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Abstract

There are many papers studying properties of point sets in the Euclidean space Em or on
integer grids Zm, with pairwise integral or rational distances. In this article we consider the
distances or coordinates of the point sets which instead of being integers are elements of
Z/Zn, and study the properties of the resulting combinatorial structures.
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1 Introduction

There are many papers studying properties of point sets in the Euclidean space
Em, with pairwise integral or rational distances (for short integral point sets or
rational point sets, respectively), see [17] for an overview and applications. A recent
collection of some classical open problems is given in [6, Section 5.11]. Some
authors also require that the points are located on an integer grid Zm [11,31]. In this
paper we modify the underlying space and study instead of Z the integers modulo
n, which we denote by Zn. This was a suggestion of S. Dimiev. Our motivation was
to gain some insight for the original problem in Zm and Em. In the next subsection
we shortly repeat the basic facts and questions about integral point sets in Zm and
Em.
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1.1 Integral point sets in Zm and Em

So let us now consider integral point sets in Em. If we denote the largest distance of
an integral point set, consisting of n points, as its diameter, the natural question for
the minimum possible diameter d(n, m) arises, see Figure 1 for an example. Obvi-
ously we have d(n, 1) = n − 1. To avoid the corresponding trivial 1-dimensional
configuration in higher dimensions, it is common to request that an m-dimensional
integral point set is not contained in a hyperplane of Em. We call a set of m + 1
points in Zm or Em degenerated, if the points are indeed contained in a hyperplane.
There are quite a lot of constructions which show that d(n, m) exists for n+1 ≥ m,
see i.e. [18]. Some exact values are determined in [21,24,27,28,33]. The best known
upper bound d(n, m) ∈ O

(
ec log(n−m) log log(n−!m)

)
is given in [18]. For m = 2

Solymosi [36] gives the best known lower bound d(n, 2) ≥ cn. For m = 2 and
n ≥ 9 the shape of the examples with minimum diameter is conjectured to consist
of n− 1 collinear points and one point apart [28], see Figure 1 for an example with
n = 9. We would like to remark that this conjecture is confirmed for n ≤ 122 by an
exhaustive search [28]. If for a fix ρ > 0, we have a sequence of plane integral point
set Pi, each containing a collinear subset of cardinality least nρ, then the diameters
of the Pi are in Ω

(
ec log n log log n

)
[24,28]. For m ≥ 3 we refer to [24,27], where

some bounds and exact numbers are given.
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Figure 1. A 2-dimensional integral point set with n = 9 and diameter 29.

Some authors require integral point sets to fulfill certain further conditions. The
two classical conditions are, that no m + 1 points are contained in an (m − 1)-
dimensional hyperplane, and that no m + 2 points are located on an (m − 1)-
dimensional hypersphere. For ease of notation we speak of semi-general position
in the first case and of general position if both conditions are fulfilled. We denote the
minimum diameter of integral point sets in semi-general position by d(n, m) and
of integral point sets in general position by ḋ(n, m). For some small parameters the
exact values have been determined in [21,23,24,28,33]. We would like to remark
that for dimension m = 2 and 3 ≤ n ≤ 36 points, the examples with minimum
possible diameter d(n, 2), consist of points on a circle [24,28].

A famous question of Erdős asks for point sets in the plane with seven points in
general position (i.e. no three on a line and nou four on a circle) with pairwise
integral distances. Actually he first asked for such a set with five points, which was
answered by Harborth [15,16], then for a set with six points, which was answered
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by Kemnitz [21]. Kemnitz even gives a construction for infinitely many such sets
with coprime distances. For a long time no example consisting of seven points was
known. Very recently one of the authors has discovered two such examples with
diameters 22270 and 66810 [23]. For dimensions m ≥ 3 we refer to [24,17].

As a specialization, integral point sets in general position, with all n points on an
integer grid Zm, are called nm-clusters. Noll and Bell have found nm-clusters for
m ≤ 5 and n ≤ m + 4 but have no example for n ≥ m + 5 [31]. For m ≥ 3 even
no integral point set in semi-general position with at least m + 5 points is known.

Conjecture 1 (Erdős and Noll) For any m > 1, n > 1, there exists either none or
an infinite number of non-isomorphic nm-clusters.

An important invariant of an integral point set is its characteristic, which is defined
as follows:

Definition 1 Let S be a non-degenerated integral point set of m + 1 points in the
m-dimensional Euclidean space Em. By Vm we denote the m-dimensional volume
of the simplex being formed by the convex hull of S. Since the pairwise differences
of S are integral and S is not degenerated we have (Vm)2 ∈ N\{0}. Thus Vm can
be uniquely written as Vm = q

√
c with q ∈ Q and a squarefree integer c. This

integer c is called the characteristic char(S) of an integral simplex S.

The following theorem allows us to define the characteristic of an integral point set.

