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Overview

* Boolean functions in cyptography: which are the
good ones?

* Construction of good cryptographic functions: use
linear codes.

* Construction of linear codes providing good
cryptographic functions.
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Cryptography

* Boolean function:GF(2)* — GF(2)
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Cryptography

* Boolean function:GF(2)* — GF(2)

w
64 bit Block 64 bit Block

o & —

« SBOX = substituting s input bits by [ output bits =
set of [ Boolean functions
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Cryptography

* Security of a Boolean function f : GF(2)* — GF(2)

* Definition: a function f : GF(2)" — GF(2) IS
m—resilient Iif we can fix any set of m input bits
(m < s) and the reduced function with only 25—™
different inputs gives 0 and 1 equally often.
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Cryptography

* Security of a Boolean function f : GF(2)* — GF(2)

* Definition: a function f : GF(2)" — GF(2) IS
m—resilient Iif we can fix any set of m input bits
(m < s) and the reduced function with only 25—™
different inputs gives 0 and 1 equally often.

* f:GF(2)®* — GF(2) satisfies the extended
propagation criteria EPC(l) of order m If for
each A with 1 < wt(A) < [ the difference function
f(x)+ f(z+ A) Is m—resilient.
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Cryptography

* This definition is motivated by possible attacks
against Boolean functions representing S-boxes.
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Cryptography

* This definition is motivated by possible attacks
against Boolean functions representing S-boxes.

» There are several constructions known.
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Linear Codes and Cryptography

* linear |n, k|,-code C = k—dimensional subspace of
GF(q)"
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Linear Codes and Cryptography

linear [n, k],-code C' = k—dimensional subspace of
GF(q)"

* dual code C+=dual space = {v € GF(¢)" : cv! =0
forall c € C} Is an [n,n — k],-code

* Hamming weight w(v) = number of non-zero
coordinates of the codeword v

* Hamming distance d(v,w) = number of different
coordinates = w(v — w)
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Linear Codes and Cryptography

linear [n, k],-code C' = k—dimensional subspace of
GF(q)"

* dual code C+=dual space = {v € GF(¢)" : cv! =0
forall c € C} Is an [n,n — k],-code

* Hamming weight w(v) = number of non-zero
coordinates of the codeword v

* Hamming distance d(v,w) = number of different
coordinates = w(v — w)

* Minimum distance = min{d(v,w) : v # w € C'} =
min{w(v) : v € C\0}
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* generator matrix I", rows are a basis of C
» check matrix, generator matrix of C+

» dual distance d+= minimum distance of ¢+
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Linear Codes and Cryptography

generator matrix I', rows are a basis of C
» check matrix, generator matrix of C+
» dual distance d-= minimum distance of C-

* primal distance d = minimum distance of C
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Linear Codes and Cryptography

* Theorem:Kurosawa et al.
From an |n, k]o—code C' with primal distance d and dual
distance d, we get a Boolean Funktion
f:GF(2)*" — GF(2) satisfying EPC(d+ — 1) of order d — 1.
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Linear Codes and Cryptography

Theorem:Kurosawa et al.

From an |n, k]o—code C' with primal distance d and dual
distance d, we get a Boolean Funktion

f:GF(2)*" — GF(2) satisfying EPC(d* — 1) of order d — 1.

* LetI" be a generator matrix of C, then

fr(x1, ., Tn, Tpgl, .- Top) —
(5131, c. ,:En)(FT . F)(:L’n_|_1, c. ,SIJQn)
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Construction of Linear Codes

* Describe linear codes using finite projective
geometry
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Construction of Linear Codes

* Describe linear codes using finite projective
geometry

* Describe primal distance using finite projective
geometry

* Describe dual distance using finite projective
geometry
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Construction of Linear Codes

* [n, k],- code C with generator matrix
=)
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Construction of Linear Codes

* [n, k],- code C with generator matrix
L= (Y1, %) -
* Multiplication of a column ~; by a nonzero field

element or permuting the columns gives an
equivalent code.
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Construction of Linear Codes

* [n, k],- code C with generator matrix
=)
* Multiplication of a column ~; by a nonzero field

element or permuting the columns gives an
equivalent code.

