10,8512) 
 5-(30,9,3200) (#8026)  5-(29,9,2688) (#8025)  5-(28,9,2240) (#8024) 
 5-(29,8,512) (#7846)  5-(28,8,448) (#7845) 
 5-(28,7,64) (#7755) 
 
 - family 56, lambda = 65 containing 1 designs:
minpath=(0, 2, 1) minimal_t=5
 - family 57, lambda = 67 containing 4 designs:
minpath=(0, 1, 1) minimal_t=5
 - family 58, lambda = 68 containing 1 designs:
minpath=(0, 2, 1) minimal_t=5
 - family 59, lambda = 70 containing 9 designs:
minpath=(0, 1, 0) minimal_t=5
- 
7-(30,9,70) 
 - 
 6-(30,9,560) (#12120)  6-(29,9,490) (#12117) 
 6-(29,8,70) (#12049) 
 - 
 5-(30,9,3500) (#8035)  5-(29,9,2940) (#8034)  5-(28,9,2450) (#8033) 
 5-(29,8,560) (#7855)  5-(28,8,490) (#7854) 
 5-(28,7,70) (#7727) 
 
 - family 60, lambda = 71 containing 3 designs:
minpath=(0, 2, 0) minimal_t=5
 - family 61, lambda = 72 containing 10 designs:
minpath=(0, 0, 1) minimal_t=5
- 
 7-(30,10,504) (#15886) 
 - 
 6-(30,10,3024) (#15887)  6-(29,10,2520) (#15888) 
 6-(29,9,504) (#12122) 
 - 
 5-(30,10,15120) (#15892)  5-(29,10,12096) (#15893)  5-(28,10,9576) (#15896) 
 5-(29,9,3024) (#8037)  5-(28,9,2520) (#8036) 
 5-(28,8,504) (#7858) 
 
 - family 62, lambda = 73 containing 6 designs:
minpath=(0, 1, 0) minimal_t=5
- 
7-(30,9,73) 
 - 
6-(30,9,584) 6-(29,9,511) 
6-(29,8,73) 
 - 
 5-(30,9,3650) (#8040)  5-(29,9,3066) (#8039)  5-(28,9,2555) (#8038) 
 5-(29,8,584) (#7860)  5-(28,8,511) (#7859) 
 5-(28,7,73) (#7728) 
 
 - family 63, lambda = 74 containing 1 designs:
minpath=(0, 2, 1) minimal_t=5
 - family 64, lambda = 75 containing 3 designs:
minpath=(0, 1, 1) minimal_t=5
 - family 65, lambda = 76 containing 10 designs:
minpath=(0, 0, 1) minimal_t=5
- 
 7-(30,10,532) (#15898) 
 - 
 6-(30,10,3192) (#15899)  6-(29,10,2660) (#15900) 
 6-(29,9,532) (#12126) 
 - 
 5-(30,10,15960) (#15904)  5-(29,10,12768) (#15905)  5-(28,10,10108) (#15908) 
 5-(29,9,3192) (#8044)  5-(28,9,2660) (#8043) 
 5-(28,8,532) (#7863) 
 
 - family 66, lambda = 78 containing 17 designs:
minpath=(0, 0, 0) minimal_t=5
- 
8-(31,10,78) 
 - 
7-(31,10,624)  7-(30,10,546) (#15910) 
7-(30,9,78) 
 - 
 6-(31,10,3900) (#15928)  6-(30,10,3276) (#15911)  6-(29,10,2730) (#15913) 
 6-(30,9,624) (#15923)  6-(29,9,546) (#15912) 
 6-(29,8,78) (#12053) 
 - 
 5-(31,10,20280) (#15926)  5-(30,10,16380) (#15917)  5-(29,10,13104) (#15918)  5-(28,10,10374) (#15924) 
 5-(30,9,3900) (#8047)  5-(29,9,3276) (#8046)  5-(28,9,2730) (#8045) 
 5-(29,8,624) (#7868)  5-(28,8,546) (#7867) 
 5-(28,7,78) (#7760) 
 
