design clan: 21_44_22
21-(44,22,m*1), 1 <= m <= 11; (11/127) lambda_max=23, lambda_max_half=11
the clan contains 11 families: 
- family 0, lambda = 1 containing 2 designs:
minpath=(0, 14, 0) minimal_t=5
- 
7-(30,8,1) 
 - 
6-(30,8,12) 6-(29,8,11) 
6-(29,7,1) 
 - 
 5-(30,8,100) (#8163) 5-(29,8,88)  5-(28,8,77) (#7919) 
5-(29,7,12) 5-(28,7,11) 
5-(28,6,1) 
 
 - family 1, lambda = 2 containing 12 designs:
minpath=(0, 13, 0) minimal_t=5
- 
8-(31,9,2) 
 - 
7-(31,9,24) 7-(30,9,22) 
7-(30,8,2) 
 - 
 6-(31,9,200) (#12296) 6-(30,9,176)  6-(29,9,154) (#12081) 
6-(30,8,24) 6-(29,8,22) 
6-(29,7,2) 
 - 
 5-(31,9,1300) (#8147)  5-(30,9,1100) (#8146)  5-(29,9,924) (#8145)  5-(28,9,770) (#8144) 
 5-(30,8,200) (#7783)  5-(29,8,176) (#7782)  5-(28,8,154) (#7781) 
 5-(29,7,24) (#7745)  5-(28,7,22) (#7744) 
 5-(28,6,2) (#7711) 
 
 - family 2, lambda = 3 containing 11 designs:
minpath=(0, 13, 0) minimal_t=5
- 
8-(31,9,3) 
 - 
7-(31,9,36) 7-(30,9,33) 
7-(30,8,3) 
 - 
 6-(31,9,300) (#12300) 6-(30,9,264) 6-(29,9,231) 
6-(30,8,36) 6-(29,8,33) 
6-(29,7,3) 
 - 
 5-(31,9,1950) (#7973)  5-(30,9,1650) (#7972)  5-(29,9,1386) (#7971)  5-(28,9,1155) (#7970) 
 5-(30,8,300) (#7800)  5-(29,8,264) (#7799)  5-(28,8,231) (#7798) 
 5-(29,7,36) (#7722)  5-(28,7,33) (#7721) 
 5-(28,6,3) (#7712) 
 
 - family 3, lambda = 4 containing 2 designs:
minpath=(0, 14, 0) minimal_t=5
- 
7-(30,8,4) 
 - 
6-(30,8,48) 6-(29,8,44) 
6-(29,7,4) 
 - 
5-(30,8,400) 5-(29,8,352)  5-(28,8,308) (#7817) 
5-(29,7,48) 5-(28,7,44) 
 5-(28,6,4) (#7713) 
 
 - family 4, lambda = 5 containing 4 designs:
minpath=(0, 13, 0) minimal_t=5
- 
8-(31,9,5) 
 - 
7-(31,9,60) 7-(30,9,55) 
7-(30,8,5) 
 - 
6-(31,9,500) 6-(30,9,440) 6-(29,9,385) 
6-(30,8,60) 6-(29,8,55) 
6-(29,7,5) 
 - 
5-(31,9,3250) 5-(30,9,2750)  5-(29,9,2310) (#8010)  5-(28,9,1925) (#8009) 
5-(30,8,500) 5-(29,8,440)  5-(28,8,385) (#7831) 
5-(29,7,60) 5-(28,7,55) 
 5-(28,6,5) (#7714) 
 
 - family 5, lambda = 6 containing 5 designs:
minpath=(0, 13, 0) minimal_t=5
- 
8-(31,9,6) 
 - 
7-(31,9,72) 7-(30,9,66) 
7-(30,8,6) 
 - 
6-(31,9,600) 6-(30,9,528)  6-(29,9,462) (#12104) 
6-(30,8,72) 6-(29,8,66) 
6-(29,7,6) 
 - 
5-(31,9,3900) 5-(30,9,3300)  5-(29,9,2772) (#8028)  5-(28,9,2310) (#8027) 
5-(30,8,600) 5-(29,8,528)  5-(28,8,462) (#7848) 
5-(29,7,72) 5-(28,7,66) 
 5-(28,6,6) (#7715) 
 
 - family 6, lambda = 7 containing 6 designs:
minpath=(0, 14, 0) minimal_t=5
- 
7-(30,8,7) 
 - 
6-(30,8,84) 6-(29,8,77) 
6-(29,7,7) 
 - 
 5-(30,8,700) (#7866)  5-(29,8,616) (#7865)  5-(28,8,539) (#7864) 
 5-(29,7,84) (#7759)  5-(28,7,77) (#7758) 
 5-(28,6,7) (#7716) 
 
