design clan: 11_37_12
11-(37,12,m*2), 1 <= m <= 6; (6/88) lambda_max=26, lambda_max_half=13
the clan contains 6 families: 
- family 0, lambda = 2 containing 9 designs:
minpath=(1, 2, 1) minimal_t=5
- 
7-(34,10,225) 
 - 
 6-(34,10,1575) (#12543)  6-(33,10,1350) (#12368) 
 6-(33,9,225) (#12540) 
 - 
 5-(34,10,9135) (#12376)  5-(33,10,7560) (#12369)  5-(32,10,6210) (#12371) 
 5-(33,9,1575) (#12375)  5-(32,9,1350) (#12370) 
 5-(32,8,225) (#8232) 
 
 - family 1, lambda = 4 containing 1 designs:
minpath=(1, 4, 1) minimal_t=5
 - family 2, lambda = 6 containing 20 designs:
minpath=(0, 2, 0) minimal_t=5
- 
9-(35,10,6) 
 - 
8-(35,10,81) 8-(34,10,75) 
8-(34,9,6) 
 - 
7-(35,10,756) 7-(34,10,675)  7-(33,10,600) (#16108) 
7-(34,9,81) 7-(33,9,75) 
7-(33,8,6) 
 - 
6-(35,10,5481) 6-(34,10,4725)  6-(33,10,4050) (#16109)  6-(32,10,3450) (#16111) 
6-(34,9,756) 6-(33,9,675)  6-(32,9,600) (#16110) 
6-(33,8,81) 6-(32,8,75) 
 6-(32,7,6) (#12353) 
 - 
 5-(35,10,32886) (#16133)  5-(34,10,27405) (#16130)  5-(33,10,22680) (#16115)  5-(32,10,18630) (#16117)  5-(31,10,15180) (#16125) 
 5-(34,9,5481) (#16129)  5-(33,9,4725) (#16127)  5-(32,9,4050) (#16116)  5-(31,9,3450) (#16122) 
 5-(33,8,756) (#8331)  5-(32,8,675) (#8330)  5-(31,8,600) (#16121) 
 5-(32,7,81) (#8181)  5-(31,7,75) (#12355) 
 5-(31,6,6) (#12354) 
 
 - family 3, lambda = 8 containing 17 designs:
minpath=(0, 2, 0) minimal_t=4
- 
9-(35,10,8) 
 - 
8-(35,10,108) 8-(34,10,100) 
8-(34,9,8) 
 - 
7-(35,10,1008)  7-(34,10,900) (#16430) 7-(33,10,800) 
7-(34,9,108)  7-(33,9,100) (#16207) 
7-(33,8,8) 
 - 
6-(35,10,7308)  6-(34,10,6300) (#16431)  6-(33,10,5400) (#16432) 6-(32,10,4600) 
6-(34,9,1008)  6-(33,9,900) (#12673)  6-(32,9,800) (#16209) 
6-(33,8,108)  6-(32,8,100) (#16208) 
6-(32,7,8) 
 - 
5-(35,10,43848)  5-(34,10,36540) (#16435)  5-(33,10,30240) (#16436)  5-(32,10,24840) (#16439) 5-(31,10,20240) 
5-(34,9,7308)  5-(33,9,6300) (#12674)  5-(32,9,5400) (#12675)  5-(31,9,4600) (#16217) 
5-(33,8,1008)  5-(32,8,900) (#8381)  5-(31,8,800) (#16214) 
5-(32,7,108)  5-(31,7,100) (#16213) 
5-(31,6,8) 
 - 
4-(35,10,226548) 4-(34,10,182700) 4-(33,10,146160) 4-(32,10,115920) 4-(31,10,91080) 4-(30,10,70840) 
4-(34,9,43848) 4-(33,9,36540) 4-(32,9,30240) 4-(31,9,24840) 4-(30,9,20240) 
4-(33,8,7308) 4-(32,8,6300) 4-(31,8,5400) 4-(30,8,4600) 
4-(32,7,1008) 4-(31,7,900) 4-(30,7,800) 
4-(31,6,108) 4-(30,6,100) 
 4-(30,5,8) (#397) 
 
 - family 4, lambda = 10 containing 38 designs:
minpath=(0, 1, 0) minimal_t=5
- 
10-(36,11,10) 
 - 
9-(36,11,135) 9-(35,11,125) 
9-(35,10,10) 
 - 
 8-(36,11,1260) (#18081) 8-(35,11,1125) 8-(34,11,1000) 
8-(35,10,135) 8-(34,10,125) 
8-(34,9,10) 
 - 
 7-(36,11,9135) (#17204)  7-(35,11,7875) (#18082) 7-(34,11,6750) 7-(33,11,5750) 
 7-(35,10,1260) (#16506)  7-(34,10,1125) (#16501) 7-(33,10,1000) 
 7-(34,9,135) (#16243)  7-(33,9,125) (#16239) 
 7-(33,8,10) (#16190) 
 - 
 6-(36,11,54810) (#17205)  6-(35,11,45675) (#17206)  6-(34,11,37800) (#18086) 6-(33,11,31050) 6-(32,11,25300) 
 6-(35,10,9135) (#16511)  6-(34,10,7875) (#16502)  6-(33,10,6750) (#16503) 6-(32,10,5750) 
 6-(34,9,1260) (#16199)  6-(33,9,1125) (#12443)  6-(32,9,1000) (#16240) 
 6-(33,8,135) (#16191)  6-(32,8,125) (#16193) 
 6-(32,7,10) (#16192) 
 - 
 5-(36,11,283185) (#17209)  5-(35,11,228375) (#17210)  5-(34,11,182700) (#17213)  5-(33,11,144900) (#18088) 5-(32,11,113850) 5-(31,11,88550) 
 5-(35,10,54810) (#16515)  5-(34,10,45675) (#16507)  5-(33,10,37800) (#16508)  5-(32,10,31050) (#16512) 5-(31,10,25300) 
 5-(34,9,9135) (#12449)  5-(33,9,7875) (#12444)  5-(32,9,6750) (#12445)  5-(31,9,5750) (#16244) 
 5-(33,8,1260) (#8430)  5-(32,8,1125) (#8429)  5-(31,8,1000) (#16204) 
 5-(32,7,135) (#8190)  5-(31,7,125) (#16201) 
 5-(31,6,10) (#16200) 
 
 - family 5, lambda = 12 containing 3 designs:
minpath=(1, 4, 0) minimal_t=5
 
created: Fri Oct 23 11:21:07 CEST 2009