design clan: 25_56_28
25-(56,28,m*5), 1 <= m <= 449; (11/172) lambda_max=4495, lambda_max_half=2247
the clan contains 11 families: 
- family 0, lambda = 810 containing 20 designs:
minpath=(1, 16, 0) minimal_t=5
- 
 8-(40,12,6480) (#18402) 
 - 
 7-(40,12,42768) (#18403)  7-(39,12,36288) (#18405) 
 7-(39,11,6480) (#18404) 
 - 
 6-(40,12,242352) (#18409)  6-(39,12,199584) (#18411)  6-(38,12,163296) (#18419) 
 6-(39,11,42768) (#18410)  6-(38,11,36288) (#18416) 
 6-(38,10,6480) (#18415) 
 - 
 5-(40,12,1211760) (#18421)  5-(39,12,969408) (#18423)  5-(38,12,769824) (#18431)  5-(37,12,606528) (#18439) 
 5-(39,11,242352) (#18422)  5-(38,11,199584) (#18428)  5-(37,11,163296) (#18437) 
 5-(38,10,42768) (#18427)  5-(37,10,36288) (#18434) 
 5-(37,9,6480) (#18433) 
 
 - family 1, lambda = 850 containing 20 designs:
minpath=(1, 16, 0) minimal_t=5
- 
 8-(40,12,6800) (#18363) 
 - 
 7-(40,12,44880) (#18364)  7-(39,12,38080) (#18366) 
 7-(39,11,6800) (#18365) 
 - 
 6-(40,12,254320) (#18370)  6-(39,12,209440) (#18372)  6-(38,12,171360) (#18380) 
 6-(39,11,44880) (#18371)  6-(38,11,38080) (#18377) 
 6-(38,10,6800) (#18376) 
 - 
 5-(40,12,1271600) (#18382)  5-(39,12,1017280) (#18384)  5-(38,12,807840) (#18392)  5-(37,12,636480) (#18400) 
 5-(39,11,254320) (#18383)  5-(38,11,209440) (#18389)  5-(37,11,171360) (#18398) 
 5-(38,10,44880) (#18388)  5-(37,10,38080) (#18395) 
 5-(37,9,6800) (#18394) 
 
 - family 2, lambda = 1080 containing 4 designs:
minpath=(0, 19, 0) minimal_t=5
 - family 3, lambda = 1215 containing 20 designs:
minpath=(1, 16, 0) minimal_t=5
- 
 8-(40,12,9720) (#18324) 
 - 
 7-(40,12,64152) (#18325)  7-(39,12,54432) (#18327) 
 7-(39,11,9720) (#18326) 
 - 
 6-(40,12,363528) (#18331)  6-(39,12,299376) (#18333)  6-(38,12,244944) (#18341) 
 6-(39,11,64152) (#18332)  6-(38,11,54432) (#18338) 
 6-(38,10,9720) (#18337) 
 - 
 5-(40,12,1817640) (#18343)  5-(39,12,1454112) (#18345)  5-(38,12,1154736) (#18353)  5-(37,12,909792) (#18361) 
 5-(39,11,363528) (#18344)  5-(38,11,299376) (#18350)  5-(37,11,244944) (#18359) 
 5-(38,10,64152) (#18349)  5-(37,10,54432) (#18356) 
 5-(37,9,9720) (#18355) 
 
 - family 4, lambda = 1255 containing 20 designs:
minpath=(1, 16, 0) minimal_t=5
- 
 8-(40,12,10040) (#18285) 
 - 
 7-(40,12,66264) (#18286)  7-(39,12,56224) (#18288) 
 7-(39,11,10040) (#18287) 
 - 
 6-(40,12,375496) (#18292)  6-(39,12,309232) (#18294)  6-(38,12,253008) (#18302) 
 6-(39,11,66264) (#18293)  6-(38,11,56224) (#18299) 
 6-(38,10,10040) (#18298) 
 - 
 5-(40,12,1877480) (#18304)  5-(39,12,1501984) (#18306)  5-(38,12,1192752) (#18314)  5-(37,12,939744) (#18322) 
 5-(39,11,375496) (#18305)  5-(38,11,309232) (#18311)  5-(37,11,253008) (#18320) 
 5-(38,10,66264) (#18310)  5-(37,10,56224) (#18317) 
 5-(37,9,10040) (#18316) 
 
