
Construction of
Two-Weight Codes

Axel Kohnert
Tokyo November 2005

Bayreuth University Germany
axel.kohnert@uni-bayreuth.de
linearcodes.uni-bayreuth.de

. – p.1/33



Coding Theory

0101

10100000

1111

2 4

2

2

2

4

. – p.2/33



Coding Theory

Hamming distance dH(x, y)=number of places
with different letters in two codewords x and y.

Minimum distance = minimum of dH(x, y) for all
pairs of codewords.

Error correcting capability is measured by the
minimum distance.

. – p.3/33



Linear Code

A linear [n, k; q] code C is a k−dimensional
subspace of the vectorspace GF (q)n.

. – p.4/33



Linear Code

0101

10100000

1111

2 4

2

2

2

4

. – p.5/33



Linear Code

A linear [n, k; q] code C is a k−dimensional
subspace of the vectorspace GF (q)n.

The generator matrix Γ of a linear [n, k; q]
code C is a k × n matrix where each row is
a basis element of the code C.

C = {vΓ : v ∈ GF (q)k}

. – p.6/33



Linear Code

0101

10100000

1111

2 4

2

2

2

4

Γ =

(

1 0 1 0

0 1 0 1

)

. – p.7/33



Linear Code

0101

10100000

1111

2 4

2

2

2

4

Γ =

(

1 0 1 0

0 1 0 1

)

. – p.7/33



Minimum Distance

The minimum distance of a linear code
is the minimum number of nonzero entries
(=weight) of all nonzero codewords.

0101

10100000

1111

2 4

2

2

2

4

. – p.8/33



Minimum Distance

The minimum distance of a linear code
is the minimum number of nonzero entries
(=weight) of all nonzero codewords.

0101

10100000

1111

2 4

2

2

2

4

. – p.8/33



Minimum Distance

The minimum distance of a linear code
is the minimum number of nonzero entries
(=weight) of all nonzero codewords.

0101

10100000

1111

2 4

2

2

2

4

2

2

4
. – p.9/33



Minimum Distance

The minimum distance of a linear code
is the minimum number of nonzero entries
(=weight) of all nonzero codewords.

0101

10100000

1111

2

2

4
. – p.10/33



Weight Enumerator

Weight enumerator AC(z) :=
∑

Aiz
i where

Ai is the number of codewords in C of weight
i.

. – p.11/33



Weight Enumerator

Weight enumerator AC(z) :=
∑

Aiz
i where

Ai is the number of codewords in C of weight
i.

0101

10100000

1111

2

2

4

AC = z0 + 2z2 + z4

. – p.12/33



Weight Enumerator

Weight enumerator AC(z) :=
∑

Aiz
i where

Ai is the number of codewords in C of weight
i.

0101

10100000

1111

2

2

4

AC = z0 + 2z2 + z4

. – p.12/33



Two-Weight Code

This is a (linear) code with only two different
nonzero weights w1 and w2(w1 < w2).
0 0 0 0

1 1 0 0

1 0 1 0

1 0 0 1

0 1 1 0

0 1 0 1

0 0 1 1

1 1 1 1

Γ =







1 0 0 1

0 1 0 1

0 0 1 1







AC = z0 + 6z2 + z4

. – p.13/33



Two-Weight Code

This is a (linear) code with only two different
nonzero weights w1 and w2(w1 < w2).
0 0 0 0

1 1 0 0

1 0 1 0

1 0 0 1

0 1 1 0

0 1 0 1

0 0 1 1

1 1 1 1

Γ =







1 0 0 1

0 1 0 1

0 0 1 1







AC = z0 + 6z2 + z4

. – p.13/33



Two-Weight Code

This is a (linear) code with only two different
nonzero weights w1 and w2(w1 < w2).
0 0 0 0

1 1 0 0

1 0 1 0

1 0 0 1

0 1 1 0

0 1 0 1

0 0 1 1

1 1 1 1

Γ =







1 0 0 1

0 1 0 1

0 0 1 1






AC = z0 + 6z2 + z4

. – p.13/33



Two-Weight Code

Visualization of a two-weight code C by a graph GC

1100

1010 0101

1001

0110

0011

00001111

. – p.14/33



Graph GC of a Two-Weight Code

Given a code C with the two nonzero weights w1

and w2

vertices = codewords

edge between x and y if dH(x, y) = w1

. – p.15/33



Graph GC of a Two-Weight Code

Given a code C with the two nonzero weights w1

and w2

vertices = codewords

edge between x and y if dH(x, y) = w1

. – p.15/33



Graph GC of a Two-Weight Code

Given a code C with the two nonzero weights w1

and w2

vertices = codewords

edge between x and y if dH(x, y) = w1

. – p.15/33



Properties of GC

GC is a regular graph.