Theorem 1 In an m-dimensional integral point setP each non-degenerate integral
simplex S has the same characteristic char(S).

Definition 2 Let P be an m-dimensional integral point set and S ⊆ P be an arbi-
trary m-dimensional non-degenerate integral sub-simplex of P . The characteristic
char(P) of P is given by char(P) = char(S).

For dimension m = 2 Theorem 1 can be traced back at least to Kummer [21], for
m ≥ 3 we refer to [25]. We would like to remark that if we are in the special case,
where also the coordinates of an m-dimensional integral point set P are integral,
every subset S of P , consisting of m + 1 points, has an integral volume. In our
notation this means, that for an integral point set P in Zm we have char(P) = 1.
So all nm-clusters have characteristic one.

From [13,25] we know, that if P is an m-dimensional integral point set in Em with
characteristic char(P) = 1, then there exists an embedding of P in Em using only
rational coordinates. The existence of an embedding using only integral coordinates
is an interesting open conjecture of [13].
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2 Integral point sets over Zm
n

In the previous section we have seen, that almost certainly there is a lot of hidden
structure in the set of integral point sets which attain the minimum possible diam-
eter and fulfill certain further conditions. Although the problem of integral point
sets is a very classical one, not much progress has been achieved towards structure
results or tight bounds on the minimum diameter. The idea of this paper is to study
similar problems, which might be easier to handle, but may give some insight in
the original problem. At first we want to consider the study of integral point sets in
Zm as our original problem and relate it to some problem of point sets in Zm

n .

So let P ′ be an integral point set over Zm. To relate P ′ to a set P of points in Zm
n

we consider the canonical mapping φn : Z → Zn, x 7→ x + Zn = x, which maps
coordinates in Zm to coordinates in Zm

n . If n is suitably large no two points of P ′

will be mapped onto the same point in P . To be able to translate results in Zm
n back

to Zm, we define the inverse mapping Ψn : Zn → {0, . . . , n− 1} by Ψ(φn(x)) = x
for x ∈ {0, . . . , n − 1}. As an abbreviation we set Ψn(x) = x̂ and φn(x) = x,
whenever the value of n is clear from the context. Since points in P ′ have integral
distances in Zm we need a similar definition of integral distances in Zm

n . The most
natural way to define an integral distance over Zm

n is:

Definition 3 Two points (u1, . . . , um), (v1, . . . , vm) ∈ Zm
n are at integral distance,

if there exists a number d ∈ Zn with

m∑
i=1

(ui − vi)
2 = d2.

With this definition an integral point set P ′ over Zm is mapped via φn onto an inte-
gral point set P over Zm

n . Since φn may map some point set P ′ over Zm, which is
not contained in a hyperplane of Zm, onto a point set P ′, where all points are con-
tained in a hyperplane of Zm

n , we do not make any requirements on the distribution
of the points in an integral point set over Zm

n in the first run. The next definition to
translate from Zm or Em to Zm

n is the minimum diameter. In Zm and Em we need
the concept of a minimum diameter to get a finite space, whereas Zm

n is finite for
itself. So we find it natural to consider the maximum number of integral points.

Definition 4 By I(n, m) we denote the maximum number of points in Zm
n with

pairwise integral distances.

Theorem 2 I(n, 1) = n, I(1, m) = 1, and I(2, m) = 2m.

PROOF. Because there are only nm different elements in Zm
n we have the trivial

upper bound I(n, m) ≤ nm. This upper bound is only attained if m = 1 or n ≤ 2,
since Zn has at least one quadratic non residue for n ≥ 3. 2
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m\n 3 4 5 7 8 9 11 13 16 17

2 3 8 5 7 16 27 11 13 64 17

3 4 16 25 8 64 81 11 169 256 289

4 9 32 25 49 512 324 121 ≥ 169 1024

5 27 128 125 343 2048 ≥ 893 ≥ 1331 ≥ 2197

6 33 256 ≥ 125 ≥ 15296

7 ≥ 35 1024 ≥ 81792

Table 1
Values of I(n, m) for small parameters n and m.

For n ≥ 3 we so far were not able to derive explicit formulas for I(n, m) and so
we give in Table 1 some values for small parameters n and m, obtained by exhaus-
tive enumeration via clique search, which we will describe in the next subsection.
Further exact values or lower bounds can be determined using Theorem 2 and 3 of
Subsection 2.2.

2.1 Exhaustive enumeration of integral point sets over Zm
n via clique search

In this subsection we describe how the exact values I(n, m) of Table 1 were ob-
tained. We model our problem as a graph G, so that the cliques (i.e. complete sub-
graphs) of G are in bijection to integral point sets over Zm

n . Therefore we choose
the elements of Zm

n as vertices and connect x, y ∈ Zm
n via an edge, if and only if x

and y are at integral distance.