 - family 67, lambda = 79 containing 3 designs:
minpath=(0, 1, 1) minimal_t=5
 - family 68, lambda = 80 containing 1 designs:
minpath=(0, 2, 1) minimal_t=5
 - family 69, lambda = 81 containing 10 designs:
minpath=(0, 0, 1) minimal_t=5
- 
 7-(30,10,567) (#15930) 
 - 
 6-(30,10,3402) (#15931)  6-(29,10,2835) (#15933) 
 6-(29,9,567) (#15932) 
 - 
 5-(30,10,17010) (#15937)  5-(29,10,13608) (#15938)  5-(28,10,10773) (#15944) 
 5-(29,9,3402) (#8051)  5-(28,9,2835) (#8050) 
 5-(28,8,567) (#7873) 
 
 - family 70, lambda = 82 containing 3 designs:
minpath=(0, 1, 1) minimal_t=5
 - family 71, lambda = 83 containing 1 designs:
minpath=(0, 2, 1) minimal_t=5
 - family 72, lambda = 84 containing 7 designs:
minpath=(0, 1, 0) minimal_t=5
- 
7-(30,9,84) 
 - 
6-(30,9,672) 6-(29,9,588) 
 6-(29,8,84) (#12057) 
 - 
 5-(30,9,4200) (#8056)  5-(29,9,3528) (#8055)  5-(28,9,2940) (#8054) 
 5-(29,8,672) (#7877)  5-(28,8,588) (#7876) 
 5-(28,7,84) (#7762) 
 
 - family 73, lambda = 85 containing 14 designs:
minpath=(0, 0, 0) minimal_t=5
- 
8-(31,10,85) 
 - 
7-(31,10,680) 7-(30,10,595) 
7-(30,9,85) 
 - 
 6-(31,10,4250) (#12226)  6-(30,10,3570) (#12221) 6-(29,10,2975) 
 6-(30,9,680) (#12133)  6-(29,9,595) (#12130) 
 6-(29,8,85) (#12061) 
 - 
 5-(31,10,22100) (#12227)  5-(30,10,17850) (#12222)  5-(29,10,14280) (#12223) 5-(28,10,11305) 
 5-(30,9,4250) (#8059)  5-(29,9,3570) (#8058)  5-(28,9,2975) (#8057) 
 5-(29,8,680) (#7879)  5-(28,8,595) (#7878) 
 5-(28,7,85) (#7763) 
 
 - family 74, lambda = 86 containing 1 designs:
minpath=(0, 2, 1) minimal_t=5
 - family 75, lambda = 87 containing 10 designs:
minpath=(0, 0, 1) minimal_t=5
- 
 7-(30,10,609) (#15946) 
 - 
 6-(30,10,3654) (#15947)  6-(29,10,3045) (#15949) 
 6-(29,9,609) (#15948) 
 - 
 5-(30,10,18270) (#15953)  5-(29,10,14616) (#15954)  5-(28,10,11571) (#15960) 
 5-(29,9,3654) (#8061)  5-(28,9,3045) (#8060) 
 5-(28,8,609) (#7881) 
 
 - family 76, lambda = 89 containing 1 designs:
minpath=(0, 2, 1) minimal_t=5
 - family 77, lambda = 90 containing 14 designs:
minpath=(0, 0, 0) minimal_t=5
- 
8-(31,10,90) 
 - 
7-(31,10,720)  7-(30,10,630) (#15962) 
7-(30,9,90) 
 - 
6-(31,10,4500)  6-(30,10,3780) (#15963)  6-(29,10,3150) (#15964) 
6-(30,9,720)  6-(29,9,630) (#12135) 
6-(29,8,90) 
 - 
 5-(31,10,23400) (#15974)  5-(30,10,18900) (#15968)  5-(29,10,15120) (#15969)  5-(28,10,11970) (#15972) 
 5-(30,9,4500) (#8068)  5-(29,9,3780) (#8067)  5-(28,9,3150) (#8066) 
 5-(29,8,720) (#7888)  5-(28,8,630) (#7887) 
 5-(28,7,90) (#7729) 
 
