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ON THE DECOMPOSITION MATRICES
OF THE QUANTIZED SCHUR ALGEBRA

Michela VARAGNOLO and Eric VASSEROT1

Abstract. We prove the decomposition conjecture for the Schur algebra stated in
[LT]. We also give a new approach to the Lusztig conjecture via canonical bases of
the Hall algebra.

0. Introduction and general notations.

0.1. The aim of this paper is to give a proof of the decomposition conjecture for
the quantized Schur algebra [LT, Conjecture 5.2] which generalizes the theorem of
Ariki (see [A]) on the decomposition numbers of the Hecke algebra of type A. More
precisely, let

∧∞
be the level 1 Fock space of type A and let B± be the bases of

∧∞
introduced in [LT]. The decomposition conjecture links the decomposition matrices
of the quantized Schur algebra and the basis B+. Our proof consists in two steps
: first we express B± in terms of some Kazhdan-Lusztig polynomials. Then we
note that a simple module of the quantized Schur algebra can be pulled-back to
a simple module of the Lusztig integral form of the quantized enveloping algebra
of slk (denoted by U(slk)). Thus, the Lusztig conjecture for the dimension of the
simple U(slk)-modules at roots of unity identifies the entries of the decomposition
matrices with some Kazhdan-Lusztig polynomials. It suffices to observe that these
polynomials are precisely the ones which appear in B+.

Let U−n be the Hall algebra of nilpotent representations of the cyclic quiver. Set
ε = exp(2iπ/n′). Put n = n′ if n odd, n = n′/2 else, i.e. n is the order of ε2.
Let Uε(slk) be the specialization at v = ε of U(slk). We give a new approach
to the proof of the Lusztig conjecture on the character of the simple modules of
Uε(slk) in terms of the canonical basis of U−n . Recall that this conjecture (proved
by Kashiwara-Tanisaki and Kazhdan-Lusztig) gives the multiplicity of the Weyl
module of Uε(slk) with highest weight µ, say Wµ, in the simple Uε(slk)-module
with highest weight λ, say Vλ, i.e.

(a) [Vλ : Wµ] =
∑
y

(−1)l(yx)Pyx(1),

where x ∈ Ŝk is minimal such that ν = λ · x−1 satisfies

νi < νi+1 ∀i = 1, 2, ..., k− 1, ν1 − νk ≥ 1− k − n,

1Both authors are partially supported by the EEC grant no. ERB FMRX-CT97-0100.
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and µ = λ · x−1y. We proceed as follows. First we prove that
∧∞

is a cyclic U−n -
module generated by the vacuum vector |∅〉. Then we define a basis B′ of U−n using
intersection cohomology. We construct a basis B of

∧∞
via the action of B′ on

the vacuum vector. We prove that B and B+ are fixed by the same semi-linear
involution (see Theorem 6.3). At last, we prove that the equality B = B+ is a
q-analogue of the Lusztig conjecture (see Subsection 11.4). The reader should be
warned that we endow the Hall algebra with the product opposit to the usual one
(used in [G1] or [L1-4]).

The plan of the paper is the following. In Sections 1-4 we recall the definitions
and the main properties of the basic objects. In Sections 5-6 we construct an action
of U−n on the Fock space

∧∞
. Proposition 6.1 is new. In Section 7 we introduce the

convolution algebra on pairs of affine flags. This algebra is a geometric analogue
of the affine Schur algebra (Proposition 7.4) and is related to U−n in Proposition
7.6. In Sections 8-9 we give a representation of U−n on the finite wedges space,∧l

, via the coproduct of U−n . This action is related to the convolution algebra on
affine flags by Lemma 8.3. In Section 10 we interpret the action of U−n on

∧∞
as a

“limit” of
∧l

when l goes to infinity. Using the results of Sections 7-9 we prove that
the elements of B are fixed by the Leclerc-Thibon involution (Theorem 6.3). In
Section 11 we prove the Decomposition Conjecture. Let us observe that the proof
only uses the results of Sections 8 and 9. In Section 12 we reinterpret the Lusztig
conjecture. We use in an essentiel way the construction of the representation of
U−n on

∧∞
given in Section 6.
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0.2. We now fix a few general notations. Set S = C[v], A = C[v, v−1]. Let F
be a field with q2 elements and let F̄ be the algebraic closure of F. Fix a set I .
For any i ∈ I and r ∈ N×, let F̄r[i] be the I-graded F̄-vector space with a single
r-dimensional component, in degree i. Let εi ∈ N(I) be the dimension of F̄[i]. For
any d ∈ N(I) set |d| =

∑
i∈I di. If i ∈ Z let ı̄ be the class of i in Z/nZ. Given a

positive integer l let Π(l) be the set of all the partitions of l and let Πl be the set
of partitions with at most l parts. Put Π = ∪lΠ(l). The set Π is endowed with
the usual order. If λ ∈ Π let λ′ be the dual partition. For an irreducible algebraic
variety X we denote by Hi(ICX) the i-th cohomology sheaf of the intersection
complex of X . Then, for any stratum Y ⊂ X , let dimHiY (ICX) be the dimension
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of the stalk of Hi(ICX) at a point of Y . For any set X with the action of a group G
let CG(X) be the set of G-invariant functions X → C supported on a finite number
of orbits. For any subset X of an algebraic variety let X̄ denote its Zariski closure.

1. The Hecke algebra.

1.1. Fix n ∈ N× and set

Anl = {i ∈ Zl | 1− n ≤ i1 ≤ i2 ≤ · · · ≤ il ≤ 0}.

Let Sl be the symmetric group and let Ŝl = Sl n Zl be the extended affine Weyl

group. Let Ŝl ⊂ Ŝl be the set of simple affine reflexions and put Sl = Ŝl ∩ Sl.
As usual, the simple affine reflexions are denoted by s0, s1, ..., sl−1 in such a way

that Sl = {s1, s2, ..., sl−1}. Let π ∈ Ŝl be the zero length element such that

si−1 = π−1siπ. The group Ŝl acts on Zl on the right in such a way that

(i)λ = i + nλ if λ ∈ Zl

(i)sj = (i1, i2, ..., ij+1, ij, ..., il) if j 6= 0

(i)s0 = (il − n, i2, ..., il−1, i1 + n).

The alcove Anl is a fundamental domain for this action. If i ∈ Anl let Si ⊂ Ŝl be its

isotropy group, Si = Ŝl∩Si, and let Si be the set of minimal length representatives

of the cosets in Si \ Ŝl. For any x ∈ Ŝl, let xi ∈ Si and xi ∈ Si be such that
x = xix

i. Let ω ∈ Sl be the longest element. Set ρ = (0,−1,−2, ..., 1− l) ∈ Zl and
put

λ · x = (λ+ ρ)x− ρ, x ∈ Ŝl, ∀λ ∈ Zl.

1.2. The Hecke algebra of type GLl, say Hl, is the unital associative A-algebra
generated by T±1

i , i = 1, 2, ...l− 1 modulo the following relations

(a)
Ti T

−1
i = 1 = T−1

i Ti, (Ti + 1)(Ti − v−2) = 0,

Ti Ti+1 Ti = Ti+1 Ti Ti+1, |i− j| > 1⇒ Ti Tj = Tj Ti.

The affine Hecke algebra of type GLl, say Ĥl, is the unital associative A-algebra
generated by T±1

i , X±1
j , i = 1, 2, ..., l− 1, j = 1, 2, ..., l modulo the relations (a) and

Xi, X
−1
i = 1 = X−1

i Xi, XiXj = XjXi,

TiXi Ti = v−2Xi+1, j 6= i, i+ 1⇒ Xj Ti = TiXj .

For all x ∈ Sl n Zl let l(x) be the length of x and let T̃x be the normalized

element T̃x = vl(x)Tx. The algebra Ĥl is isomorphic to the Hecke algebra of the
extended affine Weyl group SlnZl via the Bernstein isomorphism which maps T̃−1

λ

to Xλ = Xλ1
1 Xλ2

2 · · ·X
λl
l if λ ∈ Zl is dominant, i.e. if λ1 ≥ λ2 ≥ · · · ≥ λl. The

semilinear involution ¯ : Ĥl → Ĥl is such that T̄x = T−1
x−1 for all x. For all x put

T̃x = vl(x)Tx. If t ∈ C× let Ĥl|t be the specialization of Ĥl at v = t.
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2. The quantum group.

Put I = {1, 2, ..., n− 1} (resp. I = {0, 1, ..., n− 1}) and let aij be the entries of

the Cartan matrix of type An−1 (resp. A
(1)
n−1). The quantized enveloping envelop-

ing algebra of sln (resp. ŝln) is the unital associative C(v)-algebra generated by
ei, fi,k

±1
i , i ∈ I , modulo the Kac-Moody type relations

ki k
−1
i = 1 = k−1

i ki, ki kj = kj ki,

ki ej = vaijej ki, ki fj = v−aij fj ki, [ei, fj ] = δij
ki − k−1

i

v − v−1
,

1−aij∑
k=0

(−1)ke
(k)
i ej e

(1−aij−k)
i =

1−aij∑
k=0

(−1)kf
(k)
i fj f

(1−aij−k)
i = 0 if i 6= j,

where

[k] =
vk − v−k

v − v−1
, [k]! = [k] [k− 1] · · · [1], e

(k)
i =

eki
[k]!

, f
(k)
i =

fki
[k]!

.

We denote by U(sln) (resp. U(ŝln)) the Lusztig integral form, i.e. the A-subalgebra

generated by the divided powers e
(k)
i , f

(k)
i , and by k±1

i . If n =∞ the algebra U(sl∞)
is well defined. The algebras above are Hopf algebras. The coproduct is

∆ei = ei ⊗ ki + 1⊗ ei, ∆fi = fi ⊗ 1 + k−1
i ⊗ fi, ∆ki = ki ⊗ ki.

