design clan: 11_24_12
11-(24,12,m*1), 1 <= m <= 6; (6/132) lambda_max=13, lambda_max_half=6
the clan contains 6 families: 
- family 0, lambda = 1 containing 14 designs:
minpath=(0, 0, 0) minimal_t=3
- 
11-(24,12,1) 
 - 
10-(24,12,7) 10-(23,12,6) 
10-(23,11,1) 
 - 
9-(24,12,35) 9-(23,12,28) 9-(22,12,22) 
9-(23,11,7) 9-(22,11,6) 
9-(22,10,1) 
 - 
8-(24,12,140) 8-(23,12,105) 8-(22,12,77) 8-(21,12,55) 
8-(23,11,35) 8-(22,11,28) 8-(21,11,22) 
8-(22,10,7) 8-(21,10,6) 
8-(21,9,1) 
 - 
7-(24,12,476) 7-(23,12,336) 7-(22,12,231) 7-(21,12,154) 7-(20,12,99) 
7-(23,11,140) 7-(22,11,105) 7-(21,11,77) 7-(20,11,55) 
7-(22,10,35) 7-(21,10,28) 7-(20,10,22) 
7-(21,9,7) 7-(20,9,6) 
7-(20,8,1) 
 - 
6-(24,12,1428) 6-(23,12,952) 6-(22,12,616) 6-(21,12,385) 6-(20,12,231) 6-(19,12,132) 
6-(23,11,476) 6-(22,11,336) 6-(21,11,231) 6-(20,11,154) 6-(19,11,99) 
6-(22,10,140) 6-(21,10,105) 6-(20,10,77) 6-(19,10,55) 
6-(21,9,35) 6-(20,9,28) 6-(19,9,22) 
6-(20,8,7) 6-(19,8,6) 
6-(19,7,1) 
 - 
 5-(24,12,3876) (#950) 5-(23,12,2448) 5-(22,12,1496) 5-(21,12,880) 5-(20,12,495) 5-(19,12,264) 5-(18,12,132) 
 5-(23,11,1428) (#949)  5-(22,11,952) (#348)  5-(21,11,616) (#948) 5-(20,11,385) 5-(19,11,231) 5-(18,11,132) 
 5-(22,10,476) (#947)  5-(21,10,336) (#946)  5-(20,10,231) (#928) 5-(19,10,154) 5-(18,10,99) 
 5-(21,9,140) (#945)  5-(20,9,105) (#944) 5-(19,9,77)  5-(18,9,55) (#746) 
 5-(20,8,35) (#938) 5-(19,8,28) 5-(18,8,22) 
5-(19,7,7)  5-(18,7,6) (#466) 
5-(18,6,1) 
 - 
4-(24,12,9690) 4-(23,12,5814) 4-(22,12,3366) 4-(21,12,1870) 4-(20,12,990) 4-(19,12,495) 4-(18,12,231) 4-(17,12,99) 
4-(23,11,3876) 4-(22,11,2448) 4-(21,11,1496) 4-(20,11,880) 4-(19,11,495) 4-(18,11,264) 4-(17,11,132) 
4-(22,10,1428)  4-(21,10,952) (#347) 4-(20,10,616) 4-(19,10,385) 4-(18,10,231) 4-(17,10,132) 
4-(21,9,476) 4-(20,9,336) 4-(19,9,231) 4-(18,9,154) 4-(17,9,99) 
4-(20,8,140) 4-(19,8,105) 4-(18,8,77) 4-(17,8,55) 
4-(19,7,35) 4-(18,7,28) 4-(17,7,22) 
4-(18,6,7) 4-(17,6,6) 
4-(17,5,1) 
 - 
3-(24,12,22610) 3-(23,12,12920) 3-(22,12,7106) 3-(21,12,3740) 3-(20,12,1870) 3-(19,12,880) 3-(18,12,385) 3-(17,12,154) 3-(16,12,55) 
3-(23,11,9690) 3-(22,11,5814) 3-(21,11,3366) 3-(20,11,1870) 3-(19,11,990) 3-(18,11,495) 3-(17,11,231) 3-(16,11,99) 
3-(22,10,3876) 3-(21,10,2448) 3-(20,10,1496) 3-(19,10,880) 3-(18,10,495) 3-(17,10,264) 3-(16,10,132) 
3-(21,9,1428) 3-(20,9,952) 3-(19,9,616) 3-(18,9,385) 3-(17,9,231) 3-(16,9,132) 
3-(20,8,476) 3-(19,8,336) 3-(18,8,231) 3-(17,8,154) 3-(16,8,99) 