 - family 78, lambda = 91 containing 7 designs:
minpath=(0, 1, 0) minimal_t=5
- 
7-(30,9,91) 
 - 
6-(30,9,728) 6-(29,9,637) 
 6-(29,8,91) (#12065) 
 - 
 5-(30,9,4550) (#8071)  5-(29,9,3822) (#8070)  5-(28,9,3185) (#8069) 
 5-(29,8,728) (#7890)  5-(28,8,637) (#7889) 
 5-(28,7,91) (#7766) 
 
 - family 79, lambda = 93 containing 20 designs:
minpath=(0, 0, 0) minimal_t=5
- 
 8-(31,10,93) (#18017) 
 - 
 7-(31,10,744) (#16076)  7-(30,10,651) (#18019) 
 7-(30,9,93) (#18018) 
 - 
 6-(31,10,4650) (#16077)  6-(30,10,3906) (#16079)  6-(29,10,3255) (#18027) 
 6-(30,9,744) (#16078)  6-(29,9,651) (#18024) 
 6-(29,8,93) (#18023) 
 - 
 5-(31,10,24180) (#16083)  5-(30,10,19530) (#16084)  5-(29,10,15624) (#16090)  5-(28,10,12369) (#18032) 
 5-(30,9,4650) (#8074)  5-(29,9,3906) (#8073)  5-(28,9,3255) (#8072) 
 5-(29,8,744) (#7894)  5-(28,8,651) (#7893) 
 5-(28,7,93) (#7730) 
 
 - family 80, lambda = 94 containing 3 designs:
minpath=(0, 1, 1) minimal_t=5
 - family 81, lambda = 95 containing 1 designs:
minpath=(0, 2, 1) minimal_t=5
 - family 82, lambda = 96 containing 10 designs:
minpath=(0, 0, 1) minimal_t=5
- 
 7-(30,10,672) (#15975) 
 - 
 6-(30,10,4032) (#15976)  6-(29,10,3360) (#15977) 
 6-(29,9,672) (#12139) 
 - 
 5-(30,10,20160) (#15981)  5-(29,10,16128) (#15982)  5-(28,10,12768) (#15985) 
 5-(29,9,4032) (#8078)  5-(28,9,3360) (#8077) 
 5-(28,8,672) (#7897) 
 
 - family 83, lambda = 97 containing 3 designs:
minpath=(0, 1, 1) minimal_t=5
 - family 84, lambda = 98 containing 3 designs:
minpath=(0, 2, 0) minimal_t=5
 - family 85, lambda = 100 containing 20 designs:
minpath=(0, 0, 0) minimal_t=5
- 
 8-(31,10,100) (#18000) 
 - 
 7-(31,10,800) (#16092)  7-(30,10,700) (#18002) 
 7-(30,9,100) (#18001) 
 - 
 6-(31,10,5000) (#16093)  6-(30,10,4200) (#16095)  6-(29,10,3500) (#18010) 
 6-(30,9,800) (#16094)  6-(29,9,700) (#18007) 
 6-(29,8,100) (#18006) 
 - 
 5-(31,10,26000) (#16099)  5-(30,10,21000) (#16100)  5-(29,10,16800) (#16106)  5-(28,10,13300) (#18015) 
 5-(30,9,5000) (#8089)  5-(29,9,4200) (#8088)  5-(28,9,3500) (#8087) 
 5-(29,8,800) (#7906)  5-(28,8,700) (#7905) 
 5-(28,7,100) (#7731) 
 
 - family 86, lambda = 101 containing 1 designs:
minpath=(0, 2, 1) minimal_t=5
 - family 87, lambda = 102 containing 4 designs:
minpath=(0, 1, 1) minimal_t=5
 - family 88, lambda = 103 containing 6 designs:
minpath=(0, 1, 0) minimal_t=5
- 
7-(30,9,103) 
 - 
6-(30,9,824) 6-(29,9,721) 
6-(29,8,103) 
 - 
 5-(30,9,5150) (#8094)  5-(29,9,4326) (#8093)  5-(28,9,3605) (#8092) 
 5-(29,8,824) (#7910)  5-(28,8,721) (#7909) 
 5-(28,7,103) (#7732) 
 