Let U−(ŝln) ⊂ U(ŝln) and U−(sl∞) ⊂ U(sl∞) be the subalgebras generated by

the elements f
(k)
i .

3. The Hall algebra.

In this section we recall some of the results of [L1-4] and [G1].

3.1. Fix a finite field F with q2 elements as in the introduction. Let Γ = (I, J)
be an oriented graph : I is the set of vertices and J is the set of arrows. Given
an arrow j ∈ J let j1 and j2 be respectively the input vertex and the output
vertex. Fix d ∈ N(I) and let V be an I-graded F-vector space of dimension d. Let
EV ⊆

⊕
j∈J Hom (Vj1 , Vj2) be the subset of nilpotent representations of Γ on V . In

this paper we will suppose that Γ is one of the following two graphs :

(a) Γ = Γn is the cyclic quiver of type A
(1)
n , i.e. I = Z/nZ and J = {ı̄→ ı̄+1 | ı̄ ∈

Z/nZ},

(b) Γ = Γ∞ is the infinite quiver of type A∞, i.e. I = Z and J = {i→ i+1 | i ∈ Z}.

3.2. Set Ad = CGV (EV ) where GV =
∏
i∈I GL(Vi). Given a, b ∈ N(I) such that

d = a + b, fix I-graded F-vector spaces U,W of dimensions a, b. Let consider the
diagram

EU × EW
p1←−E

p2−→F
p3−→EV ,

where
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(c) E is the set of triples (x, φ, ψ) such that x ∈ EV ,

0→ U
φ
−→V

ψ
−→W → 0

is an exact sequence of I-graded vector spaces and φ(U) is stable by x,

(d) F is the set of pairs (x, U ′) where x ∈ EV and U ′ ⊂ V is a x-stable I-graded
subspace of dimension a.

Given f ∈ CGU (EU) and g ∈ CGW (EW ) set

f ◦ g = q−m(b,a)(p3)!h ∈ CGV (EV ),

where h ∈ C(F ) is the function such that p∗2h = p∗1(fg) and m(b, a) =
∑
j∈J bj1aj2 +∑

i∈I biai. Then (A, ◦), where A =
⊕

d Ad, is an associative algebra.

3.3. Given a, b ∈ N(J) such that d = a+ b, fix a I-graded F-vector space U ⊂ V of
dimension a. Let consider the diagram

EU × EV/U
p
←−E

i
−→EV .

Here E ⊂ EV is the subset of representations preserving U , the map i is the
inclusion and p is the obvious projection. Set

∆a,b : Ad → Aa ⊗Ab, f 7→ q−n(b,a)p!i
∗f,

where n(b, a) =
∑
j∈J bj1aj2 −

∑
i∈I biai.

3.4. Recall that Γ = Γn or Γ∞. The classification of the isomorphism classes of
nilpotent representations of Γ does not depend on the ground field F. It is proved
in [R] that the structural constants of A in the basis formed by the characteristic
functions of the GV -orbits in EV are the value at v = q of universal polynomials
in A. Thus A can be viewed as the specialization at v = q of a A-algebra, called
the generic Hall algebra. Let U−n (resp. U−∞) be the generic Hall algebra if Γ = Γn
(resp. Γ = Γ∞). It is known that U−∞ is isomorphic to U−(sl∞) and that U−(ŝln)
embeds in U−n (see [G1]). Let A0 be the A-linear span of elements kd with d ∈ Z(I)

such that
k0 = 1 and kakb = ka+b, ∀a, b.

For simplicity we will write ki = kεi for all i ∈ I . Set Ã = A⊗A A0 and put

(f ⊗ ka) ◦ (g ⊗ kb) = v−a·d(f ◦ g)⊗ ka+b, ∀g ∈ Ad ∀f ∈ A,

where a · d = −n(a, d)− n(d, a). Consider the map ∆ : Ã→ Ã⊗A Ã such that

∆(f ⊗ kc) =
∑
d=a+b

∆a,b(f)(kb+c ⊗ kc), ∀f ∈ Ad.

Then (Ã, ◦,∆) is a A-bialgebra (it is due to Lusztig for the composition algebra,

the general case is due to Green). Put Ũ−n = Ã if Γ = Γn and Ũ−∞ = Ã if Γ = Γ∞.
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3.5. Given a GV -orbit O ⊂ EV let fO ∈ A be the vdim O times the characteristic
function of O. For any GV -orbit O ⊂ EV set

bO =
∑
i,O′

v−i+dimO−dimO′ dimHiO′(ICO) fO′ .

The elements bO form a basis of A. If d ∈ N(I) let fd ∈ A be the characteristic
function of the zero representation of Γ in a d-dimensional space. The following
result is proved in Section 13.

Proposition. The algebra A is generated by the fd, d ∈ N(I). ut

3.6. Given two integers i ≤ j, let F̄[i, j] be the unique indecomposable representa-

tion of Γ∞ (resp. Γn) with dimension
∑j

k=i εk (resp.
∑j

k=i εk̄). For any partition
λ = (λ1 ≥ λ2 ≥ · · · ) let F̄[λ] be the representation of Γ such that

F̄[λ] =
⊕
k≥1

F̄[1− k, λk − k].

Let Oλ be the orbit of F̄[λ] and put dλ = dimOλ.

4. The Fock space.

In this section we recall the construction of the quantized Fock space, due to [H],
as it is re-interpreted in [MM].

4.1. Let T (λ) be the tableau of shape λ whose box with coordinates (x, y) is filled
with y − x. For instance if λ = (432) we get

−2−1

−1 0 1

0 1 2 3 .

Let
∧∞

be a A-module with basis {|λ〉 | λ ∈ Π}. If i ∈ Z, a removable i-box of T (λ)
is a box with the color i which can be removed in such a way that the new tableau
still comes from a partition. Similarly, an indent i-box corresponds to a box with
the color i which can be added to T (λ). Given ı̄ ∈ Z/nZ, i ∈ ı̄, and a partition λ
put

ni(λ) = ]{indent i-box of T (λ)} − ]{removable i-box of T (λ)},

and nı̄(λ) =
∑
i∈ı̄ ni(λ), n−i (λ) =

∑
j<i&j∈ı̄nj(λ), n+

i (λ) =
∑
j>i&j∈ı̄ nj(λ).

4.2. The algebra U(sl∞) acts on
∧∞

by

ki(|λ〉) = vni(λ) |λ〉, ei(|λ〉) = |ν〉, fi(|λ〉) = |µ〉,

where the partitions µ, ν are such that T (µ) − T (λ) and T (λ) − T (ν) are a box
with color i. It is known that

∧∞
is the simple module with highest weight Λ0

(the fundamental weight) and that the canonical basis of
∧∞

is {|λ〉 | λ ∈ Π}. The
weight multiplicities in

∧∞
are 0 or 1, i.e. Λ0 is a minuscule weight.



7

4.3. The algebra U(ŝln) acts on
∧∞

by

kı̄(|λ〉) = vnı̄(λ) |λ〉, eı̄(|λ〉) =
∑
i∈ı̄

v−n
−
i (λ)ei(|λ〉), fı̄(|λ〉) =

∑
i∈ı̄

vn
+
i (λ)fi(|λ〉).

5. The representation of U−∞ on
∧∞

.

The algebras U−∞ and U−(sl∞) are isomorphic. Thus
∧∞

may be viewed as the
quotient of U−∞ by a left ideal I. Let us describe I. Let Γ̄∞ be the quiver Γ∞ with
the opposit orientation. For any Z-graded F̄-vector space V let ΛV be the variety
of pairs (x, x̄) of commuting representations respectively of Γ∞ and Γ̄∞ on V . The
variety ΛV is reducible. For any GV -orbit O ⊂ EV set

ΛO = {(x, x̄) ∈ ΛV | x ∈ O}.

According to [N] the orbit O is stable if there exists a triple

(x, x̄, i) ∈ ΛO ×Hom(F̄[0], V )

such that i is homogeneous of degree 0 and that for any graded subspace W ⊆ V ,

(a) (x(W ), x̄(W ) ⊆ W and Im i ⊆ W ) ⇒ W = V

(since the Hall algebra is endowed with the product opposit to the usual one, we
use the stability condition opposit to the one in [N]).

Proposition. The ideal I is linearly spanned by the elements bO such that O 6= Oλ
for all λ. Moreover the map U−∞/I →

∧∞
, bOλ + I 7→ |λ〉, is an isomorphism of

U−∞-modules.

Proof. From [N, Theorem 11.7 and Proposition 3.5], I is linearly generated by the
elements bO such that O is unstable. Let us show that for any λ ∈ Π the orbit
Oλ is stable. A dimension counting then shows that the orbits Oλ are precisely all
the stable orbits. Recall that F̄[i, j] is the representation x of Γ∞ on the graded

space
⊕j

k=i F̄ vk, where vk is a non-zero vector of degree k, such that x(vk) = vk+1

if k < j and x(vj) = 0. Fix λ = (λ1, λ2, ..., λr) ∈ Π. Fix non zero vectors vk,s ∈
F̄[1−k, λk−k] with degree s. The representation F̄[λ] is given by the endomorphism
x such that for all k,

x(vk,s) = vk,s+1 if s ∈ [1− k, λk − k), and x(vk,λk−k) = 0.