3-(19,7,140) 3-(18,7,105) 3-(17,7,77) 3-(16,7,55) 
3-(18,6,35) 3-(17,6,28) 3-(16,6,22) 
3-(17,5,7) 3-(16,5,6) 
 3-(16,4,1) (#2) 
 
 - family 1, lambda = 2 containing 17 designs:
minpath=(0, 0, 0) minimal_t=3
- 
11-(24,12,2) 
 - 
10-(24,12,14) 10-(23,12,12) 
10-(23,11,2) 
 - 
9-(24,12,70) 9-(23,12,56) 9-(22,12,44) 
9-(23,11,14) 9-(22,11,12) 
9-(22,10,2) 
 - 
8-(24,12,280) 8-(23,12,210) 8-(22,12,154) 8-(21,12,110) 
8-(23,11,70) 8-(22,11,56) 8-(21,11,44) 
8-(22,10,14) 8-(21,10,12) 
8-(21,9,2) 
 - 
7-(24,12,952) 7-(23,12,672) 7-(22,12,462) 7-(21,12,308) 7-(20,12,198) 
7-(23,11,280) 7-(22,11,210) 7-(21,11,154) 7-(20,11,110) 
7-(22,10,70) 7-(21,10,56) 7-(20,10,44) 
7-(21,9,14) 7-(20,9,12) 
7-(20,8,2) 
 - 
6-(24,12,2856) 6-(23,12,1904) 6-(22,12,1232) 6-(21,12,770) 6-(20,12,462) 6-(19,12,264) 
6-(23,11,952) 6-(22,11,672) 6-(21,11,462) 6-(20,11,308) 6-(19,11,198) 
6-(22,10,280) 6-(21,10,210) 6-(20,10,154) 6-(19,10,110) 
6-(21,9,70) 6-(20,9,56) 6-(19,9,44) 
6-(20,8,14) 6-(19,8,12) 
6-(19,7,2) 
 - 
 5-(24,12,7752) (#943) 5-(23,12,4896) 5-(22,12,2992) 5-(21,12,1760) 5-(20,12,990) 5-(19,12,528) 5-(18,12,264) 
 5-(23,11,2856) (#942)  5-(22,11,1904) (#539)  5-(21,11,1232) (#540) 5-(20,11,770) 5-(19,11,462) 5-(18,11,264) 
 5-(22,10,952) (#941)  5-(21,10,672) (#538)  5-(20,10,462) (#535)  5-(19,10,308) (#536) 5-(18,10,198) 
 5-(21,9,280) (#940)  5-(20,9,210) (#537)  5-(19,9,154) (#534)  5-(18,9,110) (#533) 
 5-(20,8,70) (#939)  5-(19,8,56) (#495)  5-(18,8,44) (#494) 
5-(19,7,14)  5-(18,7,12) (#459) 
5-(18,6,2) 
 - 
4-(24,12,19380) 4-(23,12,11628) 4-(22,12,6732) 4-(21,12,3740) 4-(20,12,1980) 4-(19,12,990) 4-(18,12,462) 4-(17,12,198) 
4-(23,11,7752) 4-(22,11,4896) 4-(21,11,2992) 4-(20,11,1760) 4-(19,11,990) 4-(18,11,528) 4-(17,11,264) 
4-(22,10,2856) 4-(21,10,1904) 4-(20,10,1232) 4-(19,10,770) 4-(18,10,462) 4-(17,10,264) 
4-(21,9,952) 4-(20,9,672) 4-(19,9,462) 4-(18,9,308) 4-(17,9,198) 
4-(20,8,280) 4-(19,8,210) 4-(18,8,154) 4-(17,8,110) 
4-(19,7,70) 4-(18,7,56) 4-(17,7,44) 
4-(18,6,14) 4-(17,6,12) 
4-(17,5,2) 
 - 
3-(24,12,45220) 3-(23,12,25840) 3-(22,12,14212) 3-(21,12,7480) 3-(20,12,3740) 3-(19,12,1760) 3-(18,12,770) 3-(17,12,308) 3-(16,12,110) 
3-(23,11,19380) 3-(22,11,11628) 3-(21,11,6732) 3-(20,11,3740) 3-(19,11,1980) 3-(18,11,990) 3-(17,11,462) 3-(16,11,198) 
3-(22,10,7752) 3-(21,10,4896) 3-(20,10,2992) 3-(19,10,1760) 3-(18,10,990) 3-(17,10,528) 3-(16,10,264) 
