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Overview

• Boolean functions in cyptography: which are the
good ones?

• Construction of good cryptographic functions: use
linear codes.

• Construction of linear codes providing good
cryptographic functions.
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Cryptography

• Boolean function:GF (2)s → GF (2)

• →

• SBOX = substituting s input bits by l output bits =
set of l Boolean functions
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• Definition: a function f : GF (2)s → GF (2) is
m−resilient if we can fix any set of m input bits
(m < s) and the reduced function with only 2s−m

different inputs gives 0 and 1 equally often.

. – p.4/26



Cryptography

• Security of a Boolean function f : GF (2)s → GF (2)

• Definition: a function f : GF (2)s → GF (2) is
m−resilient if we can fix any set of m input bits
(m < s) and the reduced function with only 2s−m

different inputs gives 0 and 1 equally often.
• f : GF (2)s → GF (2) satisfies the extended

propagation criteria EPC(l) of order m if for
each ∆ with 1 ≤ wt(∆) ≤ l the difference function
f(x) + f(x + ∆) is m−resilient.
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Cryptography

• This definition is motivated by possible attacks
against Boolean functions representing S-boxes.
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Cryptography

• This definition is motivated by possible attacks
against Boolean functions representing S-boxes.

• There are several constructions known.
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Linear Codes and Cryptography

• linear [n, k]q-code C = k−dimensional subspace of
GF (q)n
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Linear Codes and Cryptography

• linear [n, k]q-code C = k−dimensional subspace of
GF (q)n

• dual code C⊥= dual space = {v ∈ GF (q)n : cvT = 0

for all c ∈ C} is an [n, n − k]q-code

• Hamming weight w(v) = number of non-zero
coordinates of the codeword v

• Hamming distance d(v, w) = number of different
coordinates = w(v − w)

• Minimum distance = min{d(v, w) : v 6= w ∈ C} =
min{w(v) : v ∈ C\0}
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• generator matrix Γ, rows are a basis of C
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Linear Codes and Cryptography

• generator matrix Γ, rows are a basis of C

• check matrix, generator matrix of C⊥

• dual distance d⊥= minimum distance of C⊥

• primal distance d = minimum distance of C
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Linear Codes and Cryptography

• Theorem:Kurosawa et al.
From an [n, k]2−code C with primal distance d and dual
distance d⊥, we get a Boolean Funktion
f :GF (2)2n → GF (2) satisfying EPC(d⊥− 1) of order d− 1.
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Linear Codes and Cryptography

• Theorem:Kurosawa et al.
From an [n, k]2−code C with primal distance d and dual
distance d⊥, we get a Boolean Funktion
f :GF (2)2n → GF (2) satisfying EPC(d⊥− 1) of order d− 1.

• Let Γ be a generator matrix of C, then

f : (x1, . . . , xn, xn+1, . . . x2n) 7→

(x1, . . . , xn)(ΓT · Γ)(xn+1, . . . , x2n)
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• Describe linear codes using finite projective
geometry
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• Multiplication of a column γi by a nonzero field
element or permuting the columns gives an
equivalent code.
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Construction of Linear Codes

• [n, k]q- code C with generator matrix
Γ = (γ1, . . . , γn) .

• Multiplication of a column γi by a nonzero field
element or permuting the columns gives an
equivalent code.

• Work with the n−set {γ1, . . . , γn} of columns up to
multiplication with a nonzero scalar.

• C ↔set of n points {γ1, . . . , γn}in finite projective
geometry PG(k − 1, q)
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• weight of c is invariant under scalar multiplication
of v with a nonzero field element
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Construction of Linear Codes

• generator matrix Γ = (γ1, . . . , γn) .

• codeword c = v · Γ = vγ1, . . . , vγn given by n inner
products with v ∈ GF (q)k

• weight of c is invariant under scalar multiplication
of v with a nonzero field element

• to get all codewords c = v · Γ up to scalar
multiplicaton loop v over all points from
PG(k − 1, q)
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Minimum Weight

• weight of a codeword c = vΓ = vγ1, . . . , vγn is the
number of points from {γ1, . . . , γn} s.t. cγi 6= 0
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Minimum Weight

• weight of a codeword c = vΓ = vγ1, . . . , vγn is the
number of points from {γ1, . . . , γn} s.t. cγi 6= 0

• weight of a codeword vΓ is the number of points
from {γ1, . . . , γn} which are not orthogonal to v