Let us exhibit a pair (i, x̄) satisfying (a). Fix a graded homomorphism i ∈ Hom(F̄[0], F̄[λ])
such that v1,0 ∈ Im i. Consider the degree −1 linear operator x̄ on F̄[λ] such that

x̄(vk,s) = vk+1,s−1 if k 6= r and s ≤ λk+1 − k, x̄(vk,s) = 0 else.

The operators x and x̄ commute since

xx̄(vr,s) = 0 = x̄x(vr,s) ∀s,

xx̄(vk,s) = 0 = x̄x(vk,s) ∀s ≥ λk+1 − k,

xx̄(vk,s) = vk+1,s = x̄x(vk,s) ∀s < λk+1 − k, ∀k 6= r.
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Now if W ⊆ V is such that x(W ) ⊆ W and Im i ⊆ W then F̄[0, λ1 − 1] ⊆ W :
namely v1,0 ∈W and thus v1,s = xs(v1,0) ∈W for all s. By definition of x̄ we have
for all t < r

x̄t(F̄[0, λ1 − 1]) = F̄[−t, λ1+t − 1].

The dimension dλ of F̄[λ] is such that dλ,i is the multiplicity of the color i in the
tableau T (λ) (see Section 4). Thus the linear isomorphism bOλ 7→ |λ〉 preserves
the weights. Moreover it preserves the canonical base up to a permutation of its
elements. Since Λ0 is minuscule there is at most one vector of a given weight in the
canonical basis. Hence the canonical bases are fully identified. ut

6. The representation of U−n on
∧∞

.

6.1. Fix d ∈ N(Z) and let V be a Z-graded F̄-vector space of dimension d. Let
d̄ ∈ NZ/nZ be the multi-index such that d̄ı̄ =

∑
j∈ı̄ dj for all ı̄ ∈ Z/nZ, and let V̄ be

the d̄-dimensional Z/nZ-graded vector space such that V̄ı̄ =
⊕

j∈ı̄ Vj . The vector

space V̄ is filtered by the subspaces

V̄≥i =
⊕
j≥i

Vj , ∀i ∈ Z.

The associated graded is naturally identified with the Z-graded space V . Set

EV̄ ,V = {x ∈ EV̄ | x(V̄≥i) ⊆ V̄≥i+1, ∀i}.

The map p : EV̄ ,V → EV associate to a representation of Γn in V̄ the corresponding
graded representation of Γ∞ in V . Let j : EV̄ ,V ↪→ EV̄ be the closed embedding.

Let consider the map γd : U−
n,d̄
→U−∞,d such that

γd|v=q−1 : CGV̄ (EV̄ )→ CGV (EV ), f 7→ q−h(d)p!j
∗(f),

where h(d) =
∑
i<j&ı̄=̄ di(dj+1−dj). Put k(b, a) =

∑
i>j&ı̄=̄ bi(2aj−aj−1−aj+1).

The following is proved in Section 13.

Proposition. Fix α, β ∈ NZ/nZ and d ∈ N(Z) such that d̄ = α + β. Then,∑
a+b=d
ā=α,b̄=β

v−k(b,a)γa(f) ◦ γb(g) = γd(f ◦ g) ∀f ∈ U−n,α, ∀g ∈ U−n,β,

ut

Remark. With the notations in Section 3.5 we have γd(fd̄) = vh(d)fd. Observe

that fd is the product of the divided powers f
(di)
i ’s ordered from i = −∞ to ∞.

6.2. For all λ ∈ Π and all x ∈ U−n put

(a) x(|λ〉) =
∑
d

γd(x)kd′(|λ〉) where d′ =
∑

j<i,̄ı=̄

djεi.

Corollary. Formula (a) extends the Hayashi action of U−(ŝln) on
∧∞

to a rep-
resentation of U−n .
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Proof. The compatibility with the product in U−n follows from Proposition 6.1.
Formula (a) implies that

fı̄(|λ〉) =
∑
i∈ı̄

∑
µ

vg(εi,dλ)|µ〉,

where µ is a partition such that T (µ)− T (λ) is a box with color i and

g(εi, dλ) = −
∑
i<j
̄=ı̄

(2dλ,j − dλ,j−1 − dλ,j+1) + αi,

where αi = 1 if i < 0 and ı̄ = 0, and αi = 0 else. We have already observed that dλ,i
is the multiplicity of the color i in T (λ). Thus, nj(λ) = −2dλ,j+dλ,j−1+dλ,j+1+δj0,
and

g(εi, dλ) =
∑
i<j
̄=ı̄

nj(λ) = n+
i (λ).

ut
6.3. For any λ ∈ Π set bλ = bOλ |∅〉 where Oλ is the isomorphism class of represen-
tations of Γn defined in Subsection 3.6. Put B = {bλ | λ ∈ Π}. Leclerc and Thibon
have introduced in [LT] a semi-linear involution on

∧∞
.

Theorem. B is a basis of
∧∞

whose elements are fixed by the Leclerc-Thibon
involution.

The theorem is proved in Subsection 10.1. We first introduce some more material.

6.4. Let r : EV → EV̄ be such that

r(x)|V̄ı̄ =
⊕

i∈ı̄ x|Vi ∀x ∈ EV .

Fix a GV̄ -orbit O ⊂ EV̄ such that O ∩ EV̄ ,V 6= ∅. If x ∈ p(O ∩EV̄ ,V ) then

(b) ](p−1(x) ∩O) ∈

{
q2N if r(x) ∈ O
(q2 − 1)N else.

Indeed, fix y ∈ p−1(x)∩O. It suffices to consider the case where y is indecomposable.
Then, fix a basis of homogeneous vectors {vi | i ∈ [1, r]} of V̄ such that

(c) y(vk) = vk+1 ∀k = 1, 2, ..., r− 1.

If r(x) ∈ Ō \ O then there exist i, j, such that vi ∈ V̄≥j \ V̄>j and vi+1 ∈ V̄≥j . If
t ∈ F× the representation yt ∈ EV̄ ,V obtained by doing vk 7→ tvk for all k ≤ i in

(c) is in p−1(x) ∩ O. Thus ](F×) | ](p−1(x) ∩ O). If r(x) ∈ O then r(x) and y are
isomorphic since r(x), y ∈ O. Thus x is indecomposable and it is easy to see that
p−1(x) ∩O is a vector space. We are done. The identity (b) implies the following
lemma which is used in Section 12.

Lemma. For any GV̄ -orbit O ⊆ EV̄ we have

γd(fO) = fO′mod (v − 1)
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where O′ ⊆ EV is the unique GV -orbit such that r(O′) ⊆ O. ut

7. Flag varieties.

7.1. Fix a positive integer l. Set L = F((z)) and G = GLl(L). A lattice in Ll is a
free F[[z]]-submodule of rank l. Let Y be set of sequences of lattices L = (Li)i∈Z
such that

Li ⊆ Li+1 and Li+n = z−1 Li.

The group G acts on Y in the obvious way. Let M be the set of all Z×Z-matrices
with non-negative entries, say m = (mij)i,j∈Z, such that mi+n,j+n = mij . Set

M l = {m ∈M |
∑
i∈Z
∑n
j=1mij = l}.

The set M l parametrizes the orbits of the diagonal action of G in Y × Y : to m
corresponds the set Ym of the pairs (L′, L) such that

mij = dimF

(
Li+1 ∩ L′j+1

(Li ∩ L′j+1) + (Li+1 ∩ L′j)

)
.

For all L ∈ Y let Ym,L be the fiber over L of the first projection Ym → Y . If
Ym,L 6= ∅ then Ym,L is the set of F-points of an algebraic variety whose dimension,

denoted by y(m), is independent of L. Let 1m ∈ CG(Y × Y ) be q−y(m) times
the characteristic function of Ym. The convolution product, denoted ?, endows
CG(Y × Y ) with the structure of an associative algebra.

7.2. Let X be the set of sequences of lattices L = (Li)i∈Z such that

Li ⊆ Li+1, Li+l = z−1 Li and dimF(Li+1/Li) = 1.

The group G acts on X in the obvious way. The orbits of the diagonal action of G
in Y ×X are labelled by functions i : Z→ Z such that i(k+ l) = i(k) + n for all k
: let Xi be the orbit of the pair (Li, L∅) such that

Li,i =
∏

i(j)≤i

F ej and L∅,i =
∏
j≤i

F ej .

Here (e1, e2, ..., el) is a fixed L-basis of Ll and ei+lk = z−k ei for all k ∈ Z. A
periodic function i as above is identified with the l-uple (i(1), i(2), ..., i(l)) ∈ Zl. If
L ∈ Y let Xi,L be the fiber over L of the projection Xi → Y . If Xi,L 6= ∅, then Xi,L

is the set of F-points of an algebraic variety of dimension l(ωi). Let 1i ∈ CG(Y ×X)
be q−l(ωi) times the characteristic function of Xi. The space CG(Y ×X) is a left
CG(Y × Y )-module and a right CG(X ×X)-module.

7.3. For all x ∈ Ŝl let Xx ⊂ X×X be the G-orbit of the pair (x(L∅), L∅). There is

an algebras isomorphism Ĥl|q−1
∼
→CG(X ×X) which maps Tx to the characteristic

function of Xx (see [IM]). Put P = X−1
1 T̃−1

1 T̃−1
2 · · · T̃−1

l−1.
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Lemma. The right action of Ĥl on CG(Y ×X) is such that if i ∈ Anl , x ∈ Si, and

s ∈ Ŝl, then (1i)P = ⊗1(i)π and

(1(i)x) T̃s =



v−11(i)x if xs /∈ Si (then xs > x),

1(i)xs if xs > x and xs ∈ Si,

1(i)xs + (v−1 − v)1(i)x if xs < x (then xs ∈ Si).