3-(21,9,2856) 3-(20,9,1904) 3-(19,9,1232) 3-(18,9,770) 3-(17,9,462) 3-(16,9,264) 
3-(20,8,952) 3-(19,8,672) 3-(18,8,462) 3-(17,8,308) 3-(16,8,198) 
3-(19,7,280) 3-(18,7,210) 3-(17,7,154) 3-(16,7,110) 
3-(18,6,70) 3-(17,6,56) 3-(16,6,44) 
3-(17,5,14)  3-(16,5,12) (#3) 
3-(16,4,2) 
 
 - family 2, lambda = 3 containing 23 designs:
minpath=(0, 0, 0) minimal_t=4
- 
11-(24,12,3) 
 - 
10-(24,12,21) 10-(23,12,18) 
10-(23,11,3) 
 - 
9-(24,12,105) 9-(23,12,84) 9-(22,12,66) 
9-(23,11,21) 9-(22,11,18) 
9-(22,10,3) 
 - 
8-(24,12,420) 8-(23,12,315) 8-(22,12,231) 8-(21,12,165) 
8-(23,11,105) 8-(22,11,84) 8-(21,11,66) 
8-(22,10,21) 8-(21,10,18) 
8-(21,9,3) 
 - 
7-(24,12,1428) 7-(23,12,1008) 7-(22,12,693) 7-(21,12,462) 7-(20,12,297) 
7-(23,11,420)  7-(22,11,315) (#13127) 7-(21,11,231) 7-(20,11,165) 
7-(22,10,105) 7-(21,10,84) 7-(20,10,66) 
7-(21,9,21) 7-(20,9,18) 
7-(20,8,3) 
 - 
6-(24,12,4284) 6-(23,12,2856) 6-(22,12,1848) 6-(21,12,1155) 6-(20,12,693) 6-(19,12,396) 
6-(23,11,1428)  6-(22,11,1008) (#8701)  6-(21,11,693) (#13129) 6-(20,11,462) 6-(19,11,297) 
6-(22,10,420)  6-(21,10,315) (#13128) 6-(20,10,231) 6-(19,10,165) 
6-(21,9,105) 6-(20,9,84) 6-(19,9,66) 
6-(20,8,21) 6-(19,8,18) 
6-(19,7,3) 
 - 
 5-(24,12,11628) (#937) 5-(23,12,7344) 5-(22,12,4488) 5-(21,12,2640) 5-(20,12,1485) 5-(19,12,792) 5-(18,12,396) 
 5-(23,11,4284) (#936)  5-(22,11,2856) (#140)  5-(21,11,1848) (#591)  5-(20,11,1155) (#13134) 5-(19,11,693) 5-(18,11,396) 
 5-(22,10,1428) (#935)  5-(21,10,1008) (#590)  5-(20,10,693) (#587)  5-(19,10,462) (#588) 5-(18,10,297) 
 5-(21,9,420) (#934)  5-(20,9,315) (#589)  5-(19,9,231) (#586)  5-(18,9,165) (#585) 
 5-(20,8,105) (#933)  5-(19,8,84) (#508)  5-(18,8,66) (#507) 
5-(19,7,21)  5-(18,7,18) (#460) 
5-(18,6,3) 
 - 
4-(24,12,29070) 4-(23,12,17442) 4-(22,12,10098) 4-(21,12,5610) 4-(20,12,2970) 4-(19,12,1485) 4-(18,12,693) 4-(17,12,297) 
4-(23,11,11628) 4-(22,11,7344) 4-(21,11,4488) 4-(20,11,2640) 4-(19,11,1485) 4-(18,11,792) 4-(17,11,396) 
4-(22,10,4284)  4-(21,10,2856) (#139) 4-(20,10,1848) 4-(19,10,1155) 4-(18,10,693) 4-(17,10,396) 
4-(21,9,1428) 4-(20,9,1008) 4-(19,9,693) 4-(18,9,462) 4-(17,9,297) 
4-(20,8,420) 4-(19,8,315) 4-(18,8,231) 4-(17,8,165) 
4-(19,7,105) 4-(18,7,84) 4-(17,7,66) 
4-(18,6,21) 4-(17,6,18) 
 4-(17,5,3) (#51) 
 
 - family 3, lambda = 4 containing 22 designs:
minpath=(0, 0, 0) minimal_t=5
- 
11-(24,12,4) 
 - 
10-(24,12,28) 10-(23,12,24) 
10-(23,11,4) 
 - 
9-(24,12,140) 9-(23,12,112) 9-(22,12,88) 
9-(23,11,28) 9-(22,11,24) 