To determine I(n, m), we only have to determine the maximum cardinality of a
clique of G. Unfortunately this is an NP-hard problem in general, but practically
this approach was also successful in the case of integral point sets over Em [24,28],
due to good heuristic maximum-clique algorithms. Besides an implementation of
the Bron-Kerbosch algorithm [7] written by ourself we use the software package
CLIQUER [30,32] of Niskanen and Östergård.

By prescribing points or distances of an integral point set P , it is possible to re-
duce the complexity for the clique-search algorithm. The first variant is, that due
to symmetry we can assume that the point 0 = (0, . . . , 0) ∈ Zm

n is part of P . As
vertices of G we choose the points in Zm

n \{0}, which have an integral distance to
0. Again two vertices x, y ∈ G are joined by an edge, if the corresponding points
are at integral distance.

For the second variant we consider the set Dn,m of all points d = (d1, . . . , dm) ∈
Zm

n , which have an integral distance to 0 and which fulfill d̂i ≤
⌊

n
2

⌋
, for all 1 ≤ i ≤

m. So for every two points u = (u1, . . . , um) 6= v = (v1, . . . , vd) ∈ Zm
n , having an

integral distance, the tuple

δn(u, v) =
(

min (|û1 − v̂1|, n− |û1 − v̂1|), . . . , min(|ûm − v̂m|, n− |ûm − v̂m|)
)
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is an element of Dn,m. Actually we consider the vector of the Lee weights [34] of
the coordinates of the difference u− v. Now we choose an arbitrary numbering of
this set Dn,m\{0} = {e0, . . . , e|Dn,m|−2} and consider the graphs Gi, which consist
of the points of Zm

n \{0, ei}, with integral distances to 0 and ei, as vertices. Two
vertices x 6= y ∈ G are joined by an edge if and only if the corresponding points
fullfill δn(x, y) = ej with i ≤ j. Again one can show, that an integral point set
in Zm

n corresponds to a clique in some graph Gi and vice versa. For some values
of n and m it is worth to put some effort in a suitable choice of the numbering of
Dn,m\{0}.

2.2 Hamming spaces and homomorphisms

In this subsection we want to relate the problem of integral point sets over Zm
n to

problems in Hamming spaces. In coding theory the Hamming distance h(u, v) of
two vectors u = (u1, . . . , um), v = (v1, . . . , vm) ∈ Zm

n is the number of positions i
where ui and vi differ. Normally one is interested in large subsets of Zm

n where all
the Hamming distances are either 0 or larger than a given constant c. In our subject,
we are interested in large subsets of Zm

n , where all the Hamming distances are taken
from a specific proper subset of {0, 1, . . . ,m}. This point of view has been proven
useful i.e. also in the 0/1-Borsuk problem in low dimensions, see [37]. Here we
also want to mention the study of two-weight codes, see i.e. [9,22].

So let us go back to the determinantion of I(n, m). As there are trivial formulas for
I(1, m) and I(2, m), the next open case for fixed ring order n is the determination
of I(3, m). Due to 12 ≡ 22 ≡ 1 mod 3, integral point sets over Zm

3 correspond
to sets of Zm

3 with Hamming distances h(u, v) 6≡ 2 mod 3. So this is our first
example of a selection problem in a Hamming space.

For the determination of I(2n, m) we can utilize homomorphisms to make the
problem easier. Therefore we need some definitions.

Definition 5 For an integer n we define the mapping ϕ̃2n : Z2n → Zn, x 7→ x̂+Zn,
and by ϕ2n,m we denote its extensions to Zm

2n.

Definition 6 The weight function w̃2n : Z2
n → Z2n is defined by (ui, vi) 7→ (ûi −

v̂i)
2 + Z · 2n.

Hm
2n :=

{
S ⊆ Zm

n | ∀ s1, s2 ∈ S : ∃d ∈ Z2n : d2 = w(s1, s2)
}

,

where w2n,m : (Zm
n )2 → Z2n is given by ((u1, . . . , um), (v1, . . . , vm)) 7→

m∑
i=1

w̃2n(ui, vi).

By Im
n we denote the set of integral point sets in Zm

n .

Lemma 1
2m | I(2n, m).
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PROOF. We consider the ring homomorphism ϕ2n,m and restrict it to ϕ′
2n,m : Im

2n →
Hm

2n. If P is an element of Hm
2n then the preimage ϕ−1

2n,m(P) is an integral point set,
due to (x + n)2 ≡ x2 + n mod 2n for odd n and (x + n)2 ≡ x2 mod 2n for even
n. For all x ∈ Zm

n we have |ϕ−1
2n,m(x)| = 2m. 2

So for the determination of I(2n, m), it suffices to determine the maximum cardi-
nality of the elements of Hm

2n, which actually are subsets of Zm
n .

