
ALGORITHM OF DEMOUCRON, MALGRANGE, PERTUISET

AXEL KOHNERT

There is an algorithm from 1964 by Demoucron, Malgrange and Pertuiset [DMP64] which
computes a planar embedding for a planar graphG = (V,E). [MTYS94] This is an
incremental algorithm as the embedding is computed step by step, where a step is the
embedding of a new cycle of the graph. Assume we have already computed a embedding
of a subgraph G’ of G we have to look at the so called fragments.

Definition. fragments

For a subgraphG′ = (V ′, E′) of G = (V,E) we define afragmentof G (with respect to
G’) as a subgraphS = (VS , ES) of G with eitherES = {u, v} with {u, v} ∈ E\E′ or S
is a connected component ofG\G′ together with all edges in G between S and G’.

Example. 6 fragments ofG with respect toG′.
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A vertex v of a fragment is calledcontact vertexif v∈V’. In the above example the contact
vertices of the first fragment are 1,2,3,4. For the next step of the algorithm we have to
assume that our (may be) planar is biconnected. If it is not biconnected we compute pla-
nar embeddings of the biconnected components and put them together at the articulation
points. For biconnected graphs we always have to different contact points of a fragment.
As we are working in an incremental algorithm we assume that we have a planar embed-
ding of G’, so we can speak of faces of G’. Anadmissible faceof a fragment S is a face
of G’ which contains all contact points of S. So if we are looking for embeddings of a
fragment, the admissible faces are the only candidates. The set of all admissible faces of
a fragment S is denoted by F(S). During one step of the algorithm we will embed an (el-
ementary) path of a fragment connecting two different contact vertices. The start and the
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end vertex are the only contact vertices in this path. Such a path is calledα-path. Two
different fragments S and T are calledcompetingif

• F (S) ∩ F (T )6=∅
• for each face from F(S)∩F(T) there are twoα-paths L⊂S and M⊂T which cannot

simultaneously embedded into this face.

Again in the above example the first and second fragment are competing as theα-paths
1-9-10-4 and 3-11-5 are not simultaneously embeddable into a common face. We are now
in the position to give the algorithm

Algorithm. planarity test with planar embedding(Demoucron, Malgrange and Pertuiset)

input: graph G

(1) choose a cycle of G this is a planar graph G’ together with a embedding
(2) compute all faces of G’
(3) compute F(S) = set of fragments of G with respect to G’
(4) if F(S)=Ø then we have G’∼=G and G’ has a planar embedding. end
(5) compute all admissible faces for all fragments
(6) if there is a fragment without admissible face, then the graph has no planar em-

bedding. end
(7) if there is a fragment S with only one admissible face then goto 9
(8) choose a fragment S (more then one admissible face)
(9) choose aα-path from S and embed it into an admissible face of S, goto 2

We will first do an example

Example. planar embedding

we got the following graph G
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in the first step we start with an arbitrary cycle e.g. 2-3-4, the following steps are shown in
the table
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G’ faces fragments admissible
faces
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Next step is to prove the correctness of the algorithm.

Theorem.

The algorithm of Demoucron, Malgrange and Pertuiset for the computation of a planar
embedding of a graph is correct.

Proof. we will show this theorem in several steps. �

First step is to show that in the case of competing fragments with more than one admissible
face these fragments have each exact two admissible faces and these are identical.

Lemma. admissible faces of competing fragments

If competing fragments S,T are such that|F (T )| ≥ 2 and |F (S)| ≥ 2 thenF (S) = F (T )
and|F (T )| = 2.
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Proof. AssumeF (S) 6= F (T ) then we have at least 3 distinct facesf, g, h with f ∈ F (S)
and g ∈ F (T ) and as the fragments are competing we have a nonempty join, soh ∈
F (S) ∩ F (T ). Eachα-pathL ⊂ S is embeddable into facef , and eachα-pathM ⊂ T is
embeddable into faceg, so each pair of(L,M) is embeddable outside of faceh, but so it is
also embeddable inside ofh, which is a violation of the condition of competing fragments.

f

gh

M

L

This showsF (S) = F (T ). To show that there are only 2 faces, we do the same construc-
tion like above for the 3 different faces {f, g, h}⊂ F (S). �

To show that we have an incremental algorithm we define apartial embeddingG’ of a
planar graph G as a embedding of a subgraph G’ of G which we get from a embedding of
G by removing edges and vertices. So if we have a partial embedding, it can be extended
to an embedding of the whole graph. As a further tool we define thefragment graphS(G′)
of a fragment set. The vertices are the fragments, and they are connected by a edge if it is
a pair of competing fragments.

Lemma. fragment graph is bipartite

if we got a partial embedding G’ of G and ifF (S) ≥ 2 for all fragments thenS(G′) is
bipartite.

Proof. Assume the graphS(G′) is not bipartite, according to lemma??there is a cycle of
odd lengthr, this cycle of odd length corresponds to a sequences1 − s2 − ...− sr − s1 of
competing fragments. Because of the previous lemma we haveF (si) = F (si+1) and there
are exact two admissible facesF1 andF2. So as we have a partial embedding and the only
way to do a embedding of the fragments to put the pathsLi ⊂ si into F1if i is odd and into
F2 in the case of eveni.(or the other way round). But asr is odd this generates a problem
at the last stepsr − s1 as these are both of odd index, so we would get a simultaneous
embedding of paths of competing fragments. �

Last step is the following theorem

Theorem. each step produces a partial embedding

if G is planar, each iteration of the algorithm produces a partial embedding G’

Proof. use induction on n = the number of iterations

n=1. G’ produced by the algorithm is a cycle, which can be reconstructed by removal of
edges and vertices from any planar embedding of G.

Now we have a planar embedding of G’. First step of the algorithm is the computation of
all admissible faces of the fragments of G’. As we are in a partial embedding of G there
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are admissible faces for all fragments. Otherwise there would be anα-path in a fragment
connecting different faces of the partial embedding, which be a nonplanar embedding of
G.

Now we have to look at step 7/8 of the algorithm.

case 1: there is a fragment S with only one admissible face. In this case there is only one
possibility to embed anα-pathL ⊂ S, so the algorithm produces a partial embedding
G’∪L which we from the same embedding of G used for the partial embedding of G’ .

case 2: all fragments have more then one admissible face. We embed theα-pathL ⊂ S.
In the case we have chosen the same face like in the planar embedding of G, we still have a
partial embedding which we get from the planar embedding of G. This was the easy case.
Assume we have chosen the ’wrong’ face. In the case that there is no competing fragment,
we can put the fragment at any admissible face. In the case of a competing fragment we
look at the connected component ofS in the fragment graphS(G′). It is bipartite and there
are only two admissible facesF (S) = f, g for all fragments in the connected component.
So we know all fragments embedded inf don’t compete with all the fragments ing. So if
swap these two faces in the planar embedding of G, we have a new planar embedding of G
which can be reduced to our partial embedding computed in the algorithm. �

Corollary. the algorithm is correct

(1) if G is planar the algorithm computes a planar embedding
(2) if the algorithm stops because there is a fragment without an admissible face, the

graph is not planar

Proof. this is clear from the above theorem �

This algorithm is of complexityO(|V |2).
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