9-(22,10,4) 
 - 
8-(24,12,560) 8-(23,12,420) 8-(22,12,308) 8-(21,12,220) 
8-(23,11,140) 8-(22,11,112) 8-(21,11,88) 
8-(22,10,28) 8-(21,10,24) 
8-(21,9,4) 
 - 
7-(24,12,1904) 7-(23,12,1344) 7-(22,12,924) 7-(21,12,616) 7-(20,12,396) 
7-(23,11,560) 7-(22,11,420) 7-(21,11,308) 7-(20,11,220) 
7-(22,10,140) 7-(21,10,112) 7-(20,10,88) 
7-(21,9,28) 7-(20,9,24) 
7-(20,8,4) 
 - 
6-(24,12,5712) 6-(23,12,3808) 6-(22,12,2464) 6-(21,12,1540) 6-(20,12,924) 6-(19,12,528) 
6-(23,11,1904) 6-(22,11,1344) 6-(21,11,924) 6-(20,11,616) 6-(19,11,396) 
6-(22,10,560) 6-(21,10,420) 6-(20,10,308) 6-(19,10,220) 
 6-(21,9,140) (#8670)  6-(20,9,112) (#8669) 6-(19,9,88) 
 6-(20,8,28) (#8658) 6-(19,8,24) 
 6-(19,7,4) (#8609) 
 - 
 5-(24,12,15504) (#636) 5-(23,12,9792) 5-(22,12,5984) 5-(21,12,3520) 5-(20,12,1980) 5-(19,12,1056) 5-(18,12,528) 
 5-(23,11,5712) (#635)  5-(22,11,3808) (#632)  5-(21,11,2464) (#633) 5-(20,11,1540) 5-(19,11,924) 5-(18,11,528) 
 5-(22,10,1904) (#634)  5-(21,10,1344) (#630)  5-(20,10,924) (#627)  5-(19,10,616) (#628) 5-(18,10,396) 
 5-(21,9,560) (#631)  5-(20,9,420) (#629)  5-(19,9,308) (#626)  5-(18,9,220) (#625) 
 5-(20,8,140) (#519)  5-(19,8,112) (#518)  5-(18,8,88) (#517) 
 5-(19,7,28) (#462)  5-(18,7,24) (#461) 
 5-(18,6,4) (#457) 
 
 - family 4, lambda = 5 containing 23 designs:
minpath=(0, 0, 0) minimal_t=5
- 
11-(24,12,5) 
 - 
10-(24,12,35) 10-(23,12,30) 
10-(23,11,5) 
 - 
9-(24,12,175) 9-(23,12,140) 9-(22,12,110) 
9-(23,11,35) 9-(22,11,30) 
9-(22,10,5) 
 - 
8-(24,12,700) 8-(23,12,525) 8-(22,12,385) 8-(21,12,275) 
8-(23,11,175) 8-(22,11,140) 8-(21,11,110) 
8-(22,10,35) 8-(21,10,30) 
8-(21,9,5) 
 - 
7-(24,12,2380) 7-(23,12,1680) 7-(22,12,1155) 7-(21,12,770) 7-(20,12,495) 
7-(23,11,700)  7-(22,11,525) (#8673) 7-(21,11,385) 7-(20,11,275) 
7-(22,10,175) 7-(21,10,140) 7-(20,10,110) 
7-(21,9,35) 7-(20,9,30) 
7-(20,8,5) 
 - 
6-(24,12,7140) 6-(23,12,4760) 6-(22,12,3080) 6-(21,12,1925) 6-(20,12,1155) 6-(19,12,660) 
6-(23,11,2380)  6-(22,11,1680) (#8672)  6-(21,11,1155) (#8674) 6-(20,11,770) 6-(19,11,495) 
6-(22,10,700)  6-(21,10,525) (#8671) 6-(20,10,385) 6-(19,10,275) 
6-(21,9,175) 6-(20,9,140) 6-(19,9,110) 
6-(20,8,35) 6-(19,8,30) 
6-(19,7,5) 
 - 
 5-(24,12,19380) (#678) 5-(23,12,12240) 5-(22,12,7480) 5-(21,12,4400) 5-(20,12,2475) 5-(19,12,1320) 5-(18,12,660) 
 5-(23,11,7140) (#677)  5-(22,11,4760) (#674)  5-(21,11,3080) (#675)  5-(20,11,1925) (#8682) 5-(19,11,1155) 5-(18,11,660) 