I(2n, m) = 2m · max
S∈Hm

2n

|S|

As an example we want to apply this result for n = 2. Here w4,m is exactly the
Hamming distance in Zm

2 . Since the squares of Z4 are given by {0, 1}, we conclude
that Hm

4 is the set of all subsets of Zm
2 , with Hamming distance congruent to 0

or 1 modulo 4. With the mapping ϕ′
4,m at hand, we can exhaustively generate the

maximal sets in Hm
4 , via a clique search, to extend Table 1:

(I(4, m))m≤12 = 4, 8, 16, 32, 128, 256, 1024, 4096, 16384, 32768, 65536, 131072.

The next theorem shows, that it suffices to determine I(a, m) for prime powers
a = pr.

Theorem 3 For two coprime integers a and b we have I(a · b, m) = I(a, m) ·
I(b, m).

PROOF. Since a and b are coprime we have Zab ' Za×Zb. If P is an integral point
set in Za × Zb, then the projections into Za and Zb are also integral point sets. If
on the other hand, P1 and P2 are integral point sets over Za and Zb, respectively,
then P := P1 × P2 is an integral point set over Za × Zb, due to a straight forward
calculation. 2

If we drop the condition that a and b are coprime Theorem 3 does not remain valid
in general. One can see this by looking at the example I(2, 3) · I(4, 3) > I(8, 3) in
table 1. Also I(a, m) | I(a · b, m) does not hold in general, as on can see by a look
at the example I(3, 3) - I(9, 3). We would like to mention, that in a recent preprint
[26] the exact values of I(p, 2) and I(p2, 2) have been determined.

Theorem 4 For a prime p ≥ 3 we have

I(p, 2) = p and I(p2, 2) = p3.

2.3 Integral point sets over the plane Z2
n

In Theorem 2 we have given an exact formula for I(n, 1). So, if we fix the di-
mension m, the next case is the determination of I(n, 2). At first we give two
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constructions to obtain lower bounds for I(n, 2).

Lemma 2 If the prime factorization of n is given by n =
s∏

i=1
pri

i , with pairwise

different primes pi, we have

I(n, 2) ≥ n ·
s∏

i=1

p
b ri

2 c
i .

PROOF. We choose the points (ui, vjk), where ui, vj ∈ Zn and k =
s∏

i=1
p
d ri

2 e
i . Since

(ui1 − ui2)
2 + (vj1k − vj2k)2 = (ui1 − ui2)

2,

all occurring distances are integral. 2

An example of the construction of Lemma 2 is given in Figure 2, for n = 12 = 22·3.

w w w w w w w w w w w w

w w w w w w w w w w w w

0 1 2 3 4 5 6 7 8 9 10 11
0
1
2
3
4
5
6
7
8
9

10
11

Figure 2. An integral pointset over Z2
12 constructed via Lemma 2.

In the case of n = 2 mod 4 we can improve the above lemma:

Lemma 3 If the prime factorization of n is given by n = 2 ·
s∏

i=2
pri

i , with pairwise

different primes pi 6= 2 we have

I(n, 2) ≥ 2n ·
s∏

i=2

p
b ri

2 c
i .

PROOF. We choose the points (ui, vjk), where ui, vj ∈ Zn and k =
s∏

i=2
p
d ri

2 e
i . Since

2k2 ≡ 0 mod n and

(ui1 − ui2)
2 + (vj1k − vj2k)2 = (ui1 − ui2)

2 + (v2
j1

+ v2
j2

)k2

either
(ui1 − ui2)

2 + (vj1k − vj2k)2 = (ui1 − ui2)
2
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or
(ui1 − ui2)

2 + (vj1k − vj2k)2 = (ui1 − ui2 + k2)2

holds. 2

Conjecture 2 For all n ∈ N either the lower of Lemma 2 or the lower bound of
Lemma 3 is tight.

Remark 1 By Theorem 3 and an exhaustive enumeration of integral point sets over
Z2

n, via clique search, we have verified Conjecture 2 up to n = 307.

If n is squarefree and 2 does not divide n, then our constructions from Lemma 2
and Lemma 3 yield point sets of the form P = {(u, 0) | u ∈ Zn}. This is somewhat
similar to the situation in E2, where integral collinear point sets with small diameter
can consist of many points. Since we also want to speak of collinear point sets in
Z2

n we give:

Definition 7 A set of r points (ui, vi) ∈ Z2
n is collinear, if there are a, b, t1, t2, wi ∈

Zn with
a + wit1 = ui and b + wit2 = vi.