* Work with the n—set {~,...,v,} of columns up to
multiplication with a nonzero scalar.
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Construction of Linear Codes

n, k],- code C with generator matrix
=)
* Multiplication of a column ~; by a nonzero field

element or permuting the columns gives an
equivalent code.

* Work with the n—set {~,...,v,} of columns up to
multiplication with a nonzero scalar.

* C «<set of n points {v,...,7,Hn finite projective
geometry PG(k —1,q)
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Construction of Linear Codes

° generator matrix I' = (y1,...,vn) .
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* codeword c =v-I' = vv1,...,vy, given by n Inner
products with v € GF(¢)*
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Construction of Linear Codes

* generator matrix I' = (y1,...,v).

* codeword c =v-I' = vv1,...,vy, given by n Inner
products with v € GF(¢)*

* weight of ¢ is invariant under scalar multiplication
of v with a nonzero field element
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Construction of Linear Codes

generator matrix I' = (y1,...,v,) .

* codeword c =v-I' = vv1,...,vy, given by n Inner
products with v € GF(¢)*

* weight of ¢ is invariant under scalar multiplication
of v with a nonzero field element

* to get all codewords ¢ = v - I" up to scalar
multiplicaton loop v over all points from
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Minimum Weight

* weight of a codeword ¢ = vI" = vy, ..., v, IS the
number of points from {~,..., v} S.t. ¢y; #0
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Minimum Weight

weight of a codeword ¢ = vI' = vvq,...,v7, IS the
number of points from {~,..., v} S.t. ¢y; #0

* weight of a codeword +I" Is the number of points
from {~1,...,v,} which are not orthogonal to v

* weight of a codeword +I" Is n— number of points
from {~1,...,7v.} which are orthogonal to v

* weight of a codeword +I" Is n— number of points
from {v1,...,v.} in the hyperplane v+
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Minimum Weight

* weight of a codeword ¢ = vI" = vy, ..., v, IS the
number of points from {~,..., v} S.t. ¢y; #0

» weight of a codeword +I" Is the number of points
from {~1,...,v,} which are not orthogonal to v

* weight of a codeword +I" Is n— number of points
from {~1,...,7v.} which are orthogonal to v

* weight of a codeword +I" Is n— number of points
from {v1,...,v.} in the hyperplane v+

» minimum weight > d iff each hyperplane v+
contains < n — d points from {~1, ..., }.
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Incidence System

* use this point - hyperplane incidence property to
describe the minimum distance by a linear
Diophantine system
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Incidence System

* use this point - hyperplane incidence property to
describe the minimum distance by a linear
Diophantine system

* D :=Incidence matrix between points (=columns)
and hyperplanes (=rows) of PG(k — 1, q)
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Incidence System

* use this point - hyperplane incidence property to
describe the minimum distance by a linear
Diophantine system

* D :=Incidence matrix between points (=columns)
and hyperplanes (=rows) of PG(k — 1, q)

* Disam xm (0/1)—matrix where m :=number of
points in PG(k —1,q)
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Primal Distance

heorem: Thereis a [n, k, > d],—code Iff there Is an
integral solution = = (z1, ..., 2,,)" with z; > 0 of

1. Y xi=n
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Small Example

onstruction of a [4, 3, 2]s—code. Working in PG(2, 2).
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onstruction of a [4, 3, 2]s—code. Working in PG(2, 2).

001

100 110 010

UNIVERSITAT
I w BAYREUTH .= p-15/2




Small Example

onstruction of a [4, 3, 2]s—code. Working in PG(2, 2).

001

| | 001] 010] 011 ] 100 | 101 | 110 111 |

oot o[ 1] o] 1 0] 1]o0
010 1 [ 0] 0 1, 1[o0]o0
100 110 010 — [ =ouf ool 1 1001
10 1 [ 1] 1 0] 0|00
01 o[ 1] 0 0o 1|01
1m0 1 o] 0o oo 1]1
mif o[ o] 1 o] 1] 1]o0
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Small Example

onstruction of a [4, 3, 2]s—code. Working in PG(2, 2).