Proof. To simplify the notations fix l = 2. Fix i ∈ Anl and x ∈ Si. Set (i, j) = (i)x.
Then

xs1 /∈ S
i ⇐⇒ (∃t ∈ Si such that xs1 = tx) ⇐⇒ (i, j)s1 = (i, j).

Moreover,

xs1 > x and xs1 ∈ S
i ⇐⇒ i ≤ j and (i, j)s1 6= (i, j).

The formulas in the proposition gives

(1(i,j)) T1 =


v−21(i,j) if i = j,

v−11(j,i) if i < j,

v−11(j,i) + (v−2 − 1)1(i,j) if i > j.

These are precisely the formulas in [VV, Section 5] taking into account the different
normalizations for the Hecke algebra and the factor q−l(ωi). The result follows from
[VV, Proposition 6]. ut

7.4. Fix i ∈ Anl . Let Hi ⊆ Ĥl be the parabolic subalgebra associated to Si. Set

ei =
∑
x∈Si

Tx and πi =
∑
x∈Si

v−2l(x). Thus e2
i = πiei and ēi = v2l(ωi)ei. Set

Tn,l =
⊕

i∈Anl
ei Ĥl.

The affine q-Schur algebra Ŝn,l, introduced in [G2], is the endomorphism ring of

the right Ĥl-module Tn,l. If j ∈ Anl set

Mij = {m ∈M l | Ym ∩ (G(Li)×G(Lj)) 6= ∅}.

A matrix m ∈Mij is identified with the class in Si \ Ŝl/Sj of the elements x such

that (L(i)x, Lj) ∈ Ym. Set Tm =
∑
x∈m Tx. Let Ĥij ⊆ Ĥl be the A-linear span of

the elements Tm with m ∈Mij. The A-linear homomorphism

⊕
i,j∈Anl

Ĥij → Ŝn,l
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which maps Tm, m ∈Mij, to the endomorphism such that ek 7→ δk,j Tm ∈ eiĤl, is
invertible. The product in the affine q-Schur algebra, denoted •, is

Tm • Tn = δk,j π
−1
j TmTn ∀m ∈ Mij ∀n ∈ Mkl.

If t ∈ C× let Ŝn,l|t and Tn,l|t be the specializations of Ŝn,l and Tn,l at v = t.

Proposition. (a) The map Φ : Ŝn,l|q−1 → CG(Y × Y ), Tm 7→ qy(m)1m, is an
isomorphism of algebras.

(b) There is a unique isomorphism of Ŝn,l|q−1 × Ĥl|q−1-modules, still denoted Φ,

from Tn,l|q−1 to CG(Y ×X) such that ei 7→ ql(ωi)1i for all i ∈ Anl .

Proof. The map Φ is a linear isomorphism. For all x, y, z ∈ Ŝl let Bzxy(v) ∈ A be
such that

TxTy =
∑
z B

z
xy(v)Tz.

If (L′′, L) ∈ Xz then,

Bzxy(q
−1) = ]{L′ ∈ X | (L′′, L′) ∈ Xx & (L′, L) ∈ Xy}.

Fix m ∈Mik, n ∈Mij, and o ∈Mjk. Let Am
no ∈ N be such that

1n ? 1o =
∑
m

q−y(n)−y(o)+y(m)Am
no 1m.

Then for any z ∈m,
Am

no = h−1
j

∑
x∈n
y∈o

Bzxy(q
−1),

where hj = πj|v=q−1 is the cardinal of the fiber of the projection X → G(Lj). Claim
(a) follows from the identity

Tn • To = π−1
j

∑
z

∑
x∈n
y∈o

Bzxy(v)Tz =
∑

mAm
noTm mod (v − q−1).

Let Φ be the unique isomorphism of right Ĥl-modules Tn,l|q−1
∼
→CG(Y ×X) such

that Φ(ei) = ql(ωi)1i for all i ∈ Anl . Let us prove that Φ commutes to the action of

Ŝn,l. We must prove that for all i, j ∈ Anl and all m ∈ Mij then

qy(m)1m ? 1j = q−l(ωj)h−1
i Φ(eiTm) = ql(ωi)−l(ωj)h−1

i (1i) Tm.

Put

1m ? 1j =
∑
k∈Zl

q−y(m)−l(ωj)+l(ωk)Ak
mj1k, (1i)Tm =

∑
k∈Zl

q−l(ωi)+l(ωk)Ak
im1k.

Fix z ∈ Ŝl and (L′′, L) ∈ Xz whose projection in Y ×X is in Xk. Then

Ak
mj = ]{L′ ∈ Y | (L′′, L′) ∈ Ym, (L′, L) ∈ Xj} = h−1

j

∑
y∈m
x∈Sj

Bzyx(q−1),
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Ak
im =

∑
y∈m

]{L′ ∈ X | (L′′, L′) ∈ Xi, (L′, L) ∈ Xy} =
∑
y∈m
x∈Si

Bzxy(q
−1).

Claim (b) follows from the equality

π−1
i

∑
y∈m
x∈Si

TxTy = π−1
j

∑
y∈m
x∈Sj

TyTx.

ut

7.5. The set M+ = {m ∈ M | i > j ⇒ mij = 0} parametrizes the isomor-
phism classes of nilpotent representations of the quiver Γn : Om is the class of⊕n

i=1

⊕
j≥i F̄[i, j]mij. Let ¯ be the unique semilinear involution on U−n fixing the

elements bOm
.

Proposition. The involution ¯ on U−n is a ring homomorphism and f̄α = fα for
all α ∈ N(Z/nZ).

Proof. The second claim is obvious since fα is the characteristic function of a single
point. We now prove the first claim. For any algebraic variety X over F̄ let D(X)
be the bounded derived category of complexes of Ql-sheaves on X (see [L2], [L3]).
If G is a connected algebraic group acting on X let DssG (X) be the full subcategory
whose objects are sums of shifted simple G-equivariant objects in D(X). Lusztig
has defined in [L2, Section 3.1] a convolution product

∗ : DssGU (EU)×DssGW (EW )→DssGV (EV )

such that F ∗G = (p3)!H where H satisfies p∗2H ' p∗1(F⊗G). Let D be the Verdier
duality. Since p1 and p2 are smooth with connected fibers and since p3 is proper we
get D(F ∗ G) = (DF) ∗ (DG)[2d1− 2d2] where d1 and d2 are the dimensions of the
fibers of p1 and p2. Let α, β be the dimension of U,W . We know that d2 =

∑
ı̄ α

2
ı̄ +∑

ı̄ β
2
ı̄ and d1 = d2 + m(β, α). Thus D(F ∗ G) = (DF) ∗ (DG)[2m(β, α)]. Finally

observe that the elements bOm
are the Frobenius traces of the simple perverse

sheaves on the EV since the varieties Ōm are pure (see [L1, Corollary 11.6]). ut

7.6. If L′, L ∈ Y are such that L′ ⊆ L then L/L′ may be viewed as a nilpotent
representation of Γn of dimension α where αı̄ = dimF(Li/L

′
i) (see [L2, Section 11],

[GV]). Then, set

a(L′, L) =
n∑
i=1

dimF(Li/L
′
i)(dimF(L

′
i+1/L

′
i)− dimF(Li/L

′
i)).

Let Θ : U−n → Ŝn,l be the A-linear map such that

Φ ◦Θ(f)(L′, L) = q−a(L′,L)f(L/L′) if L′ ⊆ L, 0 else.

If i ∈ Anl and m ∈M+ let mi ∈ ∪jMij be the matrix with the (i, j)-th entry equal
to

δij(]i
−1(j + 1)−

∑
k≤jmkj) + (1− δij)mi+1,j .
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Let φ be the semilinear involution on Ŝn,l such that φ(u) = v−2l(ωj)ū for all u ∈ Ĥij.

Proposition. The map Θ : U−n → Ŝn,l is an algebra homomorphism. Moreover
if u ∈ U−n and m ∈M+ we have

φ ◦Θ(u) = Θ(ū) and Φ ◦Θ(fOm
) =

∑
i |mi∈M

1mi .

Proof. The first claim is immediate from the formula

a(L′′, L)− a(L′, L)− a(L′′, L′) = −m(L/L′, L′/L′′)

and from the definition of the product in U−n and CG(Y × Y ). We know that
f̄α = fα for all α ∈ N(Z/nZ). Similarly, φ ◦ Θ(fα) = Θ(fα) since for any flag L′ the
L’s such that L′ ⊆ L and fα(L/L′) 6= 0 are the rational points of a smooth variety.
Hence, the second claim results from the first claim, Proposition 3.5, and the fact
that φ is a ring homomorphism. Now let us first prove that

(c) (L′, L) ∈ Ymi ⇐⇒

(
L/L′ ∈ Om and dimF(L

′
i/L
′
i−1) = ]i−1(i)

)
.

By definition (L′, L) ∈ Ymi if and only if

δij(]i
−1(j + 1)−

∑
k≤jmkj) + (1− δij)mi+1,j = dimF

(
Li+1∩L

′
j+1

(Li∩L′j+1)+(Li+1∩L′j)

)
.

Thus it suffices to prove that if dimF(L
′
i+1/L

′
i) = ]i−1(i+ 1) and L′ ⊆ L then

(d) dimF

(
Li∩L

′
j+1

(Li−1∩L′j+1)+(Li∩L′j)

)
is the multiplicity of F[i, j] in L/L′ for all i ≤ j,

(e) if xı̄ : Li/L
′
i → Li+1/L

′
i+1 is the map induced by the inclusion Li ⊆ Li+1,

then
]i−1(i+ 1)− dimFKer (xı̄) = dim(L′i+1/(Li ∩ L

′
i+1)).