Let us first look at collinearity from the algorithmic point of view. Checking three
points for being collinear, by running through the possible values of a, b, t1, t2, wi ∈
Zn, would cost O(n7) time. Setting, w.l.o.g., a = u1, b = v1, w1 = 0 reduces this
to O(n4). If n is prime, then we are working in a field, and there is an easy and well
known way to check, whether three points are collinear, in O(1) time:

Lemma 4 For a prime n the points (u1, v1), (u2, v2), (u3, v3) ∈ Z2
n are collinear, if

and only if

∣∣∣∣∣∣∣∣∣∣∣
u1 v1 1

u2 v2 1

u3 v3 1

∣∣∣∣∣∣∣∣∣∣∣
= 0. (1)

We remark that in Z8 the points (0, 0), (2, 4), (4, 4) fulfill equation (1), but are not
collinear with respect to Definition 7. So in general equation (1) is necessary but
not sufficient for three points to be collinear. We propose the development of a fast
algorithm, which checks three points in Z2

n for being collinear, as an interesting
open problem. In practice one simply determines for each pair x, y ∈ Z2

n, whether
the triple 0, x, y is collinear or not, in a precalculation.

The study of collinear point sets is motivated by the situation in the case of non-
modular point sets. Due to a theorem of Erdős each integral point set in E2, with
infinitely many points, is located on a line [1,12]. And, as already mentioned in the
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introduction the, non-collinear integral point sets in E2 with minimum diameter,
are conjectured to consist of n− 1 collinear points and one point apart.

In this context we would like to mention a theorem, which was recently proven in
[26].

Theorem 5 For p being a prime, with p ≡ 3 mod 4, each integral point set over
Z2

p, consisting of p points, is collinear.

For primes p, of the form p ≡ 1 mod 4, also a different type of integral point
sets occurs. To describe these sets, we need some new notation. For a prime p ≡ 1
mod 4, there is a unique element ω(p) ∈ N, with ω(p) < p

2
and ω2(p) ≡ −1

mod p. By �n = {i2 | i ∈ Zn} we denote the set of squares in Zn.

Lemma 5 For a prime p ≥ 3, the set P = (1,±ω(p)) · �p is a non-collinear
integral point set over Z2

p with cardinality p.

PROOF. For an odd prime p we have exactly p+1
2

squares in Zp. Since (0, 0),
(1, ω(p)), and (1,−ω(p)) are elements of P , the point set is clearly non-collinear.
For the property of pairwise integral distances we consider two arbitrary elements
q, q′ ∈ �p and the corresponding distances

(q − q′)2 + ω2(p)(q − q′)2 = 0,

(q − q′)2 + ω2(p)(q + q′)2 = (2ω(p))2qq′,

(q + q′)2 + ω2(p)(q − q′)2 = 22qq′,

(q + q′)2 + ω2(p)(q + q′)2 = 0.

2

w w
w w

w w
ww

w w

w w
w

0 1 2 3 4 5 6 7 8 9 10 1112
0
1
2
3
4
5
6
7
8
9

10
11
12

Figure 3. The integral point set P = (1, ω(p)) ·�p for p = 13.
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In Figure 3 we have depicted an integral point set, being constructed as described
in Lemma 5 for p = 13. We remark that recently in [26] it was proven, that integral
point sets P over Z2

p, with cardinality p ≥ 3, are either collinear or a translated
version of the integral point set constructed in Lemma 5.

2.4 Integral point sets over Z2
n with further conditions

In the last subsection we have recognized, that integral point sets over Z2
n are, sim-

ilar to integral point sets over E2, somewhat attracted by collinear sets. So we in-
vestigate in this subsection integral point sets P over Z2

n, where no three points are
collinear.

Definition 8 By I(n, m) we denote the maximum number of points in semi-general
position over Zm

n , where are pairwise distances are integral.

If we drop the condition of pairwise integral distances, our studied objects become
very familiar discrete structures. In the case of affine finite geometries (classical
[19] in the case of Zn with n a prime, Hjelmslev geometries [8] in the other cases)
point sets in semi-general position, with arbitrary pairwise distances, are called arcs
in the case of planes or caps [3] in the three dimensional case. With the results from
Subsection 2.2 in mind, we would like to mention the connection of these objects
to linear coding theory, see i.e. [4] for the details.

In Table 2 we give some values of I(n, 2) for small n, obtained by Algorithm 1
described later on.

n I(n, 2) n I(n, 2) n I(n, 2) n I(n, 2) n I(n, 2) n I(n, 2)

1 1 11 6 21 4 31 16 41 20 51 8

2 4 12 4 22 8 32 14 42 6 52 12

3 2 13 6 23 12 33 6 43 22 53 26

4 4 14 6 24 6 34 10 44 10 54 ≥ 13

5 4 15 4 25 10 35 6 45 11 55 8

6 4 16 8 26 10 36 12 46 14 56 10

7 4 17 8 27 10 37 18 47 24 57 10

8 6 18 10 28 8 38 12 48 8 58 ≥ 16

9 6 19 10 29 14 39 6 49 ≥ 18 59 30

10 6 20 8 30 6 40 10 50 ≥ 17 60 8
Table 2
Values of I(n, 2) for small parameters n.
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Now we want to derive an upper bound for I(n, 2), by relaxing the condition of
pairwise integral distances. Let P be a point set over Z2

n in semi-general position.
We consider the lines {(i, j) | j ∈ Zn} for i ∈ Zn. Since these n lines form a
partition of Z2

n and each line can contain at most two points of P , we obtain the
trivial upper bound I(n, 2) ≤ 2n. This is connected to a famous open problem
in number theory [14, sec. F4], where people work on an upper bound for the no-
three-in-a-line problem. Considering all lines in Z2

n we receive

I(p, 2) ≤ p + 1

for odd primes p [5] and

I(n, 2) ≤ n · (1 + p−d
a+1
2

e + p−a)

where pa | n and pa+1 - n for a prime p [20].