001

| | 001] 010] 011 ] 100 | 101 | 110 111 |

001 0 1 0 1 0 1 0
010 1 0 0 1 1 0 0
100 110 010 — D — 011] O 0 1 1 0 0 1
100 1 1 1 0 0 0 0
w1 oo oot
Find 4 columns such that in each row the sum Is at

most 2
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Small Example

onstruction of a [4, 3, 2]s—code. Working in PG(2, 2).

001

| | 001] 010] 011 ] 100 | 101 | 110 111 |

001 0 1 0 1 0 1 0
010 1 0 0 1 1 0 0
100 110 010 — D — 011] O 0 1 1 0 0 1
100 1 1 1 0 0 0 0
w1 oo oot
Find 4 columns such that in each row the sum Is at

most 2

column 1,2, 5,6 gives generator matrix
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Real Example

atabase of best minimum distance possible:
www.codetables.de

Bounds on linear codes [n.k,d] over GF(q)

Bounds & construction of a linear code [n,k,d] over GF(q)

length: n= 1=n<256,243,256,130,100,130,130

dimension: k= 1<k<n
lookup |

UNIVERSITAT
l w BAYREUTH = p-16/2




Real Example

atabase of best minimum distance possible:
www.codetables.de

Bounds on linear codes [n.k,d] over GF(q)

Bounds & construction of a linear code [n,k,d] over GF(q)

¢ fieldsize: g=|2 -] ¢=2,34,57.89
length: n= 1<n<256,243,256,130,100,130,130

dimension: k= 1<k<n
lookup |

real example: ¢ =5k =7n =26, Size of D =
(57 —1)/4=19531
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Real Example

atabase of best minimum distance possible:
www.codetables.de

Bounds on linear codes [n.k,d] over GF(q)

Bounds & construction of a linear code [n,k,d] over GF(q)

¢ fieldsize: g=|2 -] ¢=2,34,57.89
length: n= 1<n<256,243,256,130,100,130,130

dimension: k= 1<k<n
lookup |

real example: ¢ =5k =7n =26, Size of D =

(57 —1)/4=19531
(1925631) —
883054593166020333938364412031365545034453566027539929

selections of columns
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Automorphisms

* Prescribe automorphisms {M € PGL(k —1,q)} of
a point set corresponding to a solution.
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* ApointsetI’ = {~,...,v,} has an automorphism
M iff M~; € T for all ~;
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Automorphisms

* Prescribe automorphisms {M € PGL(k —1,q)} of
a point set corresponding to a solution.

* ApointsetI’ = {~,...,v,} has an automorphism
M iff M~; € T for all ~;

* A solution is now built by orbits of the group G
generated by {M}.
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Automorphisms

Prescribe automorphisms {M € PGL(k —1,q)} of
a point set corresponding to a solution.

* ApointsetI’ = {~,...,v,} has an automorphism
M iff M~; € T for all ~;

* A solution is now built by orbits of the group G
generated by {M}.

* The size of D can be reduced by adding up

columns corresponding to points of an orbit under
G.
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Automorphisms

* Automorphisms M are compatible with the
Incidence structure:
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* Automorphisms M are compatible with the
Incidence structure:

 for a point p and a line (hyperplane,...) L we have

pel < Mpe ML
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Automorphisms

* Automorphisms M are compatible with the
Incidence structure:

 for a point p and a line (hyperplane,...) L we have
pel < Mpe ML

* Rows of D corresponding to hyperplanes in the
same orbit are equal after adding up the columns
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Automorphisms

Automorphisms A are compatible with the
Incidence structure:

 for a point p and a line (hyperplane,...) L we have
pel < Mpe ML

* Rows of D corresponding to hyperplanes in the
same orbit are equal after adding up the columns

» We remove duplicate rows =:D¢
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Automorphisms

N . Automorphisms A are compatible with the
Incidence structure:

 for a point p and a line (hyperplane,...) L we have
pel < Mpe ML

* Rows of D corresponding to hyperplanes in the
same orbit are equal after adding up the columns

» We remove duplicate rows =:D¢

» D% is a square matrix, size = number of orbits on
points = number of orbits on hyperplanes
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Method

Theorem(Braun,K,Wassermann):

Let G < PGL(k — 1, q) with m orbits on the points of
PG(k —1,q). There Is an [n, k],—code with primal
distance d and with symmetries from G Iff there is an
integral solution z = (z1, ..., z,,)! with z; > 0 of