Claim (e) is immediate since

Ker (xı̄) = (Li ∩ L
′
i+1)/L′i, L′i+1/(Li ∩ L

′
i+1) '

L′i+1/L
′
i

(Li ∩ L′i+1)/L′i
,

and since ]i−1(i + 1) = dim(L′i+1/L
′
i). Part (d) is due to the fact that F[i, j] is a

direct summand of L/L′ if and only if there is a vector w ∈ L′j+1 \ L
′
j such that

w ∈ Li \ Li−1. The second claim follows from (c) and the formula

(m ∈M+ and mi ∈M)⇒ dimOm + a(mi) = y(mi),

which is left to the reader. ut

Remark. For any m ∈M l set

cm =
∑
i,n

v−i+y(m) dimHiYn,L
(ICYm,L

) Tn,
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where L is such that Ym,L 6= ∅. The elements cm form a A-basis of Ŝn,l and
φ(cm) = cm. Proposition 7.6 implies that for any m ∈M+ we have

Θ(bOm
) =

∑
i |mi∈M

cmi .

We will not use this.

8. The tensor representation of Ũ−n .

8.1. Let A(Z) be the A-linear span of vectors xi, i ∈ Z. Let eij ∈M be the matrix
with 1 at the spot (k, l) if (k, l) ∈ (i, j) + Z (n, n) and 0 elsewhere.

Lemma. Ũ−n acts on A(Z) in such a way that for all m ∈M and all α ∈ NZ/nZ,

fOm
(xi) =

∑
j≥i

δm,eij xj+1 and kα(xi) = v−n(α,εı̄)xi.

Proof. It is the action obtained by taking l = 1 in the geometric construction of
Section 7 via the isomorphism Tn,1

∼
→A(Z), 1i 7→ xi (if l = 1 then X and Y are zero

dimensional). ut

8.2. Put
⊗l

= (A(Z))⊗l. For any sequence i = (i1, i2, ..., il) ∈ Zl set ⊗xi =

xi1 ⊗ xi2 ⊗ · · ·⊗ xil . On one hand
⊗l

is a left Ũ−n -module via the coproduct ∆. On

the other hand Ĥl acts on
⊗l

as follows for all k = 1, 2, ..., l− 1 and j = 1, 2, ..., l :

(a) (⊗xi)Tk =


v−2 ⊗ xi if ik = ik+1

v−1 ⊗ x(i)sk if − n < ik < ik+1 ≤ 0

v−1 ⊗ x(i)sk + (v−2 − 1)⊗ xi if − n < ik+1 < ik ≤ 0,

(b) (⊗xi)X
−1
j = ⊗x(i)εj .

Lemma. The representations of Ũ−n and Ĥl on
⊗l

commute.

Proof. Since the coproduct is coassociative (see [G1, Theorem 1(ii)]), we are reduced
to the case l = 2. By definition

(c) ∆(fα) =
∑

α=β+γ

vn(γ,β)fβkγ ⊗ fγ .

Thus fα acts on
⊗2

as

fı̄ ⊗ 1 + kı̄ ⊗ fı̄ if α = εı̄

fı̄ ⊗ f̄ + f̄ ⊗ fı̄ if α = εı̄ + ε̄ and ı̄ 6= ̄

fı̄ ⊗ fı̄ if α = 2εı̄

0 else.
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The commutation results from a direct computation. ut

8.3. Lemma. The map ⊗xi 7→ vl(ωi)ei, for all i ∈ Anl , extends uniquely to an

isomorphism of U−n × Ĥl-bimodules
⊗l ∼→Tn,l.

Proof. The map above extends uniquely to an isomorphism of Ĥl-modules. Let
us prove that this isomorphism commutes to U−n . For any i ∈ Zl Lemma 8.1 and
formula (c) give

fα(⊗xi) =
∑

n v
c(i,i+n) ⊗ xi+n,

where n = (n1, n2, ..., nl) ∈ {0, 1}l describes the set of all sequences such that

α =
∑l
s=1 nsεı̄s and

c(i, i + n) = −
∑

1≤s<t≤l

nt(1− ns)n(εı̄t, εı̄s).

By Proposition 7.4, after the specialisation v = q−1 we have q−l(ωi)fα(ei) = (Φ ◦
Θ)(fα) ? 1i. The R.H.S. is the convolution product of 1i and a function supported
by the set of all pairs (L′, L) such that for all i we have

(d) L′i ⊆ Li ⊆ L
′
i+1, dimF(Li/L

′
i) = αi, and dimF(Li/Li−1) = ]i−1(i).

By definition of the convolution product (Φ◦Θ)(fα)?1i (simply denoted by fα(1i)) is
a linear combination of the 1j’s such that it exists L ∈ Y such that (L, L∅) ∈ Xi and
(Lj, L) satisfies (d). Suppose first that i ∈ Anl . Then Xi ∩ (Y ×{L∅}) = {(Li, L∅)}.
Thus fα(1i) is a linear combination of the 1j’s such that

(e) i ≤ j ≤ i + 1 and αi = ](i−1(i)∩ j−1(i+ 1)).

More precisely we get

fα(1i) =
∑
n

q−a(i+n,i)−l(ωi)+l(ωi+n)1i+n,

where the n’s are as above and a(i + n, i) =
∑
i αi(]i

−1(i + 1) − αi+1). A simple
computation using (e) gives

a(i + n, i) =
l∑

s,t=1

nt(1− ns)δı̄t+1,̄ıs .

Moreover for any sequence j we have l(ωj) = dim(Pj/(B ∩ Pj)) where Pj, B ⊂ G
are the isotropy subgroup of Lj and L∅. Thus we obtain

l(ωi+n)− l(ωi) =
∑

1≤t<s≤l

nt(1− ns)δı̄s ,̄ıt+1(1− δit,0)+

+
∑

1≤t<s≤l

ns(1− nt)δit,1−nδis,0 −
∑

1≤t<s≤l

ns(1− nt)δı̄t ,̄ıs.
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To conclude it suffices to compute the image of ⊗xi+n in CG(Y ×X). Using the
identity

X−1
k = T̃−1

k−1 · · · T̃
−1
1 PT̃l−1 · · · T̃k

and Lemmas 7.3 and 8.2, we get that ⊗xi+n is mapped to

q−d(i,i+n)1i+n, d(i, i + n) = ]{1 ≤ s, t ≤ l | is = 0, it = 1− n, ns = 1, nt = 0}.

Then, the equality results from an easy computation. The general case (i.e. i /∈ Anl )

follows since the isomorphism we consider commutes to Ĥl. ut

8.4. Let ψ be the semilinear involution on Tn,l '
⊗l

such that ψ(eit) = ēit̄ for

all t ∈ Ĥl. Proposition 7.6 and the definition of the involutions φ and ψ imply the
following lemma (see Subsection 7.6).

Lemma. For all u ∈ U−n and all t ∈
⊗l

we have ψ(u t) = ūψ(t). ut

9. The action of U−n on wedges.

9.1. Set Ωl =
∑

i Im (Ti + 1) ⊂
⊗l

. We have⊗l
/Ωl '

⊕
i∈Anl

ei Ĥl e
−,

where e− =
∑
x∈Sl

(−v)l(x)T̃x. For any i ∈ Zl let ∧xi be the image of ⊗xi in⊗l
/Ωl. Set

P++
l = {i ∈ Zl | i1 > i2 > ... > il}.

The ∧xi’s such that i ∈ P++
l form a basis of

⊗l
/Ωl (see [KMS, Proposition 1.3]).

For any λ ∈ Πl set |λ〉 = ∧xi if i = λ + ρ, where ρ is as in Section 1.1. Let∧l ⊂⊗l
/Ωl be the linear span of the vectors |λ〉.

9.2. The representation of U−n on
⊗l

descends to
⊗l

/Ωl (use Lemma 8.2). For
all λ ∈ Πl set bλ = bOλ |∅〉 and put Bl = {bλ | λ ∈ Πl}. Let consider the involution

ψ on
⊗l

/Ωl such that

ψ(ei h e
−) = v2l(ω)ēi h̄ e

− ∀h ∈ Ĥl.

Proposition. Bl is a basis of
∧l

whose elements are fixed by ψ.

Proof. Lemma 8.1, the definition of ∆, and the normal ordering rule [KMS, (43)
and (45)] imply that for any λ ∈ Πl and any orbit O ⊂ Ōλ \Oλ we have

fOλ(|∅〉) ∈ vZ|λ〉+
⊕

µ<λ A|µ〉 and fO(|∅〉) ∈
⊕

µ<λA|µ〉.

Thus, Bl is a basis. Now Lemma 8.4 implies that the action of bOm
on
∧l

commutes
to ψ. Since ψ(|∅〉) = |∅〉 we get ψ(bλ) = bλ for all λ. ut

9.3. Let P+
l ⊂ Z

l be the subset of integral dominant weights. Let Si,l be the set

of minimal length representatives of the cosets in Si \ Ŝl/Sl. Thus Si,l = Si ∩Sl
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where Sl is the set of minimal length representatives of the cosets in Ŝl/Sl. For

any x ∈ Ŝl let x̌ be the smallest element in the double coset SixSl. Set

S(i, l) = {x ∈ Si,l |Six ∩ xSl = ∅}.

Lemma. Fix i ∈ Anl . Then,

(a) eiT̃xe
− 6= 0⇒ x ∈ SiS(i, l)Sl,

(b) (x ∈ Si & (i)x ∈ P++
l )⇒ eiT̃xe

− = v−l(ωi) ∧ x(i)x,

(c) (i)x ∈ P++
l ⇐⇒ x ∈ SiS(i, l)ω.