Very recently for the case of odd primes p, tight bounds on I(p, 2) are proven [26]:

Theorem 6 For p ≡ 3 mod 4 we have

I(2, p) =
p + 1

2

and for p ≡ 1 mod 4 we have

p− 1

2
≤ I(2, p) ≤ p + 3

2
.

We would like to remark that the known construction uses half of the points of the
circle {(a, b) ∈ Z2

p | a2 +b2 = 1}, see [26] for the details. For p ≡ 1 mod 4, p 6= 5

we conjecture I(p, 2) = p−1
2

.

By a look at the situation in E2 and with the famous question of Erdős in mind. it
seems interesting to investigate integral point sets over Z2

n, where no three points
are collinear and no four points are situated on a circle.

Definition 9 Four points pi = (xi, yi) in Z2
n are said to be situated on a circle if

there exist a, b ∈ Zn, r ∈ Zn\{0} with

(xi − a)2 + (yi − b)2 = r2

for all i.

We have the following necessary condition:
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Lemma 6 Four points pi = (xi, yi) in Z2
n being situated on a circle fulfill∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x2
1 + y2

1 x1 y1 1

x2
2 + y2

2 x2 y2 1

x2
3 + y2

3 x3 y3 1

x2
4 + y2

4 x4 y4 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0. (2)

Definition 10 By İ(n, m) we denote the maximum number of points in Zm
n with

pairwise integral distances, where no three points are collinear and no four points
are situated on a circle. Here we also talk of general position.

n İ(n, 2) n İ(n, 2) n İ(n, 2) n İ(n, 2) n İ(n, 2) n İ(n, 2) n İ(n, 2)

1 1 11 4 21 4 31 6 41 9 51 7 61 ≥ 9

2 4 12 4 22 8 32 8 42 6 52 ≥ 9 62 ≥ 11

3 2 13 5 23 5 33 4 43 8 53 ≥ 9 63 8

4 4 14 6 24 4 34 10 44 8 54 ≥ 11 64 ≥ 10

5 4 15 4 25 6 35 5 45 8 55 6 65 7

6 4 16 6 26 8 36 ≥ 10 46 10 56 6 66 8

7 3 17 5 27 7 37 7 47 7 57 6 67 ≥ 9

8 4 18 8 28 6 38 8 48 8 58 ≥ 11 68 ≥ 10

9 4 19 5 29 7 39 6 49 ≥ 11 59 ≥ 9 69 7

10 6 20 6 30 6 40 6 50 ≥ 12 60 8 70 ≥ 9
Table 3
Values of İ(n, 2) for small parameters n.

Trivially we have İ(n, 2) ≤ I(n, 2). In Table 3 we give some exact values of
İ(n, 2), obtained by Algorithm 1 described later on. One might conjecture that
İ(n, 2) is unbounded.

Because semi-general position or general position is a property of three or four
points, respectively, we cannot apply our approach via clique search for the deter-
mination of I(n, 2) and İ(n, 2) directly. Instead of going over to hypergraphs we
use a variant of orderly generation [35], which glues two integral point sets con-
sisting of r points, having r − 1 points in common, to obtain recursively integral
point sets of r + 1 points. The used variant of orderly generation was introduced,
and applied for the determination of the minimum distance ḋ(n, 2) of integral point
sets in general position in E2, in [24,28].

Now we go into detail. To describe integral point sets over Z2
n, we utilize the set

Dn,2, where the coordinates of the points are reduced with respect to the Lee weight

13



via

δn((x1, y1), (x2, y2)) =
(

min(|x̂1−x̂2|, n−|x̂1−x̂2|), min(|ŷ1−ŷ2|, n−|ŷ1−ŷ2|)
)
.