• weight of a codeword vΓ is n− number of points
from {γ1, . . . , γn} which are orthogonal to v

• weight of a codeword vΓ is n− number of points
from {γ1, . . . , γn} in the hyperplane v⊥

• minimum weight ≥ d iff each hyperplane v⊥

contains ≤ n − d points from {γ1, . . . , γn}.
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Incidence System

• use this point - hyperplane incidence property to
describe the minimum distance by a linear
Diophantine system
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Incidence System

• use this point - hyperplane incidence property to
describe the minimum distance by a linear
Diophantine system

• D :=incidence matrix between points (=columns)
and hyperplanes (=rows) of PG(k − 1, q)

• D is a m × m (0/1)−matrix where m :=number of
points in PG(k − 1, q)

. – p.13/26



Primal Distance

Theorem: There is a [n, k,≥ d]q−code iff there is an
integral solution x = (x1, . . . , xm)T with xi ≥ 0 of

1.
∑

xi = n

2. Dx ≤







n − d
...

n − d






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Small Example

Construction of a [4, 3, 2]2−code. Working in PG(2, 2).

010
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011

110

010 100

100 110 010

101

001

111

001

011

101

111
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Small Example

Construction of a [4, 3, 2]2−code. Working in PG(2, 2).

011

110

010 100

100 110 010

101

001

111

001

011

101

111

→ D =

001 010 011 100 101 110 111

001 0 1 0 1 0 1 0
010 1 0 0 1 1 0 0
011 0 0 1 1 0 0 1
100 1 1 1 0 0 0 0
101 0 1 0 0 1 0 1
110 1 0 0 0 0 1 1
111 0 0 1 0 1 1 0
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Construction of a [4, 3, 2]2−code. Working in PG(2, 2).

011

110

010 100

100 110 010

101

001

111

001

011

101

111

→ D =

001 010 011 100 101 110 111

001 0 1 0 1 0 1 0
010 1 0 0 1 1 0 0
011 0 0 1 1 0 0 1
100 1 1 1 0 0 0 0
101 0 1 0 0 1 0 1
110 1 0 0 0 0 1 1
111 0 0 1 0 1 1 0

Find 4 columns such that in each row the sum is at
most 2
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Small Example

Construction of a [4, 3, 2]2−code. Working in PG(2, 2).

011

110

010 100

100 110 010

101

001

111

001

011

101

111

→ D =

001 010 011 100 101 110 111

001 0 1 0 1 0 1 0
010 1 0 0 1 1 0 0
011 0 0 1 1 0 0 1
100 1 1 1 0 0 0 0
101 0 1 0 0 1 0 1
110 1 0 0 0 0 1 1
111 0 0 1 0 1 1 0

Find 4 columns such that in each row the sum is at
most 2

column 1, 2, 5, 6 gives generator matrix







0 0 1 1

0 1 0 1

1 0 1 0






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Real Example

Database of best minimum distance possible:
www.codetables.de
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Real Example

Database of best minimum distance possible:
www.codetables.de

real example: q = 5 k = 7 n = 26, size of D =
(57 − 1)/4=19531
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Real Example

Database of best minimum distance possible:
www.codetables.de

real example: q = 5 k = 7 n = 26, size of D =
(57 − 1)/4=19531
(

19531

26

)

=
8830545931660203339383644120313655450344535660275399292
selections of columns
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Automorphisms

• Prescribe automorphisms {M ∈ PGL(k − 1, q)} of
a point set corresponding to a solution.
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• A point set Γ = {γ1, . . . , γn} has an automorphism
M iff Mγi ∈ Γ for all γi

• A solution is now built by orbits of the group G
generated by {M}.
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Automorphisms

• Prescribe automorphisms {M ∈ PGL(k − 1, q)} of
a point set corresponding to a solution.

• A point set Γ = {γ1, . . . , γn} has an automorphism
M iff Mγi ∈ Γ for all γi

• A solution is now built by orbits of the group G
generated by {M}.