Proof. Suppose that x ∈ Si,l, si ∈ Si, and s ∈ Sl, are such that six = xs. Then

v−1eiT̃xe
− = eiT̃siT̃xe

− = eiT̃xT̃se
− = −veiT̃xe

−.

Thus eiT̃xe
− = 0. Any x ∈ Ŝl decomposes in x = xix̌xl where xi ∈ Si, x̌ ∈ Si,l,

xl ∈ Sl, and l(x) = l(xi) + l(x̌) + l(xl). In particular

eiT̃xe
− = v−l(xi)(−v)l(xl)eiT̃x̌e

−.

Claim (a) follows. Let us prove claim (b). Recall that if λ is dominant then T̃−1
λ

is mapped to Xλ = Xλ1
1 Xλ2

2 · · ·X
λl
l by the Bernstein isomorphism. Then (8.2.b)

implies that

(⊗xi)T̃λ = ⊗x(i)λ ∀λ ∈ P+
l ∀i ∈ Zl,

Moreover (8.2.a) implies that

(⊗xi)T̃x = ⊗x(i)x ∀x ∈ Sl ∩S
i ∀i ∈ Anl .

Fix x ∈ Ŝl. Then x decomposes uniquely as x = yλ where y ∈ Sl and λ ∈ Zl. If
(i)x = (i)y + nλ ∈ P++

l then λ ∈ P+
l . Since sλ > λ for all s ∈ Sl if λ is dominant,

we get T̃x = T̃yT̃λ. Suppose moreover that x ∈ Si. Then for any s ∈ Si we have
syλ > yλ. Since l(zλ) = l(z) + l(λ) for any z ∈ Sl (λ is dominant), we obtain that
y ∈ Sl ∩Si. Hence, Section 8.2 implies that

eiT̃xe
− = eiT̃yT̃λe

− = v−l(ωi) ∧ x(i)x.

Finally, claim (c) follows from

(x ∈ Si & (i)x ∈ P++
l ) ⇐⇒ (six > x > xs ∀s ∈ Sl ∀si ∈ Si)

⇐⇒ x ∈ S(i, l)ω.

ut

Proposition. If i ∈ Anl and (i)x ∈ P++
l then ψ(∧x(i)x) = (−1)l(ω)vl(ω

i) ∧ x(i)xω.

Proof. First recall that if λ ∈ P+
l and λ∗ = −ω(λ), then T̃λ∗ = T̃−1

ω T̃−λT̃ω (indeed,

since λ, λ∗ are dominant weights we have T̃ωT̃λ∗ = T̃−λω = T̃−λT̃ω. In particular,
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T̃−λ = T̃ωT̃λ∗T̃
−1
ω ). Fix i ∈ Anl and x ∈ Si such that (i)x ∈ P++

l . As above fix

x = yλ with y ∈ Sl ∩Si and λ ∈ P+
l . Using Lemma 9.3.b we get

ψ(∧x(i)x) = ψ((⊗xi)T̃yT̃λe
−) = v−l(ωi)ψ(eiT̃yT̃λe

−) = vl(ωi)+2l(ω)eiT̃
−1
y−1T̃

−1
−λe

− =

= vl(ωi)+2l(ω)eiT̃
−1
y−1 T̃ωT̃

−1
λ∗ T̃

−1
ω e− = (−1)l(ω)v2l(ω)−l(ωi)eiT̃yωT̃

−1
λ∗ e

−.

For all s ∈ Si, sy > y implies that syω < yω. Thus

ψ(∧x(i)x) = (−1)l(ω)vl(ω
i)(⊗x(i)yω)T̃−1

λ∗ e
− = (−1)l(ω)vl(ω

i) ∧ x(i)xω .

ut

9.4. Fix x ∈ Sl. The element

Dxω =
∑
y∈Sl

y≤x

(−v)l(y)−l(x)P̄yω,xωT̃yωe
−

is fixed by the involution on Ĥle
− such that he− 7→ v2l(ω)h̄e− and

Dxω − T̃xωe− ∈
⊕

y∈Sl
v−1S̄ T̃yωe−

(see [D1]). If i ∈ Anl and x ∈ S(i, l) set b−(i)xω = vl(ωi)eiDxω. Lemma 9.3 gives

b−(i)xω =
∑
y∈Sl

y≤x

(−v)l(y)−l(x)v−l(yi)P̄yω,xω ∧ x(i)yω.

Similarly fix i ∈ Anl and x ∈ Si. Then

C ′ωix
= vl(x)+l(ωi)

∑
y∈Si

y≤x

∑
z∈Si

Pzy,ωix Tzy .

If y ∈ Si and y ≤ x then Pzy,ωix = Pωiy,ωix for all z ∈ Si (see [D1, page 491]).
Thus

C ′ωix
= vl(x)+l(ωi)ei

∑
y∈Si

y≤x

Pωiy,ωix Ty.

If x ∈ S(i, l) set b+
(i)xω = (−v)l(ω)C ′ωix

e−. Then Lemma 2.2 gives

b+
(i)xω =

∑
(y,z) v

l(x)−l(yz)(−v)l(z)Pωiyz,ωix ∧ x(i)yω

=
∑

y∈S(i,l)
y≤x

vl(x)−l(y)Qωiy,ωix ∧ x(i)yω,

where the first sum is over all couples (y, z) ∈ S(i, l) × Sl such that yz ≤ x

and Qωiy,ωix =
∑
z(−1)l(z)Pωiyz,ωix is a parabolic Kazhdan-Lusztig polynomial.

Observe that b±(i)xω is completely characterized by the following properties :

ψ(b±(i)xω) = b±(i)xω, b−(i)xω − ∧x(i)xω ∈
⊕

y∈S(i,l)
y<x

v−1S̄ ∧ x(i)yω ,
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and b+
(i)xω −∧x(i)xω ∈

⊕
y∈S(i,l)
y<x

v S ∧ x(i)yω.

In particular {b−i | i ∈ P
++
l } and {b+

i | i ∈ P
++
l } are bases of

⊗l
/Ωl. For all λ ∈ Πl

set b±λ = b±i if i = λ+ ρ. Put B±l = {b±λ | λ ∈ Πl}.

Remark. If i ∈ Anl and x, y ∈ Si are such that if (i)x, (i)y ∈ P++
l then

y ≤ x⇒ (i)x− (i)y is a positive root.

9.5. The space
∧l

is endowed with four bases : B±l = {b±λ | λ ∈ Πl}, Bl = {bλ | λ ∈
Πl}, and {|λ〉 | λ ∈ Πl}. Moreover, B±l are characterized by

ψ(b±λ ) = b±λ , b−λ − |λ〉 ∈
⊕
µ<λ

v−1S̄|µ〉 and b+
λ − |λ〉 ∈

⊕
µ<λ

v S|µ〉

(in particular ψ(
∧l

) =
∧l

). Recall that if x ∈ Ŝl and λ ∈ Zl, then λ·x = (λ+ρ)x−ρ
(see 1.1). Section 9.4 implies the following theorem.

Theorem. (a) If λ ∈ Πl and x is minimal such that i = λ · x−1 + ρ ∈ Anl , then

b−λ =
∑
y

(−v)l(y)−l(x)v−l(yi)P̄yx|λ · x
−1y〉,

where the sum is over all the y such that y ≤ x and λ · x−1y ∈ Πl.
(b) For all λ ∈ Πl the coordinates of b+

λ in the wedges are some parabolic Kazhdan-

Lusztig polynomials (w.r.t. the parabolic subgroup Sl ⊂ Ŝl). ut

Now, suppose that l ≤ n. Let consider i, j ∈ Anl , n ∈M+ and m = nj ∈ Mji∩M+.
If x ∈ Si is such that (i)x ∈ P++

l then Section 7 gives

fOn
(∧x(i)x) = vl(ωi)+y(m)TmT̃xe

− ∈ ejĤle
−.

In particular if i = (ρ)ω ∈ Anl and x = ω we get

fOn
(∧x∅) = vl(ωj)ejT̃mT̃ωe

−,

where m ∈ m is the smallest element. Let suppose that fOn
(∧x∅) 6= 0. Let Sl be

the set of minimal length representatives of the cosets in Ŝl/Sl. Then Lemma 9.3
implies that m = yt with t ∈ Sl and y ∈ Sj ∩Sl such that Sjy ∩ ySl = ∅. Then,

fOn
(∧x∅) = vl(ωj)ejT̃yT̃tT̃ωe

− = vl(ωj)ejT̃yT̃ωT̃ωtωe
− = (−v)l(t) ∧ x(j)yω ∈

⊕
λ

S |λ〉.

As a consequence if l ≤ n then B+
l = Bl.

Conjecture. The bases Bl and B+
l coincide for all l. ut

10. Proof of Theorem 6.3.
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10.1. Let
⊗∞

be the free A-module linearly generated by the semi-infinite mono-
mials

⊗xi = xi1 ⊗ xi2 ⊗ xi3 ⊗ · · ·

where i = (i1, i2, ...) is a sequence of integers such that ik = 1 − k for k >> 1.
The affine Hecke algebra of type gl∞ acts on

⊗∞ via formulas (8.b) and (8.c). Set
Ω∞ =

∑
i Im (Ti + 1) ⊂

⊗∞
. As above ∧xi is the class of ⊗xi in

⊗∞
/Ω∞. The

formulas in Section 8 and [KMS, Lemma 2.2] imply that for all α ∈ NZ/nZ we have

(a) ∀i ∃l ∈ N× such that fα(∧xi) = fα(xi1 ∧ · · · ∧ xil) ∧ xil+1
∧ xil+2

∧ ...

