design clan: 7_40_10
7-(40,10,m*4), 1 <= m <= 682; (8/80) lambda_max=5456, lambda_max_half=2728
the clan contains 8 families: 
- family 0, lambda = 560 containing 10 designs:
minpath=(0, 0, 0) minimal_t=5
- 
 7-(40,10,560) (#17417) 
 - 
 6-(40,10,4760) (#17418)  6-(39,10,4200) (#17420) 
 6-(39,9,560) (#17419) 
 - 
 5-(40,10,33320) (#17424)  5-(39,10,28560) (#17426)  5-(38,10,24360) (#17434) 
 5-(39,9,4760) (#17425)  5-(38,9,4200) (#17431) 
 5-(38,8,560) (#17430) 
 
 - family 1, lambda = 1008 containing 10 designs:
minpath=(0, 0, 0) minimal_t=5
- 
 7-(40,10,1008) (#17291) 
 - 
 6-(40,10,8568) (#17292)  6-(39,10,7560) (#17294) 
 6-(39,9,1008) (#17293) 
 - 
 5-(40,10,59976) (#17298)  5-(39,10,51408) (#17300)  5-(38,10,43848) (#17308) 
 5-(39,9,8568) (#17299)  5-(38,9,7560) (#17305) 
 5-(38,8,1008) (#17304) 
 
 - family 2, lambda = 1208 containing 10 designs:
minpath=(0, 0, 0) minimal_t=5
- 
 7-(40,10,1208) (#17310) 
 - 
 6-(40,10,10268) (#17311)  6-(39,10,9060) (#17313) 
 6-(39,9,1208) (#17312) 
 - 
 5-(40,10,71876) (#17317)  5-(39,10,61608) (#17319)  5-(38,10,52548) (#17327) 
 5-(39,9,10268) (#17318)  5-(38,9,9060) (#17324) 
 5-(38,8,1208) (#17323) 
 
 - family 3, lambda = 1296 containing 10 designs:
minpath=(0, 0, 0) minimal_t=5
- 
 7-(40,10,1296) (#17329) 
 - 
 6-(40,10,11016) (#12915)  6-(39,10,9720) (#17331) 
 6-(39,9,1296) (#17330) 
 - 
 5-(40,10,77112) (#12916)  5-(39,10,66096) (#12918)  5-(38,10,56376) (#17339) 
 5-(39,9,11016) (#12917)  5-(38,9,9720) (#17336) 
 5-(38,8,1296) (#17335) 
 
 - family 4, lambda = 1568 containing 10 designs:
minpath=(0, 0, 0) minimal_t=5
- 
 7-(40,10,1568) (#17341) 
 - 
 6-(40,10,13328) (#17342)  6-(39,10,11760) (#17344) 
 6-(39,9,1568) (#17343) 
 - 
 5-(40,10,93296) (#17348)  5-(39,10,79968) (#17350)  5-(38,10,68208) (#17358) 
 5-(39,9,13328) (#17349)  5-(38,9,11760) (#17355) 
 5-(38,8,1568) (#17354) 
 
 - family 5, lambda = 1656 containing 10 designs:
minpath=(0, 0, 0) minimal_t=5
- 
 7-(40,10,1656) (#17360) 
 - 
 6-(40,10,14076) (#17361)  6-(39,10,12420) (#17363) 
 6-(39,9,1656) (#17362) 
 - 
 5-(40,10,98532) (#17367)  5-(39,10,84456) (#17369)  5-(38,10,72036) (#17377) 
 5-(39,9,14076) (#17368)  5-(38,9,12420) (#17374) 
 5-(38,8,1656) (#17373) 
 
 - family 6, lambda = 2304 containing 10 designs:
minpath=(0, 0, 0) minimal_t=5
- 
 7-(40,10,2304) (#17379) 
 - 
 6-(40,10,19584) (#17380)  6-(39,10,17280) (#17382) 
 6-(39,9,2304) (#17381) 
 - 
 5-(40,10,137088) (#17386)  5-(39,10,117504) (#17388)  5-(38,10,100224) (#17396) 
 5-(39,9,19584) (#17387)  5-(38,9,17280) (#17393) 
 5-(38,8,2304) (#17392) 
 
 - family 7, lambda = 2504 containing 10 designs:
minpath=(0, 0, 0) minimal_t=5
- 
 7-(40,10,2504) (#17398) 
 - 
 6-(40,10,21284) (#17399)  6-(39,10,18780) (#17401) 
 6-(39,9,2504) (#17400) 
 - 
 5-(40,10,148988) (#17405)  5-(39,10,127704) (#17407)  5-(38,10,108924) (#17415) 
 5-(39,9,21284) (#17406)  5-(38,9,18780) (#17412) 
 5-(38,8,2504) (#17411) 
 
 
created: Fri Oct 23 11:20:50 CEST 2009