 - family 89, lambda = 104 containing 1 designs:
minpath=(0, 2, 1) minimal_t=5
 - family 90, lambda = 105 containing 19 designs:
minpath=(0, 0, 0) minimal_t=5
- 
8-(31,10,105) 
 - 
 7-(31,10,840) (#16049)  7-(30,10,735) (#15994) 
 7-(30,9,105) (#16046) 
 - 
 6-(31,10,5250) (#12243)  6-(30,10,4410) (#12238)  6-(29,10,3675) (#15995) 
 6-(30,9,840) (#12155)  6-(29,9,735) (#12152) 
 6-(29,8,105) (#12003) 
 - 
 5-(31,10,27300) (#12244)  5-(30,10,22050) (#12239)  5-(29,10,17640) (#12240)  5-(28,10,13965) (#15999) 
 5-(30,9,5250) (#8097)  5-(29,9,4410) (#8096)  5-(28,9,3675) (#8095) 
 5-(29,8,840) (#7913)  5-(28,8,735) (#7912) 
 5-(28,7,105) (#7735) 
 
 - family 91, lambda = 106 containing 7 designs:
minpath=(0, 1, 0) minimal_t=5
- 
7-(30,9,106) 
 - 
6-(30,9,848) 6-(29,9,742) 
 6-(29,8,106) (#12007) 
 - 
 5-(30,9,5300) (#8100)  5-(29,9,4452) (#8099)  5-(28,9,3710) (#8098) 
 5-(29,8,848) (#7915)  5-(28,8,742) (#7914) 
 5-(28,7,106) (#7736) 
 
 - family 92, lambda = 107 containing 1 designs:
minpath=(0, 2, 1) minimal_t=5
 - family 93, lambda = 108 containing 10 designs:
minpath=(0, 0, 1) minimal_t=5
- 
 7-(30,10,756) (#16001) 
 - 
 6-(30,10,4536) (#16002)  6-(29,10,3780) (#16003) 
 6-(29,9,756) (#12157) 
 - 
 5-(30,10,22680) (#16007)  5-(29,10,18144) (#16008)  5-(28,10,14364) (#16011) 
 5-(29,9,4536) (#8102)  5-(28,9,3780) (#8101) 
 5-(28,8,756) (#7917) 
 
 - family 94, lambda = 109 containing 10 designs:
minpath=(0, 0, 1) minimal_t=5
- 
 7-(30,10,763) (#16013) 
 - 
 6-(30,10,4578) (#16014)  6-(29,10,3815) (#16016) 
 6-(29,9,763) (#16015) 
 - 
 5-(30,10,22890) (#16020)  5-(29,10,18312) (#16021)  5-(28,10,14497) (#16027) 
 5-(29,9,4578) (#8104)  5-(28,9,3815) (#8103) 
 5-(28,8,763) (#7918) 
 
 - family 95, lambda = 111 containing 3 designs:
minpath=(0, 1, 1) minimal_t=5
 - family 96, lambda = 112 containing 15 designs:
minpath=(0, 0, 0) minimal_t=5
- 
8-(31,10,112) 
 - 
7-(31,10,896) 7-(30,10,784) 
 7-(30,9,112) (#16051) 
 - 
 6-(31,10,5600) (#12251)  6-(30,10,4704) (#12246) 6-(29,10,3920) 
 6-(30,9,896) (#12164)  6-(29,9,784) (#12161) 
 6-(29,8,112) (#12011) 
 - 
 5-(31,10,29120) (#12252)  5-(30,10,23520) (#12247)  5-(29,10,18816) (#12248) 5-(28,10,14896) 
 5-(30,9,5600) (#8109)  5-(29,9,4704) (#8108)  5-(28,9,3920) (#8107) 
 5-(29,8,896) (#7923)  5-(28,8,784) (#7922) 
 5-(28,7,112) (#7737) 
 