Thus the action of U−n on
∧l

induces an action on
∧∞

.

Lemma. The map |λ〉 7→ ∧xi, where ik = 1 + λk − k, gives an embedding of the
representation of U−n on

∧∞
given in Section 6 into

⊗∞
/Ω∞.

Proof. The proof goes by a direct computation. First observe that ∧xi and |λ〉 have
the same weight for any λ ∈ Π if i is the sequence such that ik = 1 + λk − k. Fix
λ ∈ Π and α ∈ NZ/nZ. Fix i as above. Formula 6.2.a gives

fα(∧xi) = fα(|λ〉) =
∑

a s.t. ā=α

γa(fα)
∏
j<i
ı̄=̄

k
aj
i (|λ〉).

Moreover Remark 6.1 implies that γa(fα) is vh(a) times the product of the f
(ai)
i ’s

ordered from i = −∞ to ∞. Using the formulas in Section 4 we first observe that

f
(2)
i acts by zero on the Fock space for any i. The elements |λ〉 and ⊗xi have the

same weight with respect to ki. Thus we get

fα(∧xi) =
∑
n

ve(i,i+n) ∧ xi+n,

where n = (n1, n2, ...) ∈ {0, 1}N
×

describes the set of all sequences such that α =∑
s≥1 nsεı̄s and

e(i, i + n) =
∑
ik>il

nlδı̄l ,̄ık −
∑

ik>1+il

nlδı̄l+1,̄ık−

−
∑
ik<il

nlnkδı̄l ,̄ık +
∑

1+ik<il

nlnkδı̄l ,̄ık+1.

If ∧xi+n 6= 0 then e(i, i + n) =
∑
ik>il

nl(1 − nk)(δı̄l ,̄ık − δı̄l+1,̄ık). On the other
hand the formula in Section 8.3 gives

fα(∧xi) =
∑
n

vc(i,i+n) ∧ xi+n,

where n describes the same set and

c(i, i + n) = −
∑

1≤k<l

nl(1− nk)n(εı̄l , εı̄k).
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We are through (recall that i is decreasing). ut

Theorem 6.3 follows from Proposition 9.2 and Lemma 10.1.

10.2. The involution ψ on
∧l

induces the semilinear involution ψ on
∧∞

such
that,

∀i, l ≥
∑
k(ik − 1 + k)⇒ ψ(∧xi) = ψ(xi1 ∧ · · · ∧ xil) ∧ xil+1

∧ xil+2
∧ ...

Proposition 9.3 implies that ψ coincides with the involution on
∧∞

used in [LT].
In [LT] Leclerc and Thibon have defined two bases B± = {b±λ | λ ∈ Π} in

∧∞
such

that for all λ

ψ(b±λ ) = b±λ , b−λ − |λ〉 ∈
⊕
µ<λ

v−1S̄|µ〉 and b+
λ − |λ〉 ∈

⊕
µ<λ

v S|µ〉.

Thus, Conjecture 9.5 is equivalent to

Conjecture. The bases B and B+ coincide. ut

Set bλ =
∑
µ dµλ|µ〉 and b±λ =

∑
µ e
±
µλ|µ〉. Conjecture 10.2 is precisely dλµ = e+

λµ.

11. Proof of the Decomposition Conjecture.

Let ε be a n-th root of unity. The quantized Schur algebra Sn,l is the subalgebra

of Ŝn,l spanned by the elements Tm with m ∈ Si \Sl/Sj (see Subsection 7.4). Fix
l ≤ k. Let consider the subalgebra

Sl = Sk,l ∩
⊕

λ,µ∈Π(l)

Ĥiλiµ

where iλ = (1 − k)λ1(2 − k)λ2 ...0λk for any λ = (λ1 ≥ λ2 ≥ . . . ) ∈ Π(l). We
want to compute the decomposition matrices of the simple Sl-modules under the
specialization v 7→ ε. The algebra Sk,l is Morita equivalent to Sl. For any t ∈
C× let Sl|t be the specialization of Sl at v = t. The simple modules of Sl|t are
parametrized by Π(l). For any k let U(glk) be the Lusztig integral form of the
quantized enveloping algebra of glk and let Uε(glk) be the specialization at v = ε.
The set Πk is identified with the set of dominant weights of glk with non-negative
components. If λ ∈ Πk, let Vλ and Wλ be respectively the simple and the Weyl
Uε(glk)-module with highest weight λ. There exists a surjective map π : Uε(glk)→
Sk,l|ε (see [D2]). If λ ∈ Π(l) let Lλ, Mλ, be the simple and the Specht Sk,l|ε-modules
such that

π∗[Lλ] = [Vλ′ ] and π∗[Mλ] = [Wλ′ ]

in the Grothendieck ring.

Theorem. The specialization at v = 1 of the matrix (e+
λµ)λµ, λ, µ ∈ Π(l), is the

decomposition matrix of the Specht modules of Sl.

Proof. The Lusztig conjecture (proved by Kashiwara-Tanisaki and Kazhdan-Lusztig)
gives the multiplicity of Wµ in Vλ. More precisely we have

[Vλ : Wµ] =
∑
y

(−1)l(yx)Pyx(1),
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where x ∈ Ŝl is minimal such that ν = λ · x−1 satisfies

νi < νi+1 ∀i = 1, 2, ..., k− 1, ν1 − νk ≥ 1− k − n,

and µ = λ ·x−1y. According to Theorem 9.5.a, the Lusztig Conjecture is equivalent
to

(a) [Lλ′ ] =
∑
µ

e−λµ(1) [Mµ′], ∀λ ∈ Πk.

Recall that (e+
λµ)λµ = (ē−λ′µ′)

−1
λµ (see [LT, Section 4]). Thus

(a) ⇐⇒ [Mλ] =
∑
µ

e+
λµ(1) [Lµ].

ut

12. The Lusztig conjecture.

12.1. Let F be the variety of partial flags in Cl of the type

{0} ⊆ F1 ⊆ F2 ⊆ · · · ⊆ Fk = Cl.

The linear group GLl acts diagonaly on F × F . Let Z ⊂ T ∗F × T ∗F be the
Steinberg variety (Z is a reducible variety whose irreducible components are the
closure of the conormal bundles to the GLl-orbits in F × F ). The group G =
GLl × C× acts naturally on Z : the linear group acts diagonaly and z ∈ C×
acts by multiplication by z−2 along the fibers. The complexified Grothendieck
group of equivariant coherent sheaves on Z, denoted by Kk,l, is endowed with an
associative convolution product (see [GV], [V2]) denoted by ?. For any z ∈ C×, a
parametrization of the simple modules of the specialized algebra Kk,l|v=z is given
in [GV] (see in [V2] the remark after Theorem 4 for the case of roots of unity):
the simple modules are labelled by orbits of pairs (s, x) ∈ GLl × gll where s is
semi-simple, xk = 0, and sxs−1 = z−2x. As usual the GLl-orbit of x is labelled by
the partition λ ∈ Π(l) such that λi is the length of the i-th Jordan block of x. Then
λ′ ∈ Π(l) ∩ Πk. The orbits of the pairs (s, x) such that the spectrum of s is in z2Z

are labelled by isomorphism class of nilpotent representations of Γ∞ if z is generic
and of Γn if z = ε (recall that ε2 is a primitive n-th root of unity). Let Ωk,l and Ω∞k,l
be the corresponding sets of isomorphism classes of representations of Γn and Γ∞.
If O ∈ Ω∞k,l (resp. O ∈ Ωk,l) let L∞O (resp. LO) be the simple Kk,l-module labelled

by O. Similarly let M∞O and MO be the standard modules labelled by O (see [V2]).
Let [M ] be the class of the module M in the complexified Grothendieck ring. Let

R̂n and R̂∞ be the linear span of the elements [LO] and [L∞O ] where O ∈ Ωk,k or

O ∈ Ω∞k,k and k ≥ 1. The restricted dual R̂∗n (resp. R̂∗∞) is spanned by the linear

forms lO (resp. l∞O ) such that

lO([LO′ ]) = δO,O′ and l∞O ([L∞O′ ]) = δO,O′ .

12.2. The quantized enveloping algebra of ĝlk is generated by elements ei,s, fi,s,
hj,t and k±1

j (0 < i < k, 0 < j ≤ k, s ∈ Z, t ∈ Z×) which satisfy the relations



24

of the Drinfeld new presentation. Let U(ĝlk) be the A-subalgebra generated by

the elements e
(m)
i,s , f

(m)
i,s , [t]−1hj,t and k±1

j . For any z ∈ C× let Uz(ĝlk) be its

specialization at v = z. In [GV], [V2], is defined a surjective algebra homomorphism

Ψk,l : U(ĝlk) ⊗A C(v) → Kk,l ⊗A C(v). It is proved in [S] that Ψk,l restricts to a

surjective homomorphism U(ĝlk)→ Kk,l. Observe that the restriction of a simple

Uz(ĝlk)-module to Uz(ŝlk) is simple. Thus Ψ∗k,lLO for O ∈ Ωk,l (resp. Ψ∗k,lL
∞
O for

O ∈ Ω∞k,l), may be viewed as a simple Uz(ŝlk)-module when z = ε (resp. z generic).