• The size of D can be reduced by adding up
columns corresponding to points of an orbit under
G.
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Automorphisms

• Automorphisms M are compatible with the
incidence structure:

. – p.18/26



Automorphisms

• Automorphisms M are compatible with the
incidence structure:

• for a point p and a line (hyperplane,...) L we have

p ∈ L ⇐⇒ Mp ∈ ML

. – p.18/26



Automorphisms

• Automorphisms M are compatible with the
incidence structure:

• for a point p and a line (hyperplane,...) L we have
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Automorphisms

• Automorphisms M are compatible with the
incidence structure:

• for a point p and a line (hyperplane,...) L we have

p ∈ L ⇐⇒ Mp ∈ ML

• Rows of D corresponding to hyperplanes in the
same orbit are equal after adding up the columns

• We remove duplicate rows =:DG

• DG is a square matrix, size = number of orbits on
points = number of orbits on hyperplanes

. – p.18/26



Method

Theorem(Braun,K,Wassermann):
Let G < PGL(k − 1, q) with m orbits on the points of
PG(k − 1, q). There is an [n, k]q−code with primal
distance d and with symmetries from G iff there is an
integral solution x = (x1, . . . , xm)T with xi ≥ 0 of

1)
∑

ωixi = n 2) DGx ≤











n − d

...

n − d











where ωi is the size of the i−th orbit of G on the points
of PG(k − 1, q).
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Newest Result

www.codetables.de

number of orbits = 1695
orbits of size 12, 6, 4, 3, 1
4 orbits used to build the generator matrix
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Dual Distance

known:
An [n, k]q−code C has primal distance ≥ d ⇐⇒

each (d − 1)−set of columns of a check matrix of C is
linearly independent
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Dual Distance

known:
An [n, k]q−code C has primal distance ≥ d ⇐⇒

each (d − 1)−set of columns of a check matrix of C is
linearly independent

dual version:
An [n, k]q−code C has dual distance ≥ d⊥ ⇐⇒

each (d⊥ − 1)−set of columns of a generator matrix of
C is linearly independent
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Example d⊥ = 4

d⊥ = 4 : no 3 points on a line of PG(k − 1, q).
D2 : incidence matrix between points (columns) and
lines (rows) of PG(k − 1, q).
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Example d⊥ = 4

d⊥ = 4 : no 3 points on a line of PG(k − 1, q).
D2 : incidence matrix between points (columns) and
lines (rows) of PG(k − 1, q).
Theorem:
There is an [n, k]q−code with d⊥ ≥ 4 iff there is an
integral solution x = (x1, . . . , xm)T with xi ≥ 0 of

1)
∑

xi = n 2) D2x ≤











2
...

2










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Example d⊥ = 4

d⊥ = 4 : no 3 points on a line of PG(k − 1, q).
D2 : incidence matrix between points (columns) and
lines (rows) of PG(k − 1, q).
Theorem:
There is an [n, k]q−code with d⊥ ≥ 4 iff there is an
integral solution x = (x1, . . . , xm)T with xi ≥ 0 of

1)
∑

xi = n 2) D2x ≤











2
...

2











This is a general method to prescribe primal and dual
distance. And you can use automorphisms again.
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Method
typical Theorem:
There is an [n, k]q−code with primal distance d and
dual distance 5 and with symmetries from G iff there is
an integral solution x = (x1, . . . , xm)T with xi ≥ 0 of

1)
∑

ωixi = n 2) DGx ≤











n − d

...

n − d











3) DG
3

x ≤











3
...

3











. – p.23/26



Results in Cryptography

Matsumoto et al. (2006) defined the number N(d, d⊥)
as the minimal length of a linear binary code with
minimum distance d and dual distance d⊥. Using
above construction we got codes giving new upper
bounds.

d\d⊥ 3 4 5 6 7 8

3 6 −

4 7 8

5 11 13 16

6 12 14 17 18

7 14 15 19 − 20 20 − 21 22

8 15 16 20 − 21 21 − 22 23 24
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Results in Projective Geometry

Caps in projective geometry PG(k − 1, q) are codes
having dual distance 4. The optimal cap problem is the
search for a code with dual distance 4 and maximal
length n.

In the case q = 3 and k = 7 we found several new
[112, 7]3−codes with dual distance 4.
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• Betten, Braun, Fripertinger, Kerber, Kohnert,

Wassermann: Error-Correcting Linear Codes -
Classification by Isometry and Applications , ACM
Vol. 18, Springer 2006, 42.75 Euro til end of July

• Matsumoto et al.: Primal-dual distance bounds of
linear codes with application to cryptography,
IEEE Trans. Inform. Theory 52 (2006),
4251–4256

Thank you very much for your attention.
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