design clan: 7_20_10
7-(20,10,m*2), 1 <= m <= 71; (56/282) lambda_max=286, lambda_max_half=143
the clan contains 56 families: 
- family 0, lambda = 6 containing 5 designs:
minpath=(0, 0, 0) minimal_t=5
- 
7-(20,10,6) 
 - 
6-(20,10,21) 6-(19,10,15) 
6-(19,9,6) 
 - 
 5-(20,10,63) (#571)  5-(19,10,42) (#572) 5-(18,10,27) 
 5-(19,9,21) (#570)  5-(18,9,15) (#569) 
 5-(18,8,6) (#503) 
 
 - family 1, lambda = 12 containing 2 designs:
minpath=(0, 0, 0) minimal_t=5
- 
7-(20,10,12) 
 - 
6-(20,10,42) 6-(19,10,30) 
6-(19,9,12) 
 - 
 5-(20,10,126) (#925) 5-(19,10,84) 5-(18,10,54) 
5-(19,9,42)  5-(18,9,30) (#691) 
5-(18,8,12) 
 
 - family 2, lambda = 14 containing 5 designs:
minpath=(0, 0, 0) minimal_t=5
- 
7-(20,10,14) 
 - 
6-(20,10,49) 6-(19,10,35) 
6-(19,9,14) 
 - 
 5-(20,10,147) (#730)  5-(19,10,98) (#731) 5-(18,10,63) 
 5-(19,9,49) (#729)  5-(18,9,35) (#728) 
 5-(18,8,14) (#484) 
 
 - family 3, lambda = 16 containing 5 designs:
minpath=(0, 0, 0) minimal_t=5
- 
7-(20,10,16) 
 - 
6-(20,10,56) 6-(19,10,40) 
6-(19,9,16) 
 - 
 5-(20,10,168) (#742)  5-(19,10,112) (#743) 5-(18,10,72) 
 5-(19,9,56) (#741)  5-(18,9,40) (#740) 
 5-(18,8,16) (#487) 
 
 - family 4, lambda = 18 containing 2 designs:
minpath=(0, 0, 0) minimal_t=5
- 
7-(20,10,18) 
 - 
6-(20,10,63) 6-(19,10,45) 
6-(19,9,18) 
 - 
 5-(20,10,189) (#926) 5-(19,10,126) 5-(18,10,81) 
5-(19,9,63)  5-(18,9,45) (#744) 
5-(18,8,18) 
 
 - family 5, lambda = 20 containing 2 designs:
minpath=(0, 0, 0) minimal_t=5
- 
7-(20,10,20) 
 - 
6-(20,10,70) 6-(19,10,50) 
6-(19,9,20) 
 - 
 5-(20,10,210) (#927) 5-(19,10,140) 5-(18,10,90) 
5-(19,9,70)  5-(18,9,50) (#745) 
5-(18,8,20) 
 
 - family 6, lambda = 24 containing 2 designs:
minpath=(0, 0, 0) minimal_t=5
- 
7-(20,10,24) 
 - 
6-(20,10,84) 6-(19,10,60) 
6-(19,9,24) 
 - 
 5-(20,10,252) (#929) 5-(19,10,168) 5-(18,10,108) 
5-(19,9,84)  5-(18,9,60) (#747) 
5-(18,8,24) 
 
 - family 7, lambda = 28 containing 2 designs:
minpath=(0, 0, 0) minimal_t=5
- 
7-(20,10,28) 
 - 
6-(20,10,98) 6-(19,10,70) 
6-(19,9,28) 
 - 
 5-(20,10,294) (#931) 5-(19,10,196) 5-(18,10,126) 
5-(19,9,98)  5-(18,9,70) (#749) 
5-(18,8,28) 
 
 - family 8, lambda = 30 containing 5 designs:
minpath=(0, 0, 0) minimal_t=5
- 
7-(20,10,30) 
 - 
6-(20,10,105) 6-(19,10,75) 
6-(19,9,30) 
 - 
 5-(20,10,315) (#752)  5-(19,10,210) (#753) 5-(18,10,135) 
 5-(19,9,105) (#751)  5-(18,9,75) (#750) 
 5-(18,8,30) (#488) 
 
 - family 9, lambda = 32 containing 5 designs:
minpath=(0, 0, 0) minimal_t=5
- 
7-(20,10,32) 
 - 
6-(20,10,112) 6-(19,10,80) 
6-(19,9,32) 
 - 
 5-(20,10,336) (#756)  5-(19,10,224) (#757) 5-(18,10,144) 
 5-(19,9,112) (#755)  5-(18,9,80) (#754) 
 5-(18,8,32) (#489) 
 