Recall that there is an algebra homomorphism ev : U(ŝlk)→U(glk) such that

ev(e0) = v−1{fk−1, {fk−2, ...{f2, f1}...}}kkkk−1

ev(f0) = (−1)kvk−1{ek−1, {ek−2, ...{e2, e1}...}}k
−1
k k−1

k−1

ev(fi) = fi, ev(ei) = ei, i = 1, 2, ..., k− 1,

where {x, y} = xy − v−1yx. If λ ∈ Πk let Vλ (resp. V∞λ ) be the simple Uz(glk)-
modules with highest weight λ where z = ε (resp. z generic). The Drinfeld polyno-
mials of LO and L∞O are computed in [V2]. If λ ∈ Π(k), then Ψ∗k,kLOλ and Ψ∗k,kL

∞
Oλ

are the pull-backs of the modules Vλ′ and V∞λ′ by the evaluation map ev (see [CP,
Proposition 12.2.13]). Let Rn and R∞ be the linear span of the classes [Vλ] and
[V∞λ ] for all λ and all k. The restricted dual spaces R∗n and R∗∞ are spanned by
the linear forms lλ and l∞λ such that

lλ([Vµ′ ]) = δλµ and l∞λ ([V∞µ′ ]) = δλµ.

The element [V∞λ ] may be viewed as the class in Rn of the Weyl module Wλ with
highest weight λ. Let sλ ∈ R∗n be such that

sλ([Wµ′ ]) = δλµ.

12.3. In this subsection U−n , U−∞ and
∧∞

stand for their specializations at v = 1.

Theorem. The linear isomorphism R∗n
∼
→
∧∞

such that sλ 7→ |λ〉 maps lλ to bλ.

Proof. First observe that the classes of the standard modules [MO] and [M∞O ] form a

basis of the spaces R̂n and R̂∞. Let mO and m∞O be the elements of the dual basis.
To avoid confusions let f∞O , b∞O , denote the generatrors of U−∞. The multiplicity
formula [GV, Theorem 6.6] implies that there are two linear isomorphisms

ιn : U−n → R̂∗n and ι∞ : U−∞ → R̂∗∞

such that

(a) ιn(fO) = mO, ιn(bO) = lO, ι∞(f∞O ) = m∞O , ι∞(f∞O ) = l∞O .

The spaces R∗n and R∗∞ are identified with
∧∞

via the maps

sλ 7→ |λ〉 and l∞λ 7→ |λ〉.
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We obtain the following commutative square∧∞
= R∗n

∼
→ R∗∞ =

∧∞
↑ ↑

U−n = R̂∗n → R̂∗∞ = U−∞,

where the horizontal arrows are the dual of the specialization maps and the vertical
arrows are the dual of the evaluation maps. By definition the upper arrow maps
sλ to l∞λ and both elements are identified with the vacuum vector |λ〉. The right
vertical arrow is such that

b∞O = l∞O 7→ l∞λ = |λ〉 if O = Oλ, b∞O 7→ 0 else.

By Proposition 5 it is the quotient map

U−∞ →
∧∞

, u 7→ u(|∅〉).

Suppose first that the lower horizontal arrow is the map γ introduced in Section 6.
Then the left vertical arrow is the quotient map

U−n →
∧∞

, u 7→ u(|∅〉).

Hence (a) implies that the left vertical arrow maps lOλ to bλ. Since this arrow
is the transpose of the evaluation map we get lλ = bλ and we are through. By

Subsection 6.4, to prove that the map R̂∗n → R̂∗∞ is γ we are reduced to prove that
if r(O′) ⊆ O then [M∞O′ ] specializes to [MO]. This is obvious by the localization
theorem in equivariant K-theory. ut

12.4. Theorem 12.3 implies that [V∞λ ] =
∑

µ dλ′µ′(1) [Vµ]. According to Section 11
the Lusztig Conjecture can be written as

[Wλ] =
∑
µ

e+
λ′µ′(1) [Vµ] ∀λ,

which is precisely Conjecture 10.2.

13. Proof of Proposition 6.1.

13.1. Fix Γ = Γn or Γ∞. Let Sd be the set of finite sequences d = (d1, d2, ..., dl) of
elements in N(I) such that

∑
k d

k = d. Fix a I-graded vector space V of dimension
d. For each d ∈ Sd let Fd be the set of flags of V of type d, i.e. Fd is the set of
filtrations F = ({0} = F 0 ⊆ F 1 ⊆ · · · ⊆ F l = V ) such that Fk is I-graded and
has dimension d1 + d2 + · · · + dk. Given x ∈ EV we say that a flag F ∈ Fd is
x-stable if x(Fk) ⊆ Fk−1 for all k. Let F̃d be the variety of all pairs (x, F ) such

that x ∈ EV and F ∈ Fd is x-stable. The group GV acts on F̃d in the obvious way.
Let πd : F̃d → EV be the first projection. The map πd commutes to GV . Thus
the function fd = πd !(1) belongs to CGV (EV ).

Lemma. (a) The space CGV (EV ) is linearly spanned by the elements fd with
d ∈ Sd.
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(b) For any a, b ∈ N(I) and any a ∈ Sa, b ∈ Sb, we have fa ◦ fb = q−m(b,a)fab

where ab ∈ Sa+b is the sequence a followed by the sequence b.

Proof. Claim (b) is proved as in [L2, Lemma 3.2.b]. Let us prove claim (a). If a
flag F is x-stable then Fk ⊆ Ker (xk). Thus if d ∈ Sd is such that

d1 + d2 + · · ·+ dk = dim Ker (xk) ∀k = 1, 2, 3, ...,

then π−1
d (x) is reduced to the single flag

{0} ⊆ Ker (x) ⊆ Ker (x2) ⊆ · · · ⊆ V.

In particular fd(x) = 1. Moreover, in this case fd is supported on the GV -orbits of
the y’s such that

dim Ker (xk) ≤ dim Ker (yk) ∀k = 1, 2, 3, ...,

i.e. y ∈ GV · x. We are through. ut

Remark. It is easy to see that for any d ∈ NZ/nZ and d = (d) we have fd=fd.
Thus Proposition 3.5 is a consequence of (a) and (b).

13.2. We fix a Z-graded vector space V of dimension d. Let V̄ be the associated
Z/nZ-graded vector space, of dimension d̄. The space V̄ is endowed with the Z-
filtration whose associated graded is identified with V . Fix d̄ ∈ Sd̄. We have the
following commutative diagram

F̃d̄

πd̄−→ EV̄
↑ ↑ j

F̃d̄,d

πd̄,d
−→ EV̄ ,V

p
−→ EV ,

where F̃d̄,d = π−1
d̄

(EV̄ ,V ) and the vertical arrows are the embeddings. We have
clearly

(c) p!j
∗(fd̄) = (pπd̄,d)!(1).

Let Sd̄,d ⊂ Sd be the set of sequences d such that
∑
i∈ı̄ d

k
i = d̄kı̄ for any k and ı̄. If

d ∈ Sd̄,d let F̃d̄,d ⊂ F̃d̄,d be the set of pairs (x, F ) such that the associated graded

of Fk with respect to the filtration induced by the Z-filtration on V̄ has dimension
d1 + d2 + · · ·+ dk. The sets F̃d̄,d form a partition of F̃d̄,d. We have a commutative
square

F̃d̄,d

pπd̄,d
−→ EV

↑ ↑ πd

F̃d̄,d
τ
−→ F̃d,

where the left vertical arrow is the inclusion and τ maps the pair (x, F ) to the
associated graded. Thus

(d) (pπd̄,d)!(1) =
∑

d∈Sd̄,d

(πdτ)!(1).
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Lemma. The map τ is a vector bundle of rank

r(d) =
∑
k≥l

∑
i>j
ı̄=̄

dkjd
l
i+1 +

∑
k<l

∑
i>j
ı̄=̄

dkj d
l
i.

Proof. The proof goes as the proof of [L2, Lemma 4.4]. More precisely fix (x, F ) ∈
F̃d and compute the fiber τ−1(x, F ). Giving a Z/nZ-graded subspace F̄k ∈ V̄ of
dimension d̄1 + d̄2 + · · ·+ d̄k whose associated Z-graded is Fk is the same as giving
a map

zk = ⊕zkij ∈
⊕
i>j
ı̄=̄

Hom (Fkj , Vi/F
k
i ).

Then F̄k ⊂ F̄k+1 if and only if zk+1 = zk : Fk → V/Fk+1. On the other hand
giving x̄ ∈ EV̄ ,V such that p(x̄) = x is the same as giving a map

y = ⊕yi+1,j ∈
⊕
i>j
ı̄=̄

Hom (Vj , Vi+1).

Then F̄ is x̄-stable if and only if

zki+1,j+1 ◦ xj − xi ◦ z
k
ij − yi+1,j = 0 : Fkj → Vi+1/F

k
i+1.

The Lemma results from a direct computation. ut

The Lemma and (c), (d), give

γd(fd̄) =
∑

d∈Sd̄,d
q2r(d)−h(d)fd.

Fix α, β ∈ NZ/nZ, ā ∈ Sα, and b̄ ∈ Sβ . Using Lemma 13.1.b we get

γd(fā ◦ fb̄) =
∑

a,b q
m(b,a)−m(β,α)+2r(ab)−h(d)fa ◦ fb,

where the sum is over all (a,b) ∈ Sā,a × Sb̄,b and all (a, b) such that ā = α, b̄ = β,
and d = a + b. We are thus reduced to prove the following identity

(e) m(b, a)−m(β, α) + 2r(ab)− 2r(a)− 2r(b) + h(a) + h(b)− h(d) = k(b, a).

Set
l+(b, a) =

∑
i>j
ı̄=̄

(biaj + bjai+1) and l−(b, a) =
∑
i<j
ı̄=̄

(biaj + bjai+1).

Then (e) follows from the following equalities which are easy to prove :

m(b, a)−m(β, α) = −l+(b, a)− l−(b, a),

h(a) + h(b)− h(d) = k(b, a)− l+(b, a) + l−(b, a),

r(ab)− r(a)− r(b) = l+(b, a).
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