 5-(22,10,2380) (#676)  5-(21,10,1680) (#672)  5-(20,10,1155) (#669)  5-(19,10,770) (#670) 5-(18,10,495) 
 5-(21,9,700) (#673)  5-(20,9,525) (#671)  5-(19,9,385) (#668)  5-(18,9,275) (#667) 
 5-(20,8,175) (#471)  5-(19,8,140) (#470)  5-(18,8,110) (#469) 
 5-(19,7,35) (#464)  5-(18,7,30) (#463) 
 5-(18,6,5) (#458) 
 
 - family 5, lambda = 6 containing 33 designs:
minpath=(0, 0, 0) minimal_t=4
- 
11-(24,12,6) 
 - 
10-(24,12,42) 10-(23,12,36) 
10-(23,11,6) 
 - 
9-(24,12,210) 9-(23,12,168) 9-(22,12,132) 
9-(23,11,42) 9-(22,11,36) 
9-(22,10,6) 
 - 
8-(24,12,840) 8-(23,12,630) 8-(22,12,462) 8-(21,12,330) 
8-(23,11,210) 8-(22,11,168) 8-(21,11,132) 
8-(22,10,42) 8-(21,10,36) 
8-(21,9,6) 
 - 
 7-(24,12,2856) (#8716) 7-(23,12,2016) 7-(22,12,1386) 7-(21,12,924) 7-(20,12,594) 
7-(23,11,840)  7-(22,11,630) (#13137) 7-(21,11,462) 7-(20,11,330) 
7-(22,10,210) 7-(21,10,168) 7-(20,10,132) 
7-(21,9,42) 7-(20,9,36) 
7-(20,8,6) 
 - 
 6-(24,12,8568) (#8715)  6-(23,12,5712) (#8719) 6-(22,12,3696) 6-(21,12,2310) 6-(20,12,1386) 6-(19,12,792) 
 6-(23,11,2856) (#8714)  6-(22,11,2016) (#8713)  6-(21,11,1386) (#13139) 6-(20,11,924) 6-(19,11,594) 
 6-(22,10,840) (#8696)  6-(21,10,630) (#13138) 6-(20,10,462) 6-(19,10,330) 
6-(21,9,210) 6-(20,9,168) 6-(19,9,132) 
6-(20,8,42) 6-(19,8,36) 
 6-(19,7,6) (#8613) 
 - 
 5-(24,12,23256) (#774)  5-(23,12,14688) (#8717)  5-(22,12,8976) (#8723) 5-(21,12,5280) 5-(20,12,2970) 5-(19,12,1584) 5-(18,12,792) 
 5-(23,11,8568) (#773)  5-(22,11,5712) (#266)  5-(21,11,3696) (#718)  5-(20,11,2310) (#13144) 5-(19,11,1386) 5-(18,11,792) 
 5-(22,10,2856) (#772)  5-(21,10,2016) (#717)  5-(20,10,1386) (#714)  5-(19,10,924) (#715) 5-(18,10,594) 
 5-(21,9,840) (#771)  5-(20,9,630) (#716)  5-(19,9,462) (#713)  5-(18,9,330) (#712) 
 5-(20,8,210) (#770)  5-(19,8,168) (#481)  5-(18,8,132) (#480) 
 5-(19,7,42) (#769)  5-(18,7,36) (#465) 
 5-(18,6,6) (#8614) 
 - 
4-(24,12,58140) 4-(23,12,34884) 4-(22,12,20196) 4-(21,12,11220) 4-(20,12,5940) 4-(19,12,2970) 4-(18,12,1386) 4-(17,12,594) 
4-(23,11,23256) 4-(22,11,14688) 4-(21,11,8976) 4-(20,11,5280) 4-(19,11,2970) 4-(18,11,1584) 4-(17,11,792) 
4-(22,10,8568)  4-(21,10,5712) (#265) 4-(20,10,3696) 4-(19,10,2310) 4-(18,10,1386) 4-(17,10,792) 
4-(21,9,2856) 4-(20,9,2016) 4-(19,9,1386) 4-(18,9,924) 4-(17,9,594) 
4-(20,8,840) 4-(19,8,630) 4-(18,8,462) 4-(17,8,330) 
4-(19,7,210) 4-(18,7,168) 4-(17,7,132) 
4-(18,6,42) 4-(17,6,36) 
 4-(17,5,6) (#52) 
 
 
created: Fri Oct 23 11:21:02 CEST 2009