 - family 10, lambda = 34 containing 2 designs:
minpath=(0, 0, 0) minimal_t=5
- 
7-(20,10,34) 
 - 
6-(20,10,119) 6-(19,10,85) 
6-(19,9,34) 
 - 
 5-(20,10,357) (#932) 5-(19,10,238) 5-(18,10,153) 
5-(19,9,119)  5-(18,9,85) (#758) 
5-(18,8,34) 
 
 - family 11, lambda = 36 containing 5 designs:
minpath=(0, 0, 0) minimal_t=5
- 
7-(20,10,36) 
 - 
6-(20,10,126) 6-(19,10,90) 
6-(19,9,36) 
 - 
 5-(20,10,378) (#761)  5-(19,10,252) (#762) 5-(18,10,162) 
 5-(19,9,126) (#760)  5-(18,9,90) (#759) 
 5-(18,8,36) (#490) 
 
 - family 12, lambda = 38 containing 5 designs:
minpath=(0, 0, 0) minimal_t=5
- 
7-(20,10,38) 
 - 
6-(20,10,133) 6-(19,10,95) 
6-(19,9,38) 
 - 
 5-(20,10,399) (#765)  5-(19,10,266) (#766) 5-(18,10,171) 
 5-(19,9,133) (#764)  5-(18,9,95) (#763) 
 5-(18,8,38) (#491) 
 
 - family 13, lambda = 40 containing 5 designs:
minpath=(0, 0, 0) minimal_t=5
- 
7-(20,10,40) 
 - 
6-(20,10,140) 6-(19,10,100) 
6-(19,9,40) 
 - 
 5-(20,10,420) (#527)  5-(19,10,280) (#528) 5-(18,10,180) 
 5-(19,9,140) (#526)  5-(18,9,100) (#525) 
 5-(18,8,40) (#492) 
 
 - family 14, lambda = 42 containing 5 designs:
minpath=(0, 0, 0) minimal_t=5
- 
7-(20,10,42) 
 - 
6-(20,10,147) 6-(19,10,105) 
6-(19,9,42) 
 - 
 5-(20,10,441) (#531)  5-(19,10,294) (#532) 5-(18,10,189) 
 5-(19,9,147) (#530)  5-(18,9,105) (#529) 
 5-(18,8,42) (#493) 
 
 - family 15, lambda = 46 containing 5 designs:
minpath=(0, 0, 0) minimal_t=5
- 
7-(20,10,46) 
 - 
6-(20,10,161) 6-(19,10,115) 
6-(19,9,46) 
 - 
 5-(20,10,483) (#543)  5-(19,10,322) (#544) 5-(18,10,207) 
 5-(19,9,161) (#542)  5-(18,9,115) (#541) 
 5-(18,8,46) (#496) 
 
 - family 16, lambda = 48 containing 5 designs:
minpath=(0, 0, 0) minimal_t=5
- 
7-(20,10,48) 
 - 
6-(20,10,168) 6-(19,10,120) 
6-(19,9,48) 
 - 
 5-(20,10,504) (#547)  5-(19,10,336) (#548) 5-(18,10,216) 
 5-(19,9,168) (#546)  5-(18,9,120) (#545) 
 5-(18,8,48) (#497) 
 
 - family 17, lambda = 50 containing 5 designs:
minpath=(0, 0, 0) minimal_t=5
- 
7-(20,10,50) 
 - 
6-(20,10,175) 6-(19,10,125) 
6-(19,9,50) 
 - 
 5-(20,10,525) (#551)  5-(19,10,350) (#552) 5-(18,10,225) 
 5-(19,9,175) (#550)  5-(18,9,125) (#549) 
 5-(18,8,50) (#498) 
 
 - family 18, lambda = 54 containing 5 designs:
minpath=(0, 0, 0) minimal_t=5
- 
7-(20,10,54) 
 - 
6-(20,10,189) 6-(19,10,135) 
6-(19,9,54) 
 - 
 5-(20,10,567) (#559)  5-(19,10,378) (#560) 5-(18,10,243) 
 5-(19,9,189) (#558)  5-(18,9,135) (#557) 
 5-(18,8,54) (#500) 
 