 - family 7, lambda = 8 containing 38 designs:
minpath=(0, 10, 0) minimal_t=5
- 
11-(34,12,8) 
 - 
10-(34,12,96) 10-(33,12,88) 
10-(33,11,8) 
 - 
9-(34,12,800) 9-(33,12,704) 9-(32,12,616) 
9-(33,11,96) 9-(32,11,88) 
9-(32,10,8) 
 - 
8-(34,12,5200) 8-(33,12,4400) 8-(32,12,3696)  8-(31,12,3080) (#18034) 
8-(33,11,800) 8-(32,11,704) 8-(31,11,616) 
8-(32,10,96) 8-(31,10,88) 
8-(31,9,8) 
 - 
7-(34,12,28080) 7-(33,12,22880) 7-(32,12,18480)  7-(31,12,14784) (#18035)  7-(30,12,11704) (#18037) 
7-(33,11,5200) 7-(32,11,4400) 7-(31,11,3696)  7-(30,11,3080) (#18036) 
7-(32,10,800) 7-(31,10,704) 7-(30,10,616) 
7-(31,9,96) 7-(30,9,88) 
7-(30,8,8) 
 - 
6-(34,12,131040) 6-(33,12,102960) 6-(32,12,80080)  6-(31,12,61600) (#18041)  6-(30,12,46816) (#18043)  6-(29,12,35112) (#18051) 
6-(33,11,28080) 6-(32,11,22880) 6-(31,11,18480)  6-(30,11,14784) (#18042)  6-(29,11,11704) (#18048) 
6-(32,10,5200) 6-(31,10,4400) 6-(30,10,3696)  6-(29,10,3080) (#18047) 
6-(31,9,800) 6-(30,9,704) 6-(29,9,616) 
6-(30,8,96) 6-(29,8,88) 
6-(29,7,8) 
 - 
 5-(34,12,542880) (#18080)  5-(33,12,411840) (#18079)  5-(32,12,308880) (#18077)  5-(31,12,228800) (#18053)  5-(30,12,167200) (#18055)  5-(29,12,120384) (#18063)  5-(28,12,85272) (#18070) 
 5-(33,11,131040) (#18078)  5-(32,11,102960) (#18076)  5-(31,11,80080) (#18074)  5-(30,11,61600) (#18054)  5-(29,11,46816) (#18060)  5-(28,11,35112) (#18068) 
 5-(32,10,28080) (#18075)  5-(31,10,22880) (#18073)  5-(30,10,18480) (#18072)  5-(29,10,14784) (#18059)  5-(28,10,11704) (#18065) 
 5-(31,9,5200) (#8065)  5-(30,9,4400) (#8064)  5-(29,9,3696) (#8063)  5-(28,9,3080) (#8062) 
 5-(30,8,800) (#7884)  5-(29,8,704) (#7883)  5-(28,8,616) (#7882) 
 5-(29,7,96) (#7765)  5-(28,7,88) (#7764) 
 5-(28,6,8) (#7717) 
 
 - family 8, lambda = 9 containing 25 designs:
minpath=(0, 12, 0) minimal_t=5
- 
9-(32,10,9) 
 - 
8-(32,10,108) 8-(31,10,99) 
8-(31,9,9) 
 - 
7-(32,10,900) 7-(31,10,792)  7-(30,10,693) (#15987) 
7-(31,9,108) 7-(30,9,99) 
7-(30,8,9) 
 - 
 6-(32,10,5850) (#12287)  6-(31,10,4950) (#12234)  6-(30,10,4158) (#12229)  6-(29,10,3465) (#15988) 
 6-(31,9,900) (#12285)  6-(30,9,792) (#12146)  6-(29,9,693) (#12143) 
 6-(30,8,108) (#12282)  6-(29,8,99) (#12069) 
6-(29,7,9) 
 - 
 5-(32,10,31590) (#12237)  5-(31,10,25740) (#12235)  5-(30,10,20790) (#12230)  5-(29,10,16632) (#12231)  5-(28,10,13167) (#15992) 
 5-(31,9,5850) (#8084)  5-(30,9,4950) (#8083)  5-(29,9,4158) (#8082)  5-(28,9,3465) (#8081) 
 5-(30,8,900) (#7903)  5-(29,8,792) (#7902)  5-(28,8,693) (#7901) 
 5-(29,7,108) (#7770)  5-(28,7,99) (#7769) 
 5-(28,6,9) (#7718) 
 
 - family 9, lambda = 10 containing 2 designs:
minpath=(0, 14, 0) minimal_t=5
- 
7-(30,8,10) 
 - 
6-(30,8,120) 6-(29,8,110) 
6-(29,7,10) 
 - 
5-(30,8,1000) 5-(29,8,880)  5-(28,8,770) (#7920) 
5-(29,7,120) 5-(28,7,110) 
 5-(28,6,10) (#7708) 
 
 - family 10, lambda = 11 containing 20 designs:
minpath=(0, 12, 0) minimal_t=5
- 
9-(32,10,11) 
 - 
8-(32,10,132) 8-(31,10,121) 
8-(31,9,11) 
 - 
7-(32,10,1100) 7-(31,10,968)  7-(30,10,847) (#16033) 
7-(31,9,132) 7-(30,9,121) 
7-(30,8,11) 
 - 
6-(32,10,7150) 6-(31,10,6050)  6-(30,10,5082) (#12259)  6-(29,10,4235) (#16035) 
6-(31,9,1100) 6-(30,9,968)  6-(29,9,847) (#16034) 
6-(30,8,132) 6-(29,8,121) 
 6-(29,7,11) (#11992) 
 - 
 5-(32,10,38610) (#12267)  5-(31,10,31460) (#12265)  5-(30,10,25410) (#12260)  5-(29,10,20328) (#12261)  5-(28,10,16093) (#16040) 
 5-(31,9,7150) (#12002)  5-(30,9,6050) (#12000)  5-(29,9,5082) (#8124)  5-(28,9,4235) (#8123) 
 5-(30,8,1100) (#11999)  5-(29,8,968) (#11997)  5-(28,8,847) (#7936) 
 5-(29,7,132) (#11993)  5-(28,7,121) (#11994) 
 5-(28,6,11) (#7709) 
 
 
created: Fri Oct 23 11:21:30 CEST 2009