By B = {b0, b1, . . . , bt}we denote the subset of Dn,2 = {δn(0, x) | x ∈ Z2
n}, where

the points x are at integral distance to 0. We define b0 = (0, 0). The numbering of
the remaining bi is arbitrary but fix. Each integral point set P = {p1, . . . , pr} over
Z2

n is, up to translations and reflections, completely described by a matrix

∆n(P) =
(
ι (δn (pi, pj))

)
i,j

,

where we set δn(pi, pi) = b0 and ι : B → N, bi 7→ i. We use these matrices as
a data structure for integral point sets over Z2

n. Next we extend the natural order
≤ on N to � for symmetric matrices, with zeros on the main diagonal as ∆n, by
using a column-lexicographical order of the upper right matrix. A matrix ∆n is said
to be canonical if ∆n ≥ π(∆n) for every permutation π ∈ Sr acting on the rows
and columns of ∆n. If ↓∆n denotes the removal of the last column and last row
of a matrix ∆n, then ∆n is said to be semi-canonical if ↓∆n ≥↓π(∆n) for every
permutation π ∈ Sr. The function Γr does the glueing of two integral point sets
over Z2

n consisting of r points having r − 1 points in common. The result of the
function Γr is an, with respect to �, ordered list of integral point sets consisting of
r + 1 points. By Lr we denote the ordered list of all semi-canonical matrices ∆n,
with respect to �, which correspond to integral point sets over Z2

n. It can be figured
out easily that Γr produces a list with at most two integral point sets. With these
definitions we can state:

Algorithm 1
Input: Lr

Output: Lr+1

begin
Lr+1 = ∅
loop over x1 ∈ Lr, x1 is canonical do

loop over x2 ∈ Lr, x2 � x1, ↓x1 =↓x2 do
loop over y ∈ Γr(x1, x2)

if y is semi-canonical then add y to Lr+1 end
end

end
end

end

A starting list L3 of the integral triangles can be generated by a nested loop. In
order to apply Algorithm 1 for the determination of I(n, 2) or İ(n, 2), we only
have to modify it in that way, that it only accepts integral point sets in semi-general
or general position, respectively, for the lists Lr.
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3 Integral point sets over (R/Zn)2

In the previous section we have required also the coordinates of the point sets to be
integral. This corresponds somewhat to integral point sets in Zm. In this section we
try to develop a setting for an analogous treatment of integral point sets in Em over
the ring Zn instead of Z for the distances. We start with n = p being an odd prime.

Let p be an odd prime, then Zp is a finite field. Given three elements a, b, c ∈
Zp\{0}, which we consider as edge lengths of a triangle. Then we can deter-
mine a coordinate represention, given by three points (x1, y1), (x2, y2), (x3, y3) in
(R/Zp)2, as follows. Due to translations, rotations and reflections we can assume
(x1, y1) = (0, 0) and (x2, y2) = (a, 0). For the third point (x3, y3) we get the system
of equations

x2
3 + y2

3 = b2,

(x3 − a)2 + y2
3 = c2.

Solving this system yields

x3 =
b2 − c2 + a2

2a
,

y2
3 =

(a + b + c)(a + b− c)(a− b + c)(−a + b + c)

(2a)2
,

which is defined in Zp because of 2a 6= 0. By α(p) we denote the smallest quadratic
non-residue in Zp. With the above system of equations it can be seen that x3 ∈ Zp

and y3 is either also in Zp or in Zp ·
√

α(p). Since this is similar to the case in Em,
see [24,25], we define the characteristic of an integral triangle similarly.

Definition 11 For an odd prime p the characteristic of three side lengths a, b, c ∈
Zp with V 2 = (a + b + c)(a + b− c)(a− b + c)(−a + b + c) 6= 0 is defined as 1 if
V 2 is a quadratic residue in Zp and as α(p) otherwise.

For the ease of notation we associate Em
p with (R/Zp)m. We remark that the three

points are collinear exactly if V 2 equals 0. So, similarly to the case in E2 [29],
we have the following lemma, where the determinant equals V 2, if we associate
a = δ(v1, v2), b = δ(v1, v3), and c = δ(v2, v3).

Lemma 7 Points v1, v2, v3 ∈ E2
p are collinear if and only if their Euclidean dis-
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tances δ(vi, vj) fulfill ∣∣∣∣∣∣∣∣∣∣∣∣∣∣

δ2(v1, v1) δ2(v1, v2) δ2(v1, v3) 1

δ2(v2, v1) δ2(v2, v2) δ2(v2, v3) 1

δ2(v3, v1) δ2(v3, v2) δ2(v3, v3) 1

1 1 1 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0.

Our definition of the characteristic of an integral triangle in Zp is properly chosen
in the sense that we have the following theorem.

Theorem 7 In an integral point set over E2
p where p is an odd prime the charac-

teristic of each non-degenerated triangle is equal.

PROOF. Without loss of generality we assume that the two triangles have two points
in common and the points are given by the coordinates (0, 0), (0, a), (x, y

√
c),

(x′, y′
√

c′), where a, x, x′, y, y′ are elements of Zp and c, c′ are the characteristics.
The squared distance of the last two points is given by

(x− x′)2 + (y
√

c− y′
√

c′)2 = (x− x′)2 + y2c− 2yy′
√

cc′ + y′
2
c′.