 - family 19, lambda = 56 containing 5 designs:
minpath=(0, 0, 0) minimal_t=5
- 
7-(20,10,56) 
 - 
6-(20,10,196) 6-(19,10,140) 
6-(19,9,56) 
 - 
 5-(20,10,588) (#563)  5-(19,10,392) (#564) 5-(18,10,252) 
 5-(19,9,196) (#562)  5-(18,9,140) (#561) 
 5-(18,8,56) (#501) 
 
 - family 20, lambda = 58 containing 5 designs:
minpath=(0, 0, 0) minimal_t=5
- 
7-(20,10,58) 
 - 
6-(20,10,203) 6-(19,10,145) 
6-(19,9,58) 
 - 
 5-(20,10,609) (#567)  5-(19,10,406) (#568) 5-(18,10,261) 
 5-(19,9,203) (#566)  5-(18,9,145) (#565) 
 5-(18,8,58) (#502) 
 
 - family 21, lambda = 60 containing 5 designs:
minpath=(0, 0, 0) minimal_t=5
- 
7-(20,10,60) 
 - 
6-(20,10,210) 6-(19,10,150) 
6-(19,9,60) 
 - 
 5-(20,10,630) (#575)  5-(19,10,420) (#576) 5-(18,10,270) 
 5-(19,9,210) (#574)  5-(18,9,150) (#573) 
 5-(18,8,60) (#504) 
 
 - family 22, lambda = 62 containing 5 designs:
minpath=(0, 0, 0) minimal_t=5
- 
7-(20,10,62) 
 - 
6-(20,10,217) 6-(19,10,155) 
6-(19,9,62) 
 - 
 5-(20,10,651) (#579)  5-(19,10,434) (#580) 5-(18,10,279) 
 5-(19,9,217) (#578)  5-(18,9,155) (#577) 
 5-(18,8,62) (#505) 
 
 - family 23, lambda = 64 containing 5 designs:
minpath=(0, 0, 0) minimal_t=5
- 
7-(20,10,64) 
 - 
6-(20,10,224) 6-(19,10,160) 
6-(19,9,64) 
 - 
 5-(20,10,672) (#583)  5-(19,10,448) (#584) 5-(18,10,288) 
 5-(19,9,224) (#582)  5-(18,9,160) (#581) 
 5-(18,8,64) (#506) 
 
 - family 24, lambda = 68 containing 5 designs:
minpath=(0, 0, 0) minimal_t=5
- 
7-(20,10,68) 
 - 
6-(20,10,238) 6-(19,10,170) 
6-(19,9,68) 
 - 
 5-(20,10,714) (#594)  5-(19,10,476) (#595) 5-(18,10,306) 
 5-(19,9,238) (#593)  5-(18,9,170) (#592) 
 5-(18,8,68) (#509) 
 
 - family 25, lambda = 70 containing 5 designs:
minpath=(0, 0, 0) minimal_t=5
- 
7-(20,10,70) 
 - 
6-(20,10,245) 6-(19,10,175) 
6-(19,9,70) 
 - 
 5-(20,10,735) (#598)  5-(19,10,490) (#599) 5-(18,10,315) 
 5-(19,9,245) (#597)  5-(18,9,175) (#596) 
 5-(18,8,70) (#510) 
 
 - family 26, lambda = 72 containing 5 designs:
minpath=(0, 0, 0) minimal_t=5
- 
7-(20,10,72) 
 - 
6-(20,10,252) 6-(19,10,180) 
6-(19,9,72) 
 - 
 5-(20,10,756) (#602)  5-(19,10,504) (#603) 5-(18,10,324) 
 5-(19,9,252) (#601)  5-(18,9,180) (#600) 
 5-(18,8,72) (#511) 
 
 - family 27, lambda = 74 containing 4 designs:
minpath=(0, 0, 0) minimal_t=5
- 
7-(20,10,74) 
 - 
6-(20,10,259) 6-(19,10,185) 
6-(19,9,74) 
 - 
 5-(20,10,777) (#776)  5-(19,10,518) (#777) 5-(18,10,333) 
 5-(19,9,259) (#775)  5-(18,9,185) (#604) 
5-(18,8,74) 
 
 - family 28, lambda = 76 containing 5 designs:
minpath=(0, 0, 0) minimal_t=5
- 
7-(20,10,76) 
 - 
6-(20,10,266) 6-(19,10,190) 
6-(19,9,76) 
 - 
 5-(20,10,798) (#607)  5-(19,10,532) (#608) 5-(18,10,342) 
 5-(19,9,266) (#606)  5-(18,9,190) (#605) 
 5-(18,8,76) (#512) 
 