GC is strongly regular [DELSARTE], i.e. the
number of common neighbors of a pair x, y of
vertices depends only on the fact whether x
and y are adjacent or not.

. – p.16/33



Properties of GC

GC is a regular graph.

GC is strongly regular [DELSARTE], i.e. the
number of common neighbors of a pair x, y of
vertices depends only on the fact whether x
and y are adjacent or not.

. – p.16/33



Strongly Regular Graphs

A strongly regular graph is (partially) described
by four parameters (N,K, λ, µ)

N= number of vertices
K= degree
λ = number of common neighbors of

adjacent vertices
µ = number of common neighbors of

non-adjacent vertices

. – p.17/33



Construction

To construct a two-weight [n, k; q] code we
construct a corresponding generator matrix Γ.

The codewords of a two-weight code have
n− w1 or n− w2 zeros.
We have to control the number of zeros in the
codewords.

. – p.18/33



Construction

To construct a two-weight [n, k; q] code we
construct a corresponding generator matrix Γ.

The codewords of a two-weight code have
n− w1 or n− w2 zeros.

We have to control the number of zeros in the
codewords.

. – p.18/33



Construction

To construct a two-weight [n, k; q] code we
construct a corresponding generator matrix Γ.

The codewords of a two-weight code have
n− w1 or n− w2 zeros.
We have to control the number of zeros in the
codewords.

. – p.18/33



Construction

A codeword c is given by a product:

vΓ = c. (v ∈ GF (q)k)

We build a matrix M whose columns are
labeled by the possible columns γ of the
generator matrix. Rows are labeled by
the nonzero v ∈ GF (q)k which give after
multiplication with the generator matrix the
codewords of the two-weight code.

. – p.19/33



Construction

A codeword c is given by a product:

vΓ = c. (v ∈ GF (q)k)

We build a matrix M whose columns are
labeled by the possible columns γ of the
generator matrix. Rows are labeled by
the nonzero v ∈ GF (q)k which give after
multiplication with the generator matrix the
codewords of the two-weight code.

. – p.19/33



Weight Matrix

γ ∈ GF (q)k

↓

M =

Mv,γ ← v ∈ GF (q)k

Mv,γ = {
1 vγ = 0

0 vγ 6= 0

. – p.20/33



Weight Matrix

γ ∈ GF (q)k

↓

M = Mv,γ ← v ∈ GF (q)k

Mv,γ = {
1 vγ = 0

0 vγ 6= 0

. – p.20/33



Weight Matrix

γ ∈ GF (q)k

↓

M = Mv,γ ← v ∈ GF (q)k

Mv,γ = {
1 vγ = 0

0 vγ 6= 0

. – p.20/33



Diophantine System of Equations

Now a two-weight code corresponds to a 0/1
solution x = (x1, . . . , xqk−1) of the system

(1) Mx =







n− w1 or n− w2
...

n− w1 or n− w2







(2)
∑

xi = n

. – p.21/33



Diophantine System of Equations

w1 − w2 0 . . . 0 0 n− w1

0
. . . 0 0

...

M
... 0 w1 − w2 0

... x =

0 0
. . . 0

...

0 0 . . . 0 w1 − w2 n− w1

1 . . . 1 0 . . . 0 . . . 0 n

To solve this system we use an LLL-variant of A.
Wassermann.

. – p.22/33



Diophantine System of Equations

w1 − w2 0 . . . 0 0 n− w1

0
. . . 0 0

...

M
... 0 w1 − w2 0

... x =

0 0
. . . 0

...

0 0 . . . 0 w1 − w2 n− w1

1 . . . 1 0 . . . 0 . . . 0 n

To solve this system we use an LLL-variant of A.
Wassermann.