Because this number must be an element of Zp we have that cc′ is a quadratic
residue in Zp yielding c = c′. 2

As we have proceeded completely analogous to the case in Em we can generalize
Definition 11 and Theorem 7.

Definition 12 For an odd prime p the characteristic of an integral point set with
m + 1 points in Em

p given by its distances δi,j is 1 if V 2
m is a quadratic residue in Zp

and α(p) otherwise, where

V 2
m =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

δ2
1,1 . . . δ2

1,m+1 1
... . . . . . . ...

δ2
m+1,1 . . . δ2

m+1,m+1 1

1 . . . 1 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Theorem 8 In an integral pointset over Em
p where p is an odd prime the charac-

teristic of each non-degenerated simplex the same.

PROOF. We do the corresponding calculations as in [25] over Zp instead of Q. 2

For completeness we give a necessary coordinatefree criterion for m + 2 points
being situated on an m-dimensional sphere.
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Lemma 8 If m + 2 points in Em
n described by their distances δi,j are situated on

an m-dimensional sphere then∣∣∣∣∣∣∣∣∣∣∣
δ2
1,1 . . . δ2

1,m+1

... . . . ...

δ2
m+1,1 . . . δ2

m+1,m+1

∣∣∣∣∣∣∣∣∣∣∣
= 0.

So far we have transferred the theory of integral point sets in Em to integral point
sets over Em

p for odd primes p. For general n instead of p there are some twists if we
use coordinates. The most natural approach to settle these would be, with respect
to the situation in Em, to leave out coordinates and use Mengers characterization of
embedable distance matrices [29] and replace the conditions over Z by conditions
over Zn.

Definition 13 An integral point set P over Em
n is a set of r ≥ m + 1 points with

distances δi,j ∈ Zn\{0} for 1 ≤ i 6= j ≤ r which fulfill

V 2
t−1({i1, . . . , it}) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

δ2
i1,i1

. . . δ2
i1,it 1

... . . . . . . ...

δ2
it,i1

. . . δ2
it,it 1

1 . . . 1 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0

for each subset of points {i1, . . . , it} of cardinality t = m + 2 and t = m + 3, and
there exists a subset {̃ı1, . . . , ı̃t} of cardinality t = m + 1 with V 2

t−1({̃ı1, . . . , ı̃t}) 6=
0.

To model the extra conditions we could define that P is in semi-general position if
for every m + 1 points {i1, . . . , im+1} we have V 2

m+1({i1, . . . , im+1}) 6= 0 and that
P is in general position if the condition of Lemma 8 is fulfilled. We remark that for
m = 2 the determinant of Lemma 8 can be factorized to

−(δ1,2δ3,4 + δ1,3δ2,4 + δ1,4δ2,3)(δ1,2δ3,4 + δ1,3δ2,4 − δ1,4δ2,3) ·
(δ1,2δ3,4 − δ1,3δ2,4 + δ1,4δ2,3)(−δ1,2δ3,4 + δ1,3δ2,4 + δ1,4δ2,3).

For m = 2 we also have

V 2
2 ({1, 2, 3}) = (δ1,2 + δ1,3 + δ2,3)(δ1,2 + δ1,3 − δ2,3) ·

(δ1,2 − δ1,3 + δ2,3)(−δ1,2 + δ1,3 + δ2,3).

So one may leave out the first factor and request that one of the remaining factors
equals 0 instead of the condition in Definition 13 and the condition in Lemma 8,
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respectively. For m ≥ 3 the two corresponding determinants are irreducible [10].

Another way to generalize integral point sets is to consider the edge lengths and
coordinates as elements in a finite field Fpk or a commutative ring R instead of
Fp = Zp. For some results we refer to [2,26]. Here we only give a very general
definition of an integral point set over an commutative ring R:

Definition 14 For a commutative ring R a set P of n points in Rm is called an in-
tegral point set if for each (x1, . . . , xm), (y1, . . . , ym) ∈ Rm there exists an element
d ∈ R fulfilling

m∑
i=1

(xi − yi)
2 = d2.

4 Conclusion

We have generalized the theory of integral point sets over Zm to integral point
sets over Zm

n . Some exact values I(n, m) of the maximal cardinality of a set with
pairwise integral distances in Zm

n with or without further conditions on the position
are given together with algorithms to determine them.

There are two connections to coding theory, first via the special case of arcs and
caps, secondly by the observation that I(n, m) leads to a class of codes where the
Hamming distances of the codewords have to fulfill certain modular restrictions.

For odd primes p the theory of integral point sets in Em is transferred to a theory of
integral point sets over Em

p including the fundamental theorem about the character-
istic of an integral simplex.

There are some open questions left and the given results motivate for further re-
search on integral point sets over Zm

n and Em
n , as they seem to be interesting com-

binatorial structures.
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