 - family 29, lambda = 80 containing 5 designs:
minpath=(0, 0, 0) minimal_t=5
- 
7-(20,10,80) 
 - 
6-(20,10,280) 6-(19,10,200) 
6-(19,9,80) 
 - 
 5-(20,10,840) (#611)  5-(19,10,560) (#612) 5-(18,10,360) 
 5-(19,9,280) (#610)  5-(18,9,200) (#609) 
 5-(18,8,80) (#513) 
 
 - family 30, lambda = 82 containing 5 designs:
minpath=(0, 0, 0) minimal_t=5
- 
7-(20,10,82) 
 - 
6-(20,10,287) 6-(19,10,205) 
6-(19,9,82) 
 - 
 5-(20,10,861) (#615)  5-(19,10,574) (#616) 5-(18,10,369) 
 5-(19,9,287) (#614)  5-(18,9,205) (#613) 
 5-(18,8,82) (#514) 
 
 - family 31, lambda = 84 containing 5 designs:
minpath=(0, 0, 0) minimal_t=5
- 
7-(20,10,84) 
 - 
6-(20,10,294) 6-(19,10,210) 
6-(19,9,84) 
 - 
 5-(20,10,882) (#619)  5-(19,10,588) (#620) 5-(18,10,378) 
 5-(19,9,294) (#618)  5-(18,9,210) (#617) 
 5-(18,8,84) (#515) 
 
 - family 32, lambda = 86 containing 5 designs:
minpath=(0, 0, 0) minimal_t=5
- 
7-(20,10,86) 
 - 
6-(20,10,301) 6-(19,10,215) 
6-(19,9,86) 
 - 
 5-(20,10,903) (#623)  5-(19,10,602) (#624) 5-(18,10,387) 
 5-(19,9,301) (#622)  5-(18,9,215) (#621) 
 5-(18,8,86) (#516) 
 
 - family 33, lambda = 90 containing 5 designs:
minpath=(0, 0, 0) minimal_t=5
- 
7-(20,10,90) 
 - 
6-(20,10,315) 6-(19,10,225) 
6-(19,9,90) 
 - 
 5-(20,10,945) (#639)  5-(19,10,630) (#640) 5-(18,10,405) 
 5-(19,9,315) (#638)  5-(18,9,225) (#637) 
 5-(18,8,90) (#520) 
 
 - family 34, lambda = 92 containing 5 designs:
minpath=(0, 0, 0) minimal_t=5
- 
7-(20,10,92) 
 - 
6-(20,10,322) 6-(19,10,230) 
6-(19,9,92) 
 - 
 5-(20,10,966) (#643)  5-(19,10,644) (#644) 5-(18,10,414) 
 5-(19,9,322) (#642)  5-(18,9,230) (#641) 
 5-(18,8,92) (#521) 
 
 - family 35, lambda = 94 containing 5 designs:
minpath=(0, 0, 0) minimal_t=5
- 
7-(20,10,94) 
 - 
6-(20,10,329) 6-(19,10,235) 
6-(19,9,94) 
 - 
 5-(20,10,987) (#647)  5-(19,10,658) (#648) 5-(18,10,423) 
 5-(19,9,329) (#646)  5-(18,9,235) (#645) 
 5-(18,8,94) (#522) 
 
 - family 36, lambda = 96 containing 6 designs:
minpath=(0, 0, 0) minimal_t=5
- 
7-(20,10,96) 
 - 
 6-(20,10,336) (#8655) 6-(19,10,240) 
6-(19,9,96) 
 - 
 5-(20,10,1008) (#651)  5-(19,10,672) (#652) 5-(18,10,432) 
 5-(19,9,336) (#650)  5-(18,9,240) (#649) 
 5-(18,8,96) (#523) 
 
 - family 37, lambda = 98 containing 5 designs:
minpath=(0, 0, 0) minimal_t=5
- 
7-(20,10,98) 
 - 
6-(20,10,343) 6-(19,10,245) 
6-(19,9,98) 
 - 
 5-(20,10,1029) (#655)  5-(19,10,686) (#656) 5-(18,10,441) 
 5-(19,9,343) (#654)  5-(18,9,245) (#653) 
 5-(18,8,98) (#524) 
 