. – p.22/33



Diophantine System of Equations

We are interested in a 0/1 solution x =
(x1, . . . , xqk−1, . . . , x2(qk−1)) of the system.

The first half x = (x1, . . . , xqk−1) of a solution
corresponds via selection of columns of the
generator matrix to an [n, k; q] two-weight
code with weights w1 and w2.

The second half x = (xqk , . . . , x2(qk−1))

contains the information on the weight enu-
merator.

. – p.23/33



Diophantine System of Equations

We are interested in a 0/1 solution x =
(x1, . . . , xqk−1, . . . , x2(qk−1)) of the system.

The first half x = (x1, . . . , xqk−1) of a solution
corresponds via selection of columns of the
generator matrix to an [n, k; q] two-weight
code with weights w1 and w2.

The second half x = (xqk , . . . , x2(qk−1))

contains the information on the weight enu-
merator.

. – p.23/33



Diophantine System of Equations

We are interested in a 0/1 solution x =
(x1, . . . , xqk−1, . . . , x2(qk−1)) of the system.

The first half x = (x1, . . . , xqk−1) of a solution
corresponds via selection of columns of the
generator matrix to an [n, k; q] two-weight
code with weights w1 and w2.

The second half x = (xqk , . . . , x2(qk−1))

contains the information on the weight enu-
merator.

. – p.23/33



Projective Geometry

As we are computing scalar products, the
0/nonzero property is invariant under scalar
multiplication, so we can label rows and
columns by 1−dimensional subspaces of
GF (q)k.

M is after this reduction the incidence matrix
between the 1−dimensional subspaces and
the (k − 1)− dimensional subspaces of
GF (q)k.

. – p.24/33



Projective Geometry

As we are computing scalar products, the
0/nonzero property is invariant under scalar
multiplication, so we can label rows and
columns by 1−dimensional subspaces of
GF (q)k.

M is after this reduction the incidence matrix
between the 1−dimensional subspaces and
the (k − 1)− dimensional subspaces of
GF (q)k.

. – p.24/33



3 Different Languages

We can study the same object in 3 different
settings:

• Two-Weight Codes
• Strongly Regular Graphs
• Point-Sets in the Projective Geometry

. – p.25/33



Automorphisms

We further reduce the size of the system
by prescribing a group of automorphisms,
this method corresponds to choosing com-
plete orbits of subgroups of PGL(k, q) on
the 1−dimensional subspaces as possible
columns of the generator matrix.

This further reduces the number of columns,
in our system of equations, as the dimension
is now the number of orbits.

. – p.26/33



Automorphisms

We further reduce the size of the system
by prescribing a group of automorphisms,
this method corresponds to choosing com-
plete orbits of subgroups of PGL(k, q) on
the 1−dimensional subspaces as possible
columns of the generator matrix.

This further reduces the number of columns,
in our system of equations, as the dimension
is now the number of orbits.

. – p.26/33



Reduction

The defining property of the incidence matrix

MU,V = 1 ⇐⇒ U ≤ V

is invariant under the automorphisms.

This also reduces the number of rows in the
same way, the height is also the number of
orbits.

. – p.27/33



Reduction

The defining property of the incidence matrix

MU,V = 1 ⇐⇒ U ≤ V

is invariant under the automorphisms.

This also reduces the number of rows in the
same way, the height is also the number of
orbits.

. – p.27/33



Example

We computed a new [738, 8; 3] two-weight code
with nonzero weights 486 and 513.

qk − 1 qk−1
q−1

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1 0 1 1 1 1 2 0

1 2 2 1 2 1 0 0

2 0 0 1 1 2 2 1

2 1 2 2 0 2 2 0

1 2 1 1 2 1 1 0

0 2 2 2 0 2 1 1

1 1 1 2 2 2 0 2

0 2 0 2 0 2 2 0

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

6560 → 3280 → 40 orbits

. – p.28/33



Example

We computed a new [738, 8; 3] two-weight code
with nonzero weights 486 and 513.

qk − 1

qk−1
q−1

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1 0 1 1 1 1 2 0

1 2 2 1 2 1 0 0

2 0 0 1 1 2 2 1

2 1 2 2 0 2 2 0

1 2 1 1 2 1 1 0

0 2 2 2 0 2 1 1

1 1 1 2 2 2 0 2

0 2 0 2 0 2 2 0

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

6560

→ 3280 → 40 orbits

. – p.28/33



Example

We computed a new [738, 8; 3] two-weight code
with nonzero weights 486 and 513.