 - family 5, lambda = 1620 containing 20 designs:
minpath=(1, 16, 0) minimal_t=5
- 
 8-(40,12,12960) (#18246) 
 - 
 7-(40,12,85536) (#18247)  7-(39,12,72576) (#18249) 
 7-(39,11,12960) (#18248) 
 - 
 6-(40,12,484704) (#18253)  6-(39,12,399168) (#18255)  6-(38,12,326592) (#18263) 
 6-(39,11,85536) (#18254)  6-(38,11,72576) (#18260) 
 6-(38,10,12960) (#18259) 
 - 
 5-(40,12,2423520) (#18265)  5-(39,12,1938816) (#18267)  5-(38,12,1539648) (#18275)  5-(37,12,1213056) (#18283) 
 5-(39,11,484704) (#18266)  5-(38,11,399168) (#18272)  5-(37,11,326592) (#18281) 
 5-(38,10,85536) (#18271)  5-(37,10,72576) (#18278) 
 5-(37,9,12960) (#18277) 
 
 - family 6, lambda = 1660 containing 20 designs:
minpath=(1, 16, 0) minimal_t=5
- 
 8-(40,12,13280) (#18207) 
 - 
 7-(40,12,87648) (#18208)  7-(39,12,74368) (#18210) 
 7-(39,11,13280) (#18209) 
 - 
 6-(40,12,496672) (#18214)  6-(39,12,409024) (#18216)  6-(38,12,334656) (#18224) 
 6-(39,11,87648) (#18215)  6-(38,11,74368) (#18221) 
 6-(38,10,13280) (#18220) 
 - 
 5-(40,12,2483360) (#18226)  5-(39,12,1986688) (#18228)  5-(38,12,1577664) (#18236)  5-(37,12,1243008) (#18244) 
 5-(39,11,496672) (#18227)  5-(38,11,409024) (#18233)  5-(37,11,334656) (#18242) 
 5-(38,10,87648) (#18232)  5-(37,10,74368) (#18239) 
 5-(37,9,13280) (#18238) 
 
 - family 7, lambda = 1975 containing 4 designs:
minpath=(0, 19, 0) minimal_t=5
 - family 8, lambda = 2025 containing 20 designs:
minpath=(1, 16, 0) minimal_t=5
- 
 8-(40,12,16200) (#18129) 
 - 
 7-(40,12,106920) (#18130)  7-(39,12,90720) (#18132) 
 7-(39,11,16200) (#18131) 
 - 
 6-(40,12,605880) (#18136)  6-(39,12,498960) (#18138)  6-(38,12,408240) (#18146) 
 6-(39,11,106920) (#18137)  6-(38,11,90720) (#18143) 
 6-(38,10,16200) (#18142) 
 - 
 5-(40,12,3029400) (#18148)  5-(39,12,2423520) (#18150)  5-(38,12,1924560) (#18158)  5-(37,12,1516320) (#18166) 
 5-(39,11,605880) (#18149)  5-(38,11,498960) (#18155)  5-(37,11,408240) (#18164) 
 5-(38,10,106920) (#18154)  5-(37,10,90720) (#18161) 
 5-(37,9,16200) (#18160) 
 
 - family 9, lambda = 2065 containing 20 designs:
minpath=(1, 16, 0) minimal_t=5
- 
 8-(40,12,16520) (#18168) 
 - 
 7-(40,12,109032) (#18169)  7-(39,12,92512) (#18171) 
 7-(39,11,16520) (#18170) 
 - 
 6-(40,12,617848) (#18175)  6-(39,12,508816) (#18177)  6-(38,12,416304) (#18185) 
 6-(39,11,109032) (#18176)  6-(38,11,92512) (#18182) 
 6-(38,10,16520) (#18181) 
 - 
 5-(40,12,3089240) (#18187)  5-(39,12,2471392) (#18189)  5-(38,12,1962576) (#18197)  5-(37,12,1546272) (#18205) 
 5-(39,11,617848) (#18188)  5-(38,11,508816) (#18194)  5-(37,11,416304) (#18203) 
 5-(38,10,109032) (#18193)  5-(37,10,92512) (#18200) 
 5-(37,9,16520) (#18199) 
 
 - family 10, lambda = 2200 containing 4 designs:
minpath=(0, 19, 0) minimal_t=5
 
created: Fri Oct 23 11:21:33 CEST 2009