 - family 97, lambda = 113 containing 3 designs:
minpath=(0, 2, 0) minimal_t=5
 - family 98, lambda = 114 containing 4 designs:
minpath=(0, 1, 1) minimal_t=5
 - family 99, lambda = 116 containing 1 designs:
minpath=(0, 2, 1) minimal_t=5
 - family 100, lambda = 117 containing 10 designs:
minpath=(0, 0, 1) minimal_t=5
- 
 7-(30,10,819) (#16029) 
 - 
 6-(30,10,4914) (#12170)  6-(29,10,4095) (#11973) 
 6-(29,9,819) (#12169) 
 - 
 5-(30,10,24570) (#11979)  5-(29,10,19656) (#11974)  5-(28,10,15561) (#11975) 
 5-(29,9,4914) (#8115)  5-(28,9,4095) (#8114) 
 5-(28,8,819) (#7929) 
 
 - family 101, lambda = 118 containing 7 designs:
minpath=(0, 0, 1) minimal_t=5
- 
7-(30,10,826) 
 - 
 6-(30,10,4956) (#12254) 6-(29,10,4130) 
 6-(29,9,826) (#12171) 
 - 
 5-(30,10,24780) (#12255)  5-(29,10,19824) (#12256) 5-(28,10,15694) 
 5-(29,9,4956) (#8117)  5-(28,9,4130) (#8116) 
 5-(28,8,826) (#7930) 
 
 - family 102, lambda = 119 containing 3 designs:
minpath=(0, 2, 0) minimal_t=5
 - family 103, lambda = 120 containing 9 designs:
minpath=(0, 1, 0) minimal_t=5
- 
7-(30,9,120) 
 - 
 6-(30,9,960) (#12177)  6-(29,9,840) (#12174) 
 6-(29,8,120) (#12014) 
 - 
 5-(30,9,6000) (#8122)  5-(29,9,5040) (#8121)  5-(28,9,4200) (#8120) 
 5-(29,8,960) (#7935)  5-(28,8,840) (#7934) 
 5-(28,7,120) (#7733) 
 
 - family 104, lambda = 122 containing 1 designs:
minpath=(0, 2, 1) minimal_t=5
 - family 105, lambda = 123 containing 14 designs:
minpath=(0, 0, 0) minimal_t=5
- 
8-(31,10,123) 
 - 
7-(31,10,984)  7-(30,10,861) (#16042) 
7-(30,9,123) 
 - 
6-(31,10,6150)  6-(30,10,5166) (#12180)  6-(29,10,4305) (#11982) 
6-(30,9,984)  6-(29,9,861) (#12179) 
6-(29,8,123) 
 - 
 5-(31,10,31980) (#11990)  5-(30,10,25830) (#11988)  5-(29,10,20664) (#11983)  5-(28,10,16359) (#11984) 
 5-(30,9,6150) (#8127)  5-(29,9,5166) (#8126)  5-(28,9,4305) (#8125) 
 5-(29,8,984) (#7939)  5-(28,8,861) (#7938) 
 5-(28,7,123) (#7734) 
 
 - family 106, lambda = 124 containing 3 designs:
minpath=(0, 1, 1) minimal_t=5
 - family 107, lambda = 125 containing 1 designs:
minpath=(0, 2, 1) minimal_t=5
 - family 108, lambda = 126 containing 14 designs:
minpath=(0, 0, 0) minimal_t=5
- 
8-(31,10,126) 
 - 
7-(31,10,1008) 7-(30,10,882) 
7-(30,9,126) 
 - 
 6-(31,10,6300) (#12276)  6-(30,10,5292) (#12271) 6-(29,10,4410) 
 6-(30,9,1008) (#12186)  6-(29,9,882) (#12181) 
 6-(29,8,126) (#12017) 
 - 
 5-(31,10,32760) (#12277)  5-(30,10,26460) (#12272)  5-(29,10,21168) (#12273) 5-(28,10,16758) 
 5-(30,9,6300) (#12187)  5-(29,9,5292) (#12182)  5-(28,9,4410) (#12183) 
 5-(29,8,1008) (#7943)  5-(28,8,882) (#7942) 
 5-(28,7,126) (#7740) 
 
 
created: Fri Oct 23 11:20:53 CEST 2009