 - family 38, lambda = 100 containing 4 designs:
minpath=(0, 0, 0) minimal_t=5
- 
7-(20,10,100) 
 - 
6-(20,10,350) 6-(19,10,250) 
6-(19,9,100) 
 - 
 5-(20,10,1050) (#779)  5-(19,10,700) (#780) 5-(18,10,450) 
 5-(19,9,350) (#778)  5-(18,9,250) (#657) 
5-(18,8,100) 
 
 - family 39, lambda = 102 containing 5 designs:
minpath=(0, 0, 0) minimal_t=5
- 
7-(20,10,102) 
 - 
6-(20,10,357) 6-(19,10,255) 
6-(19,9,102) 
 - 
 5-(20,10,1071) (#660)  5-(19,10,714) (#661) 5-(18,10,459) 
 5-(19,9,357) (#659)  5-(18,9,255) (#658) 
 5-(18,8,102) (#467) 
 
 - family 40, lambda = 106 containing 4 designs:
minpath=(0, 0, 0) minimal_t=5
- 
7-(20,10,106) 
 - 
6-(20,10,371) 6-(19,10,265) 
6-(19,9,106) 
 - 
 5-(20,10,1113) (#782)  5-(19,10,742) (#783) 5-(18,10,477) 
 5-(19,9,371) (#781)  5-(18,9,265) (#662) 
5-(18,8,106) 
 
 - family 41, lambda = 108 containing 5 designs:
minpath=(0, 0, 0) minimal_t=5
- 
7-(20,10,108) 
 - 
6-(20,10,378) 6-(19,10,270) 
6-(19,9,108) 
 - 
 5-(20,10,1134) (#665)  5-(19,10,756) (#666) 5-(18,10,486) 
 5-(19,9,378) (#664)  5-(18,9,270) (#663) 
 5-(18,8,108) (#468) 
 
 - family 42, lambda = 112 containing 5 designs:
minpath=(0, 0, 0) minimal_t=5
- 
7-(20,10,112) 
 - 
6-(20,10,392) 6-(19,10,280) 
6-(19,9,112) 
 - 
 5-(20,10,1176) (#681)  5-(19,10,784) (#682) 5-(18,10,504) 
 5-(19,9,392) (#680)  5-(18,9,280) (#679) 
 5-(18,8,112) (#472) 
 
 - family 43, lambda = 114 containing 5 designs:
minpath=(0, 0, 0) minimal_t=5
- 
7-(20,10,114) 
 - 
6-(20,10,399) 6-(19,10,285) 
6-(19,9,114) 
 - 
 5-(20,10,1197) (#685)  5-(19,10,798) (#686) 5-(18,10,513) 
 5-(19,9,399) (#684)  5-(18,9,285) (#683) 
 5-(18,8,114) (#473) 
 
 - family 44, lambda = 116 containing 11 designs:
minpath=(0, 0, 0) minimal_t=4
- 
 7-(20,10,116) (#8621) 
 - 
 6-(20,10,406) (#8620)  6-(19,10,290) (#8622) 
 6-(19,9,116) (#8618) 
 - 
 5-(20,10,1218) (#785)  5-(19,10,812) (#786)  5-(18,10,522) (#8628) 
 5-(19,9,406) (#784)  5-(18,9,290) (#54) 
 5-(18,8,116) (#8619) 
 - 
4-(20,10,3248) 4-(19,10,2030) 4-(18,10,1218) 4-(17,10,696) 
4-(19,9,1218) 4-(18,9,812) 4-(17,9,522) 
4-(18,8,406)  4-(17,8,290) (#53) 
4-(17,7,116) 
 
 - family 45, lambda = 118 containing 5 designs:
minpath=(0, 0, 0) minimal_t=5
- 
7-(20,10,118) 
 - 
6-(20,10,413) 6-(19,10,295) 
6-(19,9,118) 
 - 
 5-(20,10,1239) (#689)  5-(19,10,826) (#690) 5-(18,10,531) 
 5-(19,9,413) (#688)  5-(18,9,295) (#687) 
 5-(18,8,118) (#474) 
 
 - family 46, lambda = 120 containing 5 designs:
minpath=(0, 0, 0) minimal_t=5
- 
7-(20,10,120) 
 - 
6-(20,10,420) 6-(19,10,300) 
6-(19,9,120) 
 - 
 5-(20,10,1260) (#694)  5-(19,10,840) (#695) 5-(18,10,540) 
 5-(19,9,420) (#693)  5-(18,9,300) (#692) 
 5-(18,8,120) (#475) 
 