(n—d\

1) Y wix; =n 2) DGy <

\n—d
where w; Is the size of the i—th orbit of G on the points
of PG(k —1,q).
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Newest Result

.codetables.de

Bounds on linear codes [26,7] over GF(5)

lower bound: 16
upper bound: 16

Construction

Construction type: Kohnert

b
Construction of a linear

code [26,7,16] over GF(5):

[1]: [26, 7, 16] Linear Code over GF (5)
Code found by Axel Kohnert

Construction from a stored generator matrix

last modified: 2008-05-05

number of orbits = 1695
orbits of size 12,6, 4, 3,1
4 orbits used to build the generator matrix
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Dual Distance

An [n, k],—code C has primal distance > d <

each (d — 1)—set of columns of a check matrix of C' Is
linearly independent
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Dual Distance

own:
An [n, k],—code C has primal distance > d <~

each (d — 1)—set of columns of a check matrix of C' Is
linearly independent

dual version:
An [n, k],—code C has dual distance > d+ «

each (d+ — 1)—set of columns of a generator matrix of
C'1s linearly independent
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Example d+ = 4

= 4:no 3 points on a line of PG(k —1,q).
5 : Incidence matrix between points (columns) and
es (rows) of PG(k —1,q).
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Example d+ = 4

= 4:no 3 points on a line of PG(k —1,q).

5 : Incidence matrix between points (columns) and
Ines (rows) of PG(k —1,q).

Theorem:

There is an [n, k],—code with 4+ > 4 iff there is an

integral solution » = (z1,...,z,)" with z; > 0 of

(2

1) x;,=n 2) Dyx <

2,
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Example d+ = 4

= 4:no 3 points on a line of PG(k —1,q).

D> : Incidence matrix between points (columns) and
lines (rows) of PG(k —1,q).

Theorem:

There is an [n, k],—code with 4+ > 4 iff there is an

integral solution » = (z1,...,z,)" with z; > 0 of

(2

1) x;,=n 2) Dyx <

\ 2
This is a general method to prescribe primal and dual
distance. And you can use automorphisms again.
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Method

pical Theorem:
here is an [n, k|,—code with primal distance d and

al distance 5 and with symmetries from G Iiff there is
an integral solution z = (z1, ..., 2,,)! with z; > 0 of

(n—d ) (3

1)) wixi=n 2) D% < 3) D§z <

=y s
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Results in Cryptography

Matsumoto et al. (2006) defined the number N(d, d*)
as the minimal length of a linear binary code with
minimum distance d and dual distance 4. Using
above construction we got codes giving new upper
bounds.

d\d+ | 3 | 4 5 6 71 8

3 6| —
71 8
11| 13 16
12| 14 17 18
14| 15| 19-20| 20 —21| 22
15| 16| 20—21 | 21 —22 | 23| 24

||| Ot =~
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Results in Projective Geometry

Caps In projective geometry PG(k — 1,q) are codes
having dual distance 4. The optimal cap problem is the
search for a code with dual distance 4 and maximal
length n.

In the case ¢ = 3 and & = 7 we found several new
[112, 7]3—codes with dual distance 4.
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¢ linearcodes.uni-bayreuth.de

» Betten, Braun, Fripertinger, Kerber, Kohnert,
Wassermann: Error-Correcting Linear Codes -
Classification by Isometry and Applications , ACM
Vol. 18, Springer 2006, 42.75 Euro til end of July

* Matsumoto et al.: Primal-dual distance bounds of
linear codes with application to cryptography,
IEEE Trans. Inform. Theory 52 (2006),
4251-4256
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Last Page

¢ linearcodes.uni-bayreuth.de

» Betten, Braun, Fripertinger, Kerber, Kohnert,
Wassermann: Error-Correcting Linear Codes -
Classification by Isometry and Applications , ACM
Vol. 18, Springer 2006, 42.75 Euro til end of July

* Matsumoto et al.: Primal-dual distance bounds of
linear codes with application to cryptography,
IEEE Trans. Inform. Theory 52 (2006),
4251-4256

Thank you very much for your attention.
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