qk − 1 qk−1
q−1

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1 0 1 1 1 1 2 0

1 2 2 1 2 1 0 0

2 0 0 1 1 2 2 1

2 1 2 2 0 2 2 0

1 2 1 1 2 1 1 0

0 2 2 2 0 2 1 1

1 1 1 2 2 2 0 2

0 2 0 2 0 2 2 0

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

6560 → 3280

→ 40 orbits

. – p.28/33



Example

We computed a new [738, 8; 3] two-weight code
with nonzero weights 486 and 513.

qk − 1 qk−1
q−1

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1 0 1 1 1 1 2 0

1 2 2 1 2 1 0 0

2 0 0 1 1 2 2 1

2 1 2 2 0 2 2 0

1 2 1 1 2 1 1 0

0 2 2 2 0 2 1 1

1 1 1 2 2 2 0 2

0 2 0 2 0 2 2 0

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

6560 → 3280 →

40 orbits

. – p.28/33



Example

We computed a new [738, 8; 3] two-weight code
with nonzero weights 486 and 513.

qk − 1 qk−1
q−1

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1 0 1 1 1 1 2 0

1 2 2 1 2 1 0 0

2 0 0 1 1 2 2 1

2 1 2 2 0 2 2 0

1 2 1 1 2 1 1 0

0 2 2 2 0 2 1 1

1 1 1 2 2 2 0 2

0 2 0 2 0 2 2 0

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

6560 → 3280 → 40 orbits

. – p.28/33



Searching for Groups

We use different subgroups of PGL(k, q).

• random cyclic generator (like above
example)

• Permutation groups
• Blockdiagonal
• Monomial

Limits on orbit sizes, number of orbits, ....

. – p.29/33



Searching for Groups

We use different subgroups of PGL(k, q).

• random cyclic generator (like above
example)

• Permutation groups
• Blockdiagonal
• Monomial

Limits on orbit sizes, number of orbits, ....

. – p.29/33



Results

Using this method we computed several new
two-weight codes.

Among these there are also distance-optimal
codes.

. – p.30/33



Results

Using this method we computed several new
two-weight codes.

Among these there are also distance-optimal
codes.

. – p.30/33



Results

Some new two-weight codes
two-weight code strongly regular graph

n k q w1 w2 N K λ µ

140 6 3 90 99 729 280 103 110

198∗ 10 2 96 112 1024 198 22 42

...

. – p.31/33



Last Page

Thank you very much for your attention.

• A. Kohnert: Construction of Two-Weight
Codes, in preparation

• M. Braun, A. Kohnert, A. Wassermann:
Optimal Linear Codes From Matrix Groups,
IEEE Information Theory, 2005

. – p.32/33



Last Page

Thank you very much for your attention.

• list of new codes including generator matrix
and weight enumerator:
http://linearcodes.uni-bayreuth.de

• A. E. Brouwer has a list (not online) of known
parameters:
http://www.win.tue.nl/~aeb/

. – p.33/33


	~
		extsf {Coding Theory}
		extsf {Coding Theory}
		extsf {Linear Code}
		extsf {Linear Code}
		extsf {Linear Code}
		extsf {Linear Code}
		extsf {Minimum Distance}
		extsf {Minimum Distance}
		extsf {Minimum Distance}
		extsf {Weight Enumerator}
		extsf {Weight Enumerator}
		extsf {Two-Weight Code}
		extsf {Two-Weight Code}
		extsf {Graph $G_{C}$ of a Two-Weight Code}
		extsf {Properties of $G_{C}$}
		extsf {Strongly Regular Graphs}
		extsf {Construction}
		extsf {Construction}
		extsf {Weight Matrix}
		extsf {Diophantine System of Equations}
		extsf {Diophantine System of Equations}
		extsf {Diophantine System of Equations}
		extsf {Projective Geometry}
		extsf {3 Different Languages}
		extsf {Automorphisms}
		extsf {Reduction}
		extsf {Example}
		extsf {Searching for Groups}
		extsf {Results}
		extsf {Results}
		extsf {Last Page}
		extsf {Last Page}