 - family 47, lambda = 122 containing 5 designs:
minpath=(0, 0, 0) minimal_t=5
- 
7-(20,10,122) 
 - 
6-(20,10,427) 6-(19,10,305) 
6-(19,9,122) 
 - 
 5-(20,10,1281) (#698)  5-(19,10,854) (#699) 5-(18,10,549) 
 5-(19,9,427) (#697)  5-(18,9,305) (#696) 
 5-(18,8,122) (#476) 
 
 - family 48, lambda = 124 containing 10 designs:
minpath=(0, 0, 0) minimal_t=5
- 
 7-(20,10,124) (#8633) 
 - 
 6-(20,10,434) (#8632)  6-(19,10,310) (#8634) 
 6-(19,9,124) (#8631) 
 - 
 5-(20,10,1302) (#702)  5-(19,10,868) (#703)  5-(18,10,558) (#8640) 
 5-(19,9,434) (#701)  5-(18,9,310) (#700) 
 5-(18,8,124) (#477) 
 
 - family 49, lambda = 126 containing 10 designs:
minpath=(0, 0, 0) minimal_t=5
- 
 7-(20,10,126) (#8645) 
 - 
 6-(20,10,441) (#8644)  6-(19,10,315) (#8646) 
 6-(19,9,126) (#8643) 
 - 
 5-(20,10,1323) (#706)  5-(19,10,882) (#707)  5-(18,10,567) (#8652) 
 5-(19,9,441) (#705)  5-(18,9,315) (#704) 
 5-(18,8,126) (#478) 
 
 - family 50, lambda = 128 containing 5 designs:
minpath=(0, 0, 0) minimal_t=5
- 
7-(20,10,128) 
 - 
6-(20,10,448) 6-(19,10,320) 
6-(19,9,128) 
 - 
 5-(20,10,1344) (#710)  5-(19,10,896) (#711) 5-(18,10,576) 
 5-(19,9,448) (#709)  5-(18,9,320) (#708) 
 5-(18,8,128) (#479) 
 
 - family 51, lambda = 134 containing 10 designs:
minpath=(0, 0, 0) minimal_t=5
- 
 7-(20,10,134) (#13115) 
 - 
 6-(20,10,469) (#8656)  6-(19,10,335) (#13117) 
 6-(19,9,134) (#13116) 
 - 
 5-(20,10,1407) (#788)  5-(19,10,938) (#789)  5-(18,10,603) (#13124) 
 5-(19,9,469) (#787)  5-(18,9,335) (#719) 
 5-(18,8,134) (#13121) 
 
 - family 52, lambda = 136 containing 6 designs:
minpath=(0, 0, 0) minimal_t=5
- 
7-(20,10,136) 
 - 
 6-(20,10,476) (#8657) 6-(19,10,340) 
6-(19,9,136) 
 - 
 5-(20,10,1428) (#722)  5-(19,10,952) (#723) 5-(18,10,612) 
 5-(19,9,476) (#721)  5-(18,9,340) (#720) 
 5-(18,8,136) (#482) 
 
 - family 53, lambda = 138 containing 5 designs:
minpath=(0, 0, 0) minimal_t=5
- 
7-(20,10,138) 
 - 
6-(20,10,483) 6-(19,10,345) 
6-(19,9,138) 
 - 
 5-(20,10,1449) (#726)  5-(19,10,966) (#727) 5-(18,10,621) 
 5-(19,9,483) (#725)  5-(18,9,345) (#724) 
 5-(18,8,138) (#483) 
 
 - family 54, lambda = 140 containing 5 designs:
minpath=(0, 0, 0) minimal_t=5
- 
7-(20,10,140) 
 - 
6-(20,10,490) 6-(19,10,350) 
6-(19,9,140) 
 - 
 5-(20,10,1470) (#734)  5-(19,10,980) (#735) 5-(18,10,630) 
 5-(19,9,490) (#733)  5-(18,9,350) (#732) 
 5-(18,8,140) (#485) 
 
 - family 55, lambda = 142 containing 5 designs:
minpath=(0, 0, 0) minimal_t=5
- 
7-(20,10,142) 
 - 
6-(20,10,497) 6-(19,10,355) 
6-(19,9,142) 
 - 
 5-(20,10,1491) (#738)  5-(19,10,994) (#739) 5-(18,10,639) 
 5-(19,9,497) (#737)  5-(18,9,355) (#736) 
 5-(18,8,142) (#486) 
 
 
created: Fri Oct 23 11:20:46 CEST 2009