design clan: 10_37_12
10-(37,12,m*9), 1 <= m <= 19; (11/98) lambda_max=351, lambda_max_half=175
the clan contains 11 families: 
- family 0, lambda = 9 containing 7 designs:
minpath=(0, 2, 1) minimal_t=5
- 
7-(34,10,75) 
 - 
6-(34,10,525)  6-(33,10,450) (#12359) 
6-(33,9,75) 
 - 
 5-(34,10,3045) (#12367)  5-(33,10,2520) (#12360)  5-(32,10,2070) (#12362) 
 5-(33,9,525) (#12366)  5-(32,9,450) (#12361) 
 5-(32,8,75) (#8208) 
 
 - family 1, lambda = 36 containing 14 designs:
minpath=(0, 2, 0) minimal_t=5
- 
8-(35,10,36) 
 - 
7-(35,10,336) 7-(34,10,300) 
7-(34,9,36) 
 - 
 6-(35,10,2436) (#12711)  6-(34,10,2100) (#12706) 6-(33,10,1800) 
 6-(34,9,336) (#12562)  6-(33,9,300) (#12557) 
 6-(33,8,36) (#12415) 
 - 
 5-(35,10,14616) (#12712)  5-(34,10,12180) (#12707)  5-(33,10,10080) (#12708) 5-(32,10,8280) 
 5-(34,9,2436) (#12563)  5-(33,9,2100) (#12558)  5-(32,9,1800) (#12559) 
 5-(33,8,336) (#8249)  5-(32,8,300) (#8248) 
 5-(32,7,36) (#8172) 
 
 - family 2, lambda = 45 containing 3 designs:
minpath=(0, 4, 0) minimal_t=5
 - family 3, lambda = 63 containing 14 designs:
minpath=(0, 2, 0) minimal_t=5
- 
8-(35,10,63) 
 - 
7-(35,10,588)  7-(34,10,525) (#16340) 
7-(34,9,63) 
 - 
6-(35,10,4263)  6-(34,10,3675) (#12744)  6-(33,10,3150) (#12377) 
6-(34,9,588)  6-(33,9,525) (#16341) 
6-(33,8,63) 
 - 
 5-(35,10,25578) (#12387)  5-(34,10,21315) (#12386)  5-(33,10,17640) (#12378)  5-(32,10,14490) (#12380) 
 5-(34,9,4263) (#12385)  5-(33,9,3675) (#12384)  5-(32,9,3150) (#12379) 
 5-(33,8,588) (#8296)  5-(32,8,525) (#8295) 
 5-(32,7,63) (#8176) 
 
 - family 4, lambda = 72 containing 10 designs:
minpath=(0, 2, 1) minimal_t=5
- 
 7-(34,10,600) (#16346) 
 - 
 6-(34,10,4200) (#12752)  6-(33,10,3600) (#16347) 
 6-(33,9,600) (#12612) 
 - 
 5-(34,10,24360) (#12753)  5-(33,10,20160) (#12754)  5-(32,10,16560) (#16351) 
 5-(33,9,4200) (#12613)  5-(32,9,3600) (#12614) 
 5-(32,8,600) (#8312) 
 
 - family 5, lambda = 90 containing 9 designs:
minpath=(0, 2, 0) minimal_t=5
- 
8-(35,10,90) 
 - 
7-(35,10,840) 7-(34,10,750) 
7-(34,9,90) 
 - 
6-(35,10,6090)  6-(34,10,5250) (#12784) 6-(33,10,4500) 
6-(34,9,840) 6-(33,9,750) 
6-(33,8,90) 
 - 
 5-(35,10,36540) (#12792)  5-(34,10,30450) (#12785)  5-(33,10,25200) (#12787) 5-(32,10,20700) 
 5-(34,9,6090) (#12791)  5-(33,9,5250) (#12786) 5-(32,9,4500) 
 5-(33,8,840) (#8348)  5-(32,8,750) (#8347) 
 5-(32,7,90) (#8183) 
 
 - family 6, lambda = 99 containing 14 designs:
minpath=(0, 2, 0) minimal_t=5
- 
8-(35,10,99) 
 - 
7-(35,10,924)  7-(34,10,825) (#16398) 
7-(34,9,99) 
 - 
6-(35,10,6699)  6-(34,10,5775) (#16399)  6-(33,10,4950) (#16400) 
6-(34,9,924)  6-(33,9,825) (#12654) 
6-(33,8,99) 
 - 
 5-(35,10,40194) (#16410)  5-(34,10,33495) (#16404)  5-(33,10,27720) (#16405)  5-(32,10,22770) (#16408) 
 5-(34,9,6699) (#12660)  5-(33,9,5775) (#12655)  5-(32,9,4950) (#12656) 
 5-(33,8,924) (#8365)  5-(32,8,825) (#8364) 
 5-(32,7,99) (#8185) 
 
 - family 7, lambda = 126 containing 3 designs:
minpath=(0, 4, 0) minimal_t=5
 - family 8, lambda = 144 containing 4 designs:
minpath=(0, 3, 1) minimal_t=5
 - family 9, lambda = 153 containing 1 designs:
minpath=(0, 4, 1) minimal_t=5
 - family 10, lambda = 171 containing 19 designs:
minpath=(0, 2, 0) minimal_t=5
- 
8-(35,10,171) 
 - 
 7-(35,10,1596) (#16606)  7-(34,10,1425) (#16601) 
 7-(34,9,171) (#16331) 
 - 
 6-(35,10,11571) (#16611)  6-(34,10,9975) (#16602)  6-(33,10,8550) (#16603) 
 6-(34,9,1596) (#16332)  6-(33,9,1425) (#12511) 
 6-(33,8,171) (#16333) 
 - 
 5-(35,10,69426) (#16615)  5-(34,10,57855) (#16607)  5-(33,10,47880) (#16608)  5-(32,10,39330) (#16612) 
 5-(34,9,11571) (#12517)  5-(33,9,9975) (#12512)  5-(32,9,8550) (#12513) 
 5-(33,8,1596) (#8499)  5-(32,8,1425) (#8498) 
 5-(32,7,171) (#8199) 
 
 
created: Fri Oct 23 11:21